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Abstract—In this paper, we focus on the use of knowledge bases 
in two different application areas – control of systems with unknown 
or strongly nonlinear models (i.e. hardly controllable by the classical 
methods), and robot motion planning in eight directions. The first 
one deals with fuzzy logic and the paper presents approaches for 
setting and aggregating the rules of a knowledge base. Te second one 
is concentrated on a case-based reasoning strategy for finding the 
path in a planar scene with obstacles.  
 
Keywords—fuzzy controller, fuzzification, rule base, inference, 

defuzzification, genetic algorithm, neural network, case-based 
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I. INTRODUCTION 

HE classical literature, dealing with automatic control, 
describes many sophisticated methods of designing these 

controllers in accordance with their dynamic behaviour. 
Mostly, these methods require a precise mathematical model 
of the controlled system. However, for complex systems, such 
a model may be difficult or even impossible to find or it may 
be strongly nonlinear [2], [15], which causes many difficulties 
in designing a controller. A promising way is to use the fuzzy 
logic approach to control [6], [20], [23]. Fuzzy logic uses the 
interval from 0 (False) to 1 (True) to describe human 
reasoning making it possible to formulate a rule base which is 
a major tool used to generate the values of the manipulated 
variable of the controller by its input values 

II. FUZZY LOGIC 

While the values of algebraic variables are usually given by 
numbers (in the Boolean algebra, for example, by the logical 1 
and 0), in fuzzy logic [1], [13], [17], [22] we work with 
linguistic variables whose values may be words or sentences. 
A linguistic variable is determined by: 1) name, 2) set of 
values that it can have (these values are called terms being 
represented by fuzzy sets), 3) universe defined for all terms 
and 4) function that maps words into values of a universe.  

For example, a linguistic variable x with label “Age” [7] 
may have terms from the set T = {very old, old, not so old, 
more or less young, young, very young}, the universe is the 
interval [0, 120] and the functions mapping word values to the 
universe have the shapes from Fig. 3.The simple fuzzy sets are 
mostly not sufficient and thus we use their composition. In 
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fuzzy controllers, which can be studied in the next sections, 
combined conditions occur and an output variable is given by 
a combination of several rules. However, we must only 
determine one membership function from these combinations 
of rules. This operation is called inference being performed by 
an inference engine.  

Let us define the basic operations over fuzzy sets – union, 
intersection and complement. The logical operators for 
disjunction and conjunction will be denoted by the symbols 
∧ (conjunction, logical AND) and ∨  (disjunction, logical OR) 
to avoid misunderstanding. 

The intersection of two fuzzy sets A, B in X, A ∩ B, is 
defined as  

 µA ∩B (x) = µA(x) ∧ µB(x), ∀x∈X (1)  

where “∧” is the minimum, it corresponds to the connective 
AND. 

The union of two fuzzy sets A, B in X, A ∪ B, is defined as  

µA ∪B (x) = µA(x) ∨ µB(x), ∀x∈X (2) 

where “∨ ” is the maximum, it corresponds to the connective 
OR. 

The complement of a fuzzy set A in X, ¬A, is defined as 

 µ¬A(x) = 1 − µA(x), ∀x∈X (3) 

corresponding to the negation NOT. 
In fuzzy logic, an analogy to the complement law and 

contradiction law in classical logic is not satisfied. This is 
caused by the fact that some elements partially belong to a 
fuzzy set and partially to its complement. Therefore, e.g., the 
intersection of a fuzzy set and its complement is not empty. 
Each element belongs to this intersection with a grade of 
membership lower or equal to 0.5.  

Apart from (1) and (2), there are also the other definitions 
for the evaluation of the membership functions of intersection, 
and union based on the minimum and maximum operations. 
Instead of the intersection, a triangular norm (shortly t-norm) 
can be used, and instead of the union, a triangular conorm 
(shortly t-conorm or s-norm) can be used. These norms must 
satisfy several axioms (boundary condition, monotonicity, 
commutativity and associativity), see [13].  

