
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:4, 2009

279

Abstract—Context awareness is a capability whereby mobile

computing devices can sense their physical environment and adapt
their behavior accordingly. The term context-awareness, in
ubiquitous computing, was introduced by Schilit in 1994 and has
become one of the most exciting concepts in early 21st-century
computing, fueled by recent developments in pervasive computing
(i.e. mobile and ubiquitous computing). These include computing
devices worn by users, embedded devices, smart appliances, sensors
surrounding users and a variety of wireless networking technologies.
Context-aware applications use context information to adapt
interfaces, tailor the set of application-relevant data, increase the
precision of information retrieval, discover services, make the user
interaction implicit, or build smart environments. For example: A
context aware mobile phone will know that the user is currently in a
meeting room, and reject any unimportant calls. One of the major
challenges in providing users with context-aware services lies in
continuously monitoring their contexts based on numerous sensors
connected to the context aware system through wireless
communication. A number of context aware frameworks based on
sensors have been proposed, but many of them have neglected the
fact that monitoring with sensors imposes heavy workloads on
ubiquitous devices with limited computing power and battery. In this
paper, we present CALEEF, a lightweight and energy efficient
context aware framework for resource limited ubiquitous devices.

Keywords—Context-Aware, Energy-Efficient, Lightweight,
Ubiquitous Devices.

I. INTRODUCTION
HE last few years there has been major development in
technologies with introduction of wireless communication

medium, smaller and cheaper devices which has enabled
people to get access to services anywhere, anytime. As a result
ubiquitous computing is proliferating and populating public
places (offices, shops, laboratories, museums, classrooms,
hospitals), as well as private environment (homes, gardens).
Ideally, a ubiquitous computing infrastructure should offer
personalized support to a user's activities at any location.
Such infrastructure would enable users to take full advantage
of all the computing capabilities at each location. Thus the

D. Sathan is with the CSE dept, University of Mauritius, Mauritius (phone:
230-454-1041; fax: 230-465-7144; e-mail: d.sathan@ uom.ac.mu).

A. .Meetoo is with the CSE dept, University of Mauritius, Mauritius
(phone: 230-454-1041; fax: 230-465-7144; e-mail: anuja.meetoo@
uom.ac.mu).

R. K. Subramaniamo is with the CSE dept, University of Mauritius,
Mauritius (phone: 230-454-1041; fax:230-465-7144; e-mail: rks@
uom.ac.mu).

term context-awareness that enables ubiquitous system to
make use of context information to provide enhanced and
proactive services to users [6]. Especially in combination with
ubiquitous devices, such mechanisms are particularly of high
value and claim to increase usability tremendously. Context-
aware systems can adapt their operations to the current context
without explicit user intervention and thus aim at increasing
usability and effectiveness by taking the environmental
context into account. Many researchers have made claims
about the potential benefits of context-sensitive mobile
computing since its first appearance more than a decade ago
[22],[1],[19]. Such applications however remain difficult to
develop and deploy due to a lack of architectural support and
abstraction. In order to be able to provide context-aware
applications, programmers are often required to write large
amounts of code from scratch based on their own architecture
and interact with sensor and actuator devices at a low level.

In the light of all the problems faced by context aware
computing, a standard architecture is needed to support future
applications that will enable seamless service provisioning in
heterogeneous, dynamically varying computing and
communication environments [5]. In this paper, a lightweight
energy efficient context-aware architecture is proposed that
will ease the development of context-aware systems.
 The key to the proposed framework is threefold. First, there
is a context history in CALEEF that continuously monitor and
record the changes in context.
 Second, a server-based approach is used to reduce the
processing on the ubiquitous device which has limited
resources.
 Third, the sensor control module perform statistical
inference on the data in the context history to determine the
polling frequency of sensors thus reducing wireless
communication.

II. CONTEXT-AWARENESS TECHNIQUES
It is observed that the sheer diversity of exploitable context

and the plethora of sensing technologies are actually working
against the deployment of context-aware systems [4]. One
solution to the problem is to separate the application and the
actual context sensing part. A middleware approach has been
adopted by many researchers to achieve the separation of
concerns between sensor data processing and applications,
whose functionalities are to collect raw sensor information,
translate it to an application-understandable format and
disseminate it to interested applications [10].