In Table I and Table II, basic t-norms and t-conorms (s-
norms) are summarised. The first row of this table corresponds 
to Equations (1) and (2). 

Like in the classical logic, we can generalise binary relations 
to higher order relations.   

The key operation in the fuzzy control is the fuzzy 
implication, which is a base of rules in a knowledge base. 

In classical logic, we can express the implication by the 
equivalent formulas as follows:  
 p → q = ¬p ∨ q = ¬p ∨ (p ∧ q) = (¬p∧¬q) ∨ q =  
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  = max {x∈{0,1} | (p∧x ) ≤ q} (4) 

TABLE I 
T-NORMS 

name formula 

standard intersection   i(a,b) = min(a,b) 

algebraic product i(a,b) = ab 

bounded difference    i(a,b) = max(0, a+b −1) 

drastic intersection 
 









=

=

=

otherwise ,0

1 if,

1 if,

),( ab

ba

bai  

TABLE II 
T-CONORMS (S-NORMS) 

name formula 

standard union   u(a,b) = max(a,b) 

algebraic sum u(a,b) = a + b − ab 

bounded sum    u(a,b) = min(1, a+b) 

drastic union 
 









=

=

=

otherwise ,1

0 if,

0 if,

),( ab

ba

bau  

 
Now we define a fuzzy relation and related notions, which 

will be necessary for the following considerations.  
If X = {x} and Y = {y} are two universes, then a fuzzy 

relation R is defined as a fuzzy set in the Cartesian product 
X × Y, characterised by its membership function  µR : X ×Y → 
[0,1]; µR(x,y) ∈ [0,1] reflects the strength of relation between  
x∈X  and  y∈Y.  

Note that, for finite, small enough X and Y, a fuzzy relation 
may be evidently shown in the matrix form. 

Let R be a fuzzy relation in X ×Y and S be a fuzzy relation in 
Y × Z. Their (max-min) composition is a fuzzy relation R o S in 
X ×Z defined by 

 [ ]),(),(sup),( zyyxzx RR
Vy

SR µµµ ∧=
∈

�
 (5)  

If we interpret conjunction, disjunction and negation by 
means of t-norm, t-conorm and fuzzy complement, then, 
combining them, we get a large number of different fuzzy 
implications. Some authors such as Mamdani suggested other 
formulations derived from (5) and therefore the total number 
of implications is equal to 72 [7]. 

Let A be a fuzzy set in X and B be a fuzzy set in Y. The 
following is a list of membership function formulas of some 
common fuzzy implications R(A,B): 

Kleene-Dienes  
 µA→B(x, y) = max {1−µA(x), µB(y)} (6) 

Lukasiewicz 
 µA→B(x, y) = min {1, 1−µA(x)+µB(y)} (7) 

Zadeh (Willmott) 
 µA→B(x, y) = max {min [µA(x), µB(y)], 1−µA(x)}  (8) 

stochastic implication 

 µA→B(x, y) = min {1, 1−µA(x)+µA(x). µB(y)} (9) 

Reichenbach 
 µA→B(x, y) = 1−µA(x)+µA(x).µB(y) (10) 

Mamdani  
 µA→B(x, y) = min {µA(x), µB(y)} (11) 

Larsen 
 µA→B(x, y) = µA(x).µB(y) (12) 

Rescher-Gaines 
µA→B(x, y) = 1, if  µA(x) ≤ µB(y); 0, otherwise (13) 

Gödel 
µA→B(x, y) = 1, if  µA(x) ≤ µB(y); µB(y), otherwise (14) 

Goguen 
µA→B(x, y) = min {1, µA(x)/µB(y)}, if µB(y)≠0 ; 
 1, otherwise  (15) 

Sharp (Gorgen) 
µA→B(x, y) = 1, if µA(x) < 1 or  µB(y) =1; 0, otherwise (16) 

Figure 1 shows a fuzzy set A in X, fuzzy set B in Y and 
Mamdani fuzzy implication R(A,B). 