Context Aware Lightweight Energy Efficient
Framework

D. Sathan, A. Meetoo, and R. K. Subramaniam

T

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:4, 2009

280

In the earlier stage of research in this field, many
researchers focused on building application-specific context-
aware systems such as the Active Badge [22] project which
provided the phone redirection service based on the location
of a person in an office. In these systems it was difficult to
obtain and process context information due to the “ad-hoc”
approach they employ. Furthermore, they were dependent on
the underlying hardware and operating system. Some
researchers take a framework-based approach [3] to provide
basic structures and reusable components for common
functionalities, and hence to enable easy creation of context-
aware applications. The ParcTab [19] system was the earliest
attempt made for a general context-aware framework. In the
same line of thought is the Context Toolkit [6]; an object-
oriented approach framework that provides a number of
reusable components to support rapid prototyping of sensor-
based context-aware applications. However, these systems do
not provide a common context model to enable context
knowledge sharing and context reasoning.

Recent research works focus on providing infrastructure
support for context-aware systems. The advantage of the
infrastructure-based systems has been pointed out by Hong
and Landay[11]. In the Context Fabric infrastructure [11]; a
database-oriented approach is used to provide context
abstraction by defining a Context Specification Language and
a set of core services. In the Context Broker Architecture
(CoBrA) [4] project, Chen proposed an agent-oriented
infrastructure for context representation, context sharing and
user’s privacy control.

The development of future context-aware applications will
require tools that are based on clearly defined models of
context [7] and system software architecture. So, an
infrastructure that supports the gathering of context
information from different sensors and the delivery of
appropriate context information to applications is needed. In
order to greatly simplify the tasks of creating and maintaining
context-aware systems, as much of the weight of context-
aware computing as possible must be shifted onto network-
accessible middleware infrastructures [15]. By providing
uniform abstractions and reliable services for common
operations, service infrastructures can make it easier to
develop robust applications even on a diverse and constantly
changing set of devices and sensors. A service infrastructure
would also make it easier to incrementally deploy new
sensors, new devices and new services as they appear in the
future, as well as scale these up to serve large numbers of
people. Lastly, a service infrastructure would make it easier
for sensors and devices to share sensor and context data,
placing the burden of acquisition, processing and
interoperability on the infrastructure rather than on individual
devices and applications [11].

III. LITERATURE
During the past few years, the research focus in context-

aware computing has shifted to scalable and reconfigurable
architectures. It can be used to automatically recognize user
requirements from the application situation and accordingly
adapt functionality and interaction patterns of the system [2].

One difficulty faced by context-aware application designers is
the lack of generic infrastructure for developing context-aware
applications. In addition, existing applications have focused
mainly on location information. Several researchers have
proposed and prototyped general architectures to support
context-aware application; Schilit's infrastructure for
ubiquitous computing [19] is probably the earliest attempt in
this direction. It is agent-based and supports the gathering of
context about devices and users. Applications build on the
architecture can request for these context information from the
different agents such as device agents, user agents and active
maps to provide proactive services to users.

Dey's Context Toolkit [6] aims at facilitating the
development of context-aware applications by offering a small
set of generic ‘base’ classes from which an application
developer can derive application specific classes. These
classes are organized around high level context-aware
application functions, namely collecting sensor data,
combining data from multiple sensors and translating sensor
data into alternate formats. Context Toolkit delivers a
standardized way of implementing the syntactic part of
context-aware systems. However, the reasoning about
contextual information must be implemented for each domain
and application. This makes it flexible only in the design and
implementation phase, but and not during run-time.

MiddleWhere [17] is a middleware for location-awareness
that separates applications from location detection
technologies. It integrates multiple location technologies to
present applications with a consolidated view of mobile object
location and allows the addition of such technologies on the
fly as they become available. A probabilistic reasoning
technique is used to resolve conflicts and infer location given
different sensor data. MiddleWhere also enables applications
to determine spatial relationships between mobile objects and
their environment.

The Service-oriented Context-Aware Middleware
(SOCAM) project [10] is an architecture for the building and
rapid prototyping of context-aware mobile services. It
supports context acquisition, interpretation, discovery and
dissemination and its main feature is its support for context
reasoning through which high-level implicit contexts can be
derived from low-level explicit contexts. Contexts are
represented as predicates written in OWL (Web Ontology
Language) which makes it flexible. Interpreter acquires
context data from distributed context providers and offers it in
mostly processed form to clients.

Gaia [16] aims at making physical spaces intelligent by
providing services to manage the spaces and their associated
states. Context providers are data sources of context
information. Other agents can query them or listen on their
event channel where they keep sending context events. They
can also advertise the context they provide with the context
provider lookup service that allows other agents to discover
them. Context history service stores past contexts and may be
queried.

CAPNET [18] is a context-aware middleware for mobile
multimedia applications that fulfils the requirements of
context-awareness, mobility of software components,

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:4, 2009

281

multimedia applications and adaptation. The CAPNET
middleware is located below the application layer and above
that of existing technologies. Each of them offers a particular
service to the other components and applications. The
connectivity management component controls the bandwidth
and overall traffic while the messaging component, service
discovery and component management provide transparency
to mobile applications.

TABLE I

SUMMARY OF EXISTING ARCHITECTURES AND MIDDLEWARE

C
on

te
xt

 S
pe

ci
fic

at
io

n

Se
pa

ra
tio

n
of

 C
on

ce
rn

C
on

te
xt

 In
te

rp
re

ta
tio

n

C
on

st
an

t
C

on
te

xt
 A

cq
ui

si
tio

n

 D
is

tr
ib

ut
ed

 C
om

m
un

ic
at

io
ns

C
on

te
xt

 S
to

ra
ge

Context

Toolkit P

Schilit’s

Architecture P P X P X

SOCAM N/A N/A

MiddleWhere N/A N/A

Gaia N/A N/A N/A

CAPNET N/A N/A N/A N/A

IV. CHALLENGES
There are four main objectives of context-aware computing,

namely to increase the number of input channels into
computers, to encompass more implicit acquisition of data, to
create better models that can take advantage of the increased
input, and to use the increased input and improved models in
new and useful ways [11]. This confirm the idea pointed out
by Dey,2000 that to support context aware applications an
architecture should have a mechanism to represent contextual
information and abstraction models that are capable of
handling it [5]. In summary, what is needed is a standard
architecture supporting general, adaptive, and decentralized
services that both scale to wide-level deployment and simplify
context-aware application design.

Though recent advances in technology, namely in sensors,
hardware, networking and software, have made it feasible to
implement such architectures, it is extremely difficult to build
effective and reliable context-aware applications. There are
five primary reasons that account for this complexity, namely
because the same context data can be acquired from several
sources, context data is highly distributed, possibly coming
from and being used anywhere, anytime, data models have
normally been application-specific and inflexible, thus making

sharing of context data complex, data models have not
addressed security and privacy concerns and it is highly
complex to program applications in an environment that is
constantly changing in terms of sensors, services and context
data [11]. So, considerable progress is still needed in these
areas before a context infrastructure can be deployed across a
wide area.

At the same time, future architectures for context-awareness
should be able to acquire context from heterogeneous and
distributed sources; so as to reduce the cost and difficulties of
building context-aware applications. The architecture should
also maintain consistent contextual knowledge, to prevent
applications from making inaccurate decisions due to
inconsistent knowledge. The architecture should detect and
resolve any contextual knowledge that may be inconsistent or
ambiguous, thus the term Quality of Context (QoC).
Moreover, the architectures should enable knowledge sharing
among applications entities. In a dynamic environment, it is
more cost-effective for entities to share their knowledge.
Context-awareness and mobile scenarios require an
architecture that supports interoperability among components
that have not been specifically designed to work together.
There are many competing approaches to this problem, and a
good deal of research and experimentation will be required
before broadly usable architectures and standards appear