 
Fig. 1 Mamdani implication 

III. FUZZY CONTROL AND MAMDANI MODEL 

A basic feedback connection of a regulation circuit with a 
fuzzy controller is shown in Fig. 2 [8]. The inputs are given by 
crisp data resulting from a measurement. Since, in fuzzy logic, 
we work with values from the interval [0,1], these fuzzy 
controller input data must be first transformed into this 
interval. This operation is called normalisation. If we know 
that the observed variable x may have values between a lower 
boundary l and an upper boundary u, its current value xa can 
be easily converted to a value in interval [0, 1] using Equation 
(17). 

 ax l

u l

−
−

 (17) 

The measured values are normalised in a preprocessing 
block where the signal is filtered to eliminate the noise impact. 

In the fuzzification block, which is the first block of a fuzzy 
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controller, each measured value is converted to a grade of 
membership of one or more membership functions, which 
correspond to the terms of a linguistic variable. For simplicity, 
we select as membership functions mainly the functions from 
Fig. 3, which consist of linear segments and are described by 
Equations (18)-(21).  
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In the next step, the fuzzy controller will determine, on the 
basis of expert knowledge, the word values of the manipulated 
variables (e.g., a manipulated variable may be positive big). 
This is the function of the fuzzy controller. Finally, the word 
terms are converted to crisp number values in a defuzzification 
process. 

A block diagram of the fuzzy control is shown in Fig. 4.  
The block diagram of a discrete regulation circuit is shown 

in Fig. 4. It is a slightly modified version of Fig. 2 extended by 
analogue/digital (A/D) and digital/analogue (D/A) converters.  

Let w be command variable, e be error, ∇e be change in 
error, δ e be accumulated error, u manipulated variable and y 
controlled variable. The error, change in error and 
accumulated error are the input values of the fuzzy controller.  

If k is the time, the input values in a digital form can be 
expressed as follows: 
 e(k) = w(k) − y(k) (22) 

 ∇e(k) = e(k) − e(k−1) (23) 

 ∑
=

=
k

i

ieke
1

)()(δ  (24) 

The rules in the rule base use these input values and 
generate the value of the manipulated variable. Basically, a 
fuzzy controller contains rules in the IF THEN format. 

The rules of a fuzzy PSD controller will have the following 
form 

IF e=value1 AND ∇e=value2 AND δ e=value3  
 THEN u:=value4  (25) 

The values can usually be specified by one of the linguistic 
terms: NB (Negative Big), NM (Negative Medium), NS 
(Negative Small), ZO (Zero), PS (Positive Small), PM 
(Positive Medium), PB (Positive Big). 

The fuzzy PSD controller approximates Equation (26) or 
(27). 

 ∑ ∇++= )()()()( kekkekkekku DSP  (26)  

)()()()( 2 kekkekkekku DSP ∇++∇=∇  (27) 

The rules and equations for P, PS, and PD fuzzy controllers 
are given by a straightforward simplification of (26) and (27). 

The execution of each rule is based on the way the 
conditions are aggregated in the antecedent of the rule and the 
selection of implication between antecedent and consequent.  

Determining a relation between input and output values 
forms rules that serve both for situations included in a rule 
base and for situations that are not explicitly described in it. 
Fuzzy regulation is based on the following steps: Within a 
certain time from the measurement, the crisp values of all the 
input values are available. These values differ from the 
linguistic terms in rules. The similarity of the crisp value and 
the linguistic term in the fuzzification step for each input 
variable is determined. Next we must determine the grade of 
membership for the aggregation of conditions in the antecedent 
and, using an inference engine, determine the grade of 
membership for the consequent. If the same output is a 
consequent of more rules, then these consequents must also be 
aggregated and we determine only one grade of membership 
for this output value. In the defuzzification block, this fuzzy 
set is converted to a crisp value (e.g. voltage).   

Let us consider two rules where the antecedent will be given 
by a conjunction of two conditions and consequents will be 
specified by the same output variable. If we want to process 
such rules, we must decide how to interpret the rules and their 
components and how to aggregate their consequents.  
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1. The interpretation of rules is unique because  
 IF <fuzzy statement 1> THEN <fuzzy statement 2> is 

the fuzzy implication, however we must select its type.  
2. A conjunction in the antecedent is realised by a t-norm 

and must be selected, too. Similarly we would select a 
t-conorm (s-norm) for a disjunction in the antecedent. 

3. For the aggregation of consequents, we select a 
disjunction, which means that we must select a t-
conorm (s-norm).  

Let us consider the Mamdani implication, conjunction 
(AND) realised as minimum and disjunction realised as 
maximum. From Equation (11), we see that the Mamdani 
implication uses the operation of minimum. Although it is a 
very simple operation, graphically expressed, it represents a 
3D object as shown in Fig. 1 

The starting mechanism of the evaluation is given by the 
measurements of the crisp values of the input variables. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 6, it can be seen how the result of the Mamdani 

implication from Figure 1 will change if variable x will have a 
crisp value of a0.  

In Fig. 5, the crisp value x=a0 in the tetrahedral pyramid will 
mark off a trapezoid that is projected in the universe Y of 
variable y. Thus, the evaluation can be simplified to a planar 
mapping.  

In our example with two rules of the following form 

 IF x1=A11 AND x2=A12 AND THEN y=B1 

 IF x1=A21 AND x2=A22 AND THEN y=B2, 

where A11, A12, B1, A21, A22, B2 are terms with triangular 
membership function, the Mamdani implication, minimum 
operation for conjunction, and maximum for aggregation 
disjunction are used. If the crisp values x1=a10 and x2=a20 are 
measured, then we get the result by Fig. 6.  

evaluation of 
input values D/A   plant 
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Fig. 4 A block diagram of fuzzy control 
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Fig. 3 Typical membership functions 
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Fig. 2 Feedback control with a fuzzy controller 
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Fig. 5 Inference mechanism for the Mamdani implication  

and crisp input 
 
Finally, we must assign a crisp value to the area given by 

aggregating the rules in the inference engine. Again, this 
defuzzification step is not unique and there may be numerous 
approaches to implementing it. Most of them are empirical.  

The most frequent is the centre of gravity (COG) method. 
The crisp value y0 is evaluated by Equation (28). 

  
∫
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where U is continuous universe. 
 For discrete universe, we calculate the resulting value of 

the output variable by Equation (29).  
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A drawback of this evaluation is that it does not consider 
overlapping areas. Therefore many other methods for the 
evaluation of the defuzzificated value are used, e.g. bisector of 
area (BOA), mean of maxima (MOM), leftmost maximum 
(LM), rightmost maximum (RM).  More details can also be 
found in [3], [6], [7], [9], [18]. 

In the general scheme of fuzzy regulation circuit, the 
defuzzification block is followed by a postprocessing block 
that, from the interval of the values normalised to [0, 1], 
provides its conversion into a domain that uses the controlled 
system.  

 

IV. TAKAGI-SUGENO FUZZY MODEL 

In the previous section we studied the Mamdani fuzzy 
model whose rules can be generally expressed by (30) 

IF x1=A1r AND x2=A2r AND … AND xn=Anr  
 THEN y:=Br,  r=1, … , R, (30) 

where x1, x2, … , xn are inputs, R is the number of rules and 
values A1r, A2r,… , Anr, Br are specified by linguistic terms. 