V. ARCHITECTURE
This section gives an overview of CALEEF and describes

how it provides mobile context-aware application designers
with support for high-level context derivation. CALEEF
addresses the issue of separation of context-aware
application code from high-level context reasoning and
behaviors. More precisely, this allows an application’s

context reasoning and resulting behaviors to be changed
without re-compilation. CALEEF applications need not
communicate with each individual source of context directly
but only with the context service layers and therefore they do
not need to store low-level details of context sources. An
efficient model for handling, sharing and storing context data
is essential for a working context-aware system. CALEEF
maintains a model of the current context that can be shared by
all devices, services and agents in the same smart space. The
shared model is a repository of knowledge that describes the
context associated with an environment. As this repository is
always accessible within an associated space, resource limited
devices will be able to offload the burden of maintaining
context knowledge. When this model is coupled with a
reasoning facility, it can provide additional services, such as
detecting and resolving inconsistent knowledge and reasoning
with knowledge acquired from the space. Fig. 1 depicts the
overall architecture of CALEEF and a brief description of its
components follows.

X = No Support P = Partial
Support

 = Complete
Support

N/A = Not
Available

Existing
Framework

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:4, 2009

282

Fig. 1 CALEEF Architecture

A. Context Acquisition
Specific widgets are developed at the data acquisition layer

to capture different kinds of contextual information. The
context widget acts as a mediator between an application and
its operating environment, separating context acquisition from
context use. It relieves applications from context sensing
issues by wrapping the sensor with a uniform interface. This
makes applications design independent of the method of
context sensing employed. The context widget encapsulates
details of context acquisition thus leading to the flexibility of
exchanging a context widget with another widget providing
the same type of context information without affecting
applications using it. Irrespective of the type of context a
widget provides, it stores its latest sensed context value and
allows applications to query. A context widget is independent
of all executing applications and persistent. It continuously
sends updated context information to the context encoder,
which then send it to the service provider for storage and
distribution to context consumers. It can also be shared among
applications and is reusable.

B. Context Manager
The context manager is responsible of converting acquired

data from sensors into context information that will provided
to applications. It consists of two subcomponents:

Context interpreter: It performs context processing using logic
reasoning. The tasks for context processing may include
deriving high-level contexts from low-level contexts, querying
context knowledge, maintaining the consistency of context
knowledge and resolving context conflicts.

Context Encoder: The context encoder encodes context
information; acquired from sensors using OWL and pass the
information to the context logger.

C. Inference Engine
The inference engine is used to perform context reasoning

over stored facts and processes past and current context
information to determine how an application should adapt its
current behavior. It uses a technique called forward chaining,
where known facts are used to infer other true facts. Forward
chaining is a search technique useful for situations where the
search space is wide with many potential goals, which is the
case with context-aware systems. The inference engine works
in conjunction with a knowledge base that stores facts and
rules, and a context history that stores past and current context
as facts.

D. Context Logger
Context-aware applications may be dependent on past

context, in addition to current context information, to adapt
their behavior. Thus, context information acquired from
sensors is encoded and stored in a context history that may be
queried by applications. The context logger is made up of a
context history and Knowledge Base. The context knowledge
base provides a set of API’s for other service components to
query, add, delete or modify context knowledge. Furthermore,
it contains context ontology rules. The context ontology and
its instances of defined contexts are pre-loaded into the
context knowledge base during system initiation while the
instances of sensed contexts are loaded at runtime. To ensure
freshness of context information, an event triggering
mechanism is deployed to allow updating of a particular
context ontology or instance. Different information requires
different update frequency. Having a separate knowledge base
means that changes can be made to context inferences and
goals relevant to an application without requiring changes in
the application code.

E. Context Provider
The context provider keeps record of context consumers

and issues a callback to them when updated context is
available. Context users subscribe to the context provider for
specific context types and receive notifications when they are
available. Thus, context consumers listen for events that are
sent by the context provider. Moreover, they can also query
the context provider for context information. The inference
engine will choose the best context information that will
satisfy the consumer’s query.

F. Directory Service
The directory service is used to register the information of

the sensors in the surrounding environment of the user that
will provide data to the context acquisition. The sensors will
advertise their QoC attributes such as spatial information,
refresh rate, correctness that will recorded by the directory
service. With this mechanism, CALEEF can choose the most
appropriate sensor that can be used to get context data thus
improving the reliability and quality of context information. In
case a sensor is down, an alternative sensor that provides the
same context data can be used.

Context
Manager

Context
Encoder

Context
Interpreter

Sensor Controller

Service Provider

Sensor Network

Context Aware applications

Context Logger

Context Provider

Statistical Tool

Directory service
Context Acquisition

I
N E
F N
E G
R I
E N
N E
C
E

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:4, 2009

283

Callback

Inference Engine

Context Aware
Application

Context Encoder

Context Provider

Context
Interpreter

Sensor

Context Acquisition
Widget

Context
information

Context
History

 OWL file
 encoded context

 URI of
OWL file

Subscribe to
Service

Sensor

Knowled
ge Base

SWRL
Rules

data

Sensor Statistical

inference tool

Polling time

 Context
query

Context
information

Context
data

Directory
 Service QoC

QoC

Context
information

G. Context Consumers
The context consumers consume various types of contexts

and adapt their behavior according to the current context.
They obtain contexts either by querying the Context Provider
or by listening for events that are sent by the Context
Provider. Hence, applications can easily acquire the contexts
they need to take decisions. The architecture also provides
mechanisms for developers to specify context-sensitive
adaptation behavior using rules. As such, CALEEF makes it
very easy to develop and deploy context aware applications.

VI. ENERGY EFFICIENT SENSOR CONTROL
Sensor devices are placed in ubiquitous computing

environment, to capture user's context, and usually have
limited communication capabilities due to energy and
bandwidth constraints. Data can be obtained from the sensors
by repeatedly contacting and querying the sensor. The polling
frequency allows you to configure for each sensor how often
this is done. When optimizing the polling frequency for
sensor, it will reduce wireless communication between system
and consumers of data; and will be more energy efficient.

For this reason, CALEEF employs a prediction algorithm
that will statistically infer the polling frequency of sensors.
The sensor control mechanism will use the context data in the
context history to recognise context pattern change over time.
Because even if the context data are changing it does not
mean that the user has changed location as for example a user
within a conference room is moving within the conference
room itself. For this reason, the environment was grouped into
zone; For example conference room will be allocated a range
of context values using a supervised training algorithm. The
algorithm will decide on the appropriate value that can be
used to poll the sensors.

The sensor control will also use the context information
from the context history to select the most appropriate sensors
that have advertised their QoC attributes with the directory
service. So that sensors within the spatial environment of the
user will be taken into consideration. In this way any changes
to the sensor status will be taken into account when polling
sensors for data by the context widget and will guarantee
reliability of data.

VII. IMPLEMENTATION
All the components of CALEEF are autonomous in

execution. They are instantiated and execute independently of
each other as shown in Fig. 2. These components as well as
the context-aware applications are usually distributed on
several computers for better performance and efficiency.
CALEEF allows a peer-to-peer communication among them
using HyperText Transfer Protocol (HTTP) and eXtensible
Markup Language (XML). Messages are encoded in XML
and wrapped with HTTP. This technique enables lightweight
integration of distributed components; and to build
interoperable context-aware services. Other alternatives
considered include CORBA, RMI and SOAP. CORBA and
RMI which are too heavyweight and require additional
components. In addition, RMI would dictate the use of Java.
SOAP, while being lightweight would require the use of a

web server that supports the protocol. However, the default
communication protocol can be modified to account for other
protocols, e.g. Simple Mail Transfer Protocol (SMTP) simply
by creating an object that speaks the SMTP protocol for
outgoing communications and one for incoming
communications. Thus CALEEF supports transparent
distributed communications.