The second type is represented by the Takagi-Sugeno fuzzy 
model where the antecedents of rules have the same form as in 
the Mamdani model but the T-S model differs in the 
consequents of rules and aggregation methods. Instead of 
using fuzzy sets, the consequent part of rules in the Takagi-
Sugeno model is a linear combination of inputs x1, x2, … , xn. 
Then, the rules in the T-S model can be expressed by (31) 

IF x1=A1r AND x2=A2r AND … AND xn=Anr  
 THEN y:=fr(x1, x2, … , xn),  r=1, … , R, (31) 
where R is the number of rules and the values A1r, A2r,… , 

Anr are specified by linguistic terms. 
The defuzzified output (i.e. the aggregated crisp value of the 

output) is then given as the weighted average of the 
contributions from each rule by (32): 

 

∑
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 (32) 

If AND is realised by min t-norm and x10, x20, … , xn0 are 
the measured values of inputs, then the weights of rules are 
given by (33) 

{ } Rrxxxw nAAAr nrrr
...,,1,)(,...),(),(min 02010 21

== µµµ  (33) 

The Takagi-Sugeno fuzzy model is also presented in 
simplified versions called zero-order model and first-order 
model.  

The zero-order model is identical to a singleton output rule 
and has the following form: 

IF x1=A1r AND x2=A2r AND … AND xn=Anr  
 THEN y := cr (34) 
where c is a crisp constant. 
The first-order model with two inputs is given by (35). 

 IF x1=A1r AND x2=A2r THEN y := a∗x1+b∗x2+c (35) 
where a, b, c  are constants. 
Generally, a description of relations between the input and 

output variables is easier for the Mamdani models than for the 
Sugeno model because it is sufficient to decompose the input 
and output space into fuzzy regions and approximate each 
region by linear models, typically  covering intervals of 
possible values by fuzzy sets with triangular membership 
functions. In the T-S model, we must get an expert knowledge 
for consequents of rules.  
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V. NEURAL NETWORKS AND GENETIC ALGORITHMS 

In addition to the above-mentioned steps selecting the 
components of a fuzzy controller, we may use modified 
approaches that may enable to change the initial rule base and 
fine tune the fuzzy membership function parameters of the 
predefined sets so as to avoid performance with a large 
overshoot and long settling time. While the fuzzy controller 
design is based on intuition and experience, the rule base and 
the shape of the membership functions are refined through 
simulation and testing.  

Genetic algorithms are often applied to the if-then linguistic 
knowledge base of a controlled process and it is assumed that 
this base has already been designed, either by a human expert 
or by a prior learning process [11], [12], [21]. The 
chromosome codes membership functions (and/or scaling 
functions) for input and output variables. If we have the 
Mamdani fuzzy model with two inputs (e.g. error and change 
in error) and one output, both inputs are represented by n 
linguistic terms (e.g. 7 – NB, NM, NS, ZO, PS, PM and PB) 
and the output by m linguistic terms, there are n×n rules in all 
that form the fuzzy control rule base. These pairs of input 
values need not be stored in chromosomes because they are 
fixed and only outputs are recomputed by a genetic algorithm. 
If 4 bits are sufficient for encoding the output linguistic terms, 
each chromosome will have 4n2 bits for the outputs relating to 
all pairs of inputs. In Fig. 7 each four consecutive bits are 
coded to represent the output for each rule.  

The fitness function is defined according to the controlled 
process and is given by the performance of the plant for the 
computed output, e.g. by its transient response or steady-state. 

The generated groups of 4 bits in the chromosomes are 
decoded by their transformation in the range of the output 
variable. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 Coding of rules 

 
For example, if the range of output variable PS is [0.15, 

0.25] and its binary string is 0101, then the output variable PS 
is computed as 

PS = 0.15+1/15×(0×23+1×22+0×21+1×20)×(0.25−0.15) = 
     = 0.15+1/15×5×0.1 ≈ 0.183 
Another approach to improving the dynamic properties of a 

control algorithm is to use a more complex feedback circuit, 
e.g. the two-loop model-based predictive control with parallel 
distributed compensation [5] or a more general shape of 
membership functions [10].  