Fig. 2 Module interaction

Moreover, resource discovery mechanisms are rarely used
in existing frameworks. However, such dynamic mechanisms
are important, particularly in pervasive environment, where
available sensors and the context sources change rapidly.
CALEEF exploits Jini service discovery protocol (Marin-
Perianu et al., 2005) to allow service providers to advertise
their capabilities and information one must know to access
their services and consumers to locate available services. All
the components of CALEEF are implemented in Java and are
multithreaded. Thus, CALEEF is platform-independent and its
components are capable of handling multiple incoming
messages. CALEEF provides two classes, namely
CALEEFclient and CALEEFserver to send and receive
messages respectively. Application programmers need not
write these classes, but merely create instances of them to use
them. For instance, applications as well as CALEEF
components create an instance of the CALEEFclient class to
send requests and an instance of the CALEEFserver class to

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:4, 2009

284

receive replies. An instance of the CALEEFserver class acts
as a super tiny web server that intercepts messages intended
for the application or component that instantiated it. CALEEF
provides a fundamental abstract class ‘Widget’ that caters for
features common to all context widgets, namely (1) receiving
and servicing requests from context consumers, (2) notifying
the context manager when a context change is detected, and
(3) sending a list of all context attributes a particular widget
can provide. Classes of all types of widgets subclass from this
class and thus inherit all its attributes and behaviours. The
inference engine used by CALEEF is Bossam version 0.9b5
[14], developed by M. Jang, as it seems to best fit the
architecture. It supports ontologies, can be embedded in Java
programs and makes use of URI to refer to files storing facts
and rules, thus making it apt for use with the distributed
components of CALEEF.

VIII. DISCUSSION
Building context-aware applications can be difficult and

costly without the support of a proper infrastructure. CALEEF
reduces the cost and difficulties of building context-aware
applications by enabling distributed software components to
access a shared model of contexts. CALEEF can also acquire
context from a wide range of sources rather than only sensors
that are embedded in the local environment. In order to
prevent applications from making inaccurate decisions due to
inconsistent knowledge, the architecture detects and resolves
any contextual knowledge that may be inconsistent or
ambiguous.

Moreover, the CALEEF architecture enables knowledge
sharing among applications entities. The knowledge rules can
be modified at any time to cater for a number of context aware
applications. The architecture also takes into consideration the
quality of context represented by selecting the most
appropriate sensor to query for data from the Directory
Service. The research goal is to find the right level of
description, which abstracts away from implementation
details, but is still specific enough to serve the purpose of
inferring appropriate intent from context-assuming
interactions.

Finally, an open issue in CALLEF is the definition of a
context prediction method supporting the proactivity of
context services in a dynamic environment which associates
‘similar’ context models. For the time being, CALEEF is only
determining the polling time of sensors that will help in
reducing the energy consumption by reducing wireless
communication. But in the future, a prediction algorithm such
as K-means might be used to predict the future context of a
user based on current information available in the context
history.

 The goal of this research is to provide an architecture that
makes it easier for application developers to use context. The
architecture will enable developers to add context to
applications that are not context-aware and to increase the use
of context in applications that are already context-aware.

IX. CONCLUSION
Context-aware systems are a fast growing research area

with a lot of diverse viewpoints and prototypes being
proposed by researchers. Some of these existing context-
aware architectures and supporting infrastructures which ease
the development of context-aware applications have been
discussed in this paper. And it has been observed that the
techniques of accurately discovering context, efficiently
disseminating contextual information and making use of the
available context is still at the early stage. However there are
major developments in the field and it is believed, that context
awareness will be an important feature for new applications in
ubiquitous computing. It has also been noticed that the main
problem in the existing architectures is the variety of context
encodings and ways to find or access context sources. It is
accepted by researchers that standardized formats and
protocols are important for the enhancements of context-
aware systems to make the deployment of context services
more widespread and it is the direction of most research in the
field. Unfortunately, while good design alternatives for
context architectures already exist, it will be a long time
before standard, interoperable context information
management becomes a reality.