To control highly uncertain and nonlinear dynamical 
systems, fuzzy systems-based adaptive methodologies in 
combination with neural networks are frequently used [16]. 
This approach makes it possible to use the linguistic rule base 
of fuzzy systems together with the learning capabilities of 
neural networks which may bring a synergistic effect. The 
neuro-fuzzy architecture is similar to classical feed-forward 
multilayer neural networks with an input layer, one or more 
hidden layers, and an output layer. However, its neurons are 
more general. Instead of inputs represented by real numbers 
and real weights, here we have fuzzy inputs and/or fuzzy 
weights. A 3-layer feedforward neural network is shown in 
Fig. 8. 
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In this hybrid architecture, the neural network is initialized 

by fuzzy knowledge. After the learning phase using 
experimental data (e.g. based on step functions), its result is 
mapped back into fuzzy rules. 

The weights and biases in the neural network can also be 
computed using genetic algorithms [4]. In this case, GA 
chromosome is created from potential weights and biases. The 
GA cost function computes the mean square difference 
between the current guess of the function and the exact 
function evaluated at specific points 

VI. ROBOT MOTION PLANNING 

There are three basic types of robot motion planning 
algorithms [19].  

1. Potential field method. The robot moves in the 
direction of the gradient of a potential field produced 
by the goal configuration and the obstacles.  

2. Cell decomposition method. Here, the scene is 
decomposed into cells and the outcome of the search is 
a sequence of adjacent cells between start and target 
from which a continuous path can be computed. The 
square cell decomposition can be used for 8-directional 
(horizontal, vertical and diagonal) robot motion in the 
plane with static rectangular obstacles.  

3. Roadmap methods. The roadmap is built by a set of 
paths where each path consists of collision free area 
connections. There are several different methods for 
developing the roadmap such as visibility graphs and 
Voronoi diagrams [19].  

We will not deal with a comparison of these methods and 
their drawbacks and only concentrate on a case-based 
reasoning procedure [14], which can be applied for as an 
additional method for the cell decomposition. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case-based reasoning (CBR) is based on the retrieval and 

adaptation of old solutions to new problems.  
A general CBR cycle may be given by the following steps: 

• Retrieve the most similar case or cases;  

• Reuse the information and knowledge in that case to solve 
the problem;  

• Revise the proposed solution;  

• Retain the parts of this experience likely to be useful for 
future problem solving.  

If, for a given start cell cs
0 and a given goal cell cg

0, the 
case-base does not contain a path leading from cs

0 to cg
0, a 

similar path is retrieved according to the formula  
 

  (36) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 “Neighbour-intersection” strategy 
 
 

Fig. 8 Neuro-fuzzy structure with 3 layers, m inputs and n outputs 
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The problem is that the new solution gained as an adaptation 
of the most similar case in old solutions can be worse than a 
new computation that is not based on the stored cases. If a new 
problem is not very similar to the solutions stored in a 
database, then we first try to investigate the neighbouring cells 
of the new start and target. If these neighbours intersect some 
of the paths stored in a database, then these intersections are 
used for joining to the old solutions. This is shown in Fig. 9.  

VII. CONCLUSION 

In this chapter, we presented a fuzzy logic approach to 
controlling complex systems and processes where classical 
PID/PSD controllers cannot be used because their 
mathematical model is unknown, partially known, strongly 
nonlinear or in situations in which all the knowledge about the 
controlled process is given in a linguistic form.  

In the last section we studied possible improvements of the 
cell decomposition method by means of a case-based 
reasoning approach that takes into consideration the start and 
target positions of the old solutions. 

In the future, we will investigate in more detail other 
stochastic heuristic techniques for tuning fuzzy rules, and 
compare the cell decomposition method combined with the 
case-based reasoning procedure and sophisticated roadmap 
methods, e.g. generalised Voronoi diagrams.   
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