In this paper, the issues that arise in supporting an emerging
class of applications that operate independently of direct
human control have been explored. CALEEF provides
supports for most of the tasks involved in dealing with
context, namely acquiring context from various sources,
interpreting context and disseminating context. The main
feature of the CALEEF architecture is that it supports context
reasoning. Through context reasoning, high-level, implicit
contexts can be derived from low-level, explicit contexts and
applications can be given a notion of the confidence of
different contexts before acting on it. Context-aware mobile
services can be easily built by using various types of contexts
with different levels of complexity.

A long-term goal of CALEEF is to make sensors and
context platforms flexible and scalable enough to be widely
adopted in various context-aware applications. Future work in
this area will investigate the use of service-oriented and
autonomic computing concepts for building context-aware
service frameworks. Another issue that merit further
investigation is to enable the architecture to detect failure of a
component and automatically restart it as well as restore it to
its last working state. Moreover, context prediction can also
be used to support pro-activity of context services.

.

REFERENCES
[1] Abowd, G..D., Atkeson, C.G., Hong, J., Long, S., Kooper, R. &

Pinkerton, M. (1997). Cyberguide: A Mobile Context-Aware Tour
Guide. ACM Wireless Networks, 3, 421-433.

[2] Anagnostopoulos, C., Tsounis, A. & Hadjiefthymiades, S. (2004).
Context Awareness in Mobile Computing: A Survey. Proceedings of
Mobile and Ubiquitous Information Access Workshop, Mobile HCI '04,
Glasgow, UK.

[3] Biegel, G. & Cahill, V. (2004). A Framework for Developing Mobile,
Context-aware Applications. Proceedings of 2nd IEEE Conference on
Pervasive Computing and Communications, (Percom) 2004, Orlando,
FL.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:4, 2009

285

[4] Chen, H. & Finin, T. (2003). An Ontology for a Context Aware
Pervasive Computing Environment. IJCAI Workshop on ontologies and
distributed systems, Acapulco MX.

[5] Dey, A. (2000). Providing Architectural Support for Building Context-
Aware Applications. Ph.D. Thesis Dissertation, College of Computing,
Georgia Tech.

[6] Dey, A. & Abowd, G.D. (1999). Towards a Better Understanding of
Context and Context Awareness. Technical Report, GIT-GVU-99-22,
Georgia Institute of Technology.

[7] Dey, A., Kokinov, B.N., Leake, D.B. & Turner, R.M. (2005). Modeling
and Using Context. 5th International and Interdisciplinary Conference,
CONTEXT 2005, Paris, France.

[8] Dey, A., Salber, D., & Abowd, G.D. (1999). The Context Toolkit:
Aiding the Development of Context-Enabled Applications. In the
Proceedings of the 1999 Conference on Human Factors in Computing
Systems, CHI 1999, Pittsburgh, PA, 434-441.

[9] Fahy, P., Clarke, S. (2004). CASS: Middleware for Mobile, Context-
Aware Applications. Workshop on Context Awareness at MobiSys 2004,
Boston, USA.

[10] Gu, T., Pung, K. K. & Zhang, D. Q. (2004). A middleware for building
context-aware mobile services. In Proceedings of IEEE Vehicular
Technology Conference (VTC), Milan, Italy.

[11] Hong J. & Landay, J. (2001). An infrastructure approach to context-
aware computing’, Human Computer Interaction, 16(2).

[12] Kuo, Y., Cheng, K., Hsu, J., Chu, H. & Huang, P. (2004). Architectural
Support for Context-Sensitive Interaction in Ubiquitous Computing
Environment. A proposal submitted to the IIS, Academia Sinica.

[13] Marin-Perianu, R., Hartel, P., & Scholten, H. (2005). A Classification of
Service Discovery Protocols. Technical Report TR-CTIT-05-25 Centre
for Telematics and Information Technology (University of Twente,
Netherlands).

[14] Meditskos, G., & Bassilliades, N. (2005). Towards an Object-Oriented
Reasoning System for OWL. International Workshop on OWL
Experiences and Directions, B. Cuenca Grau, I. Horrocks, B. Parsia, P.
Patel-Schneider (Ed.) (Ireland).

[15] Musolesi, M. (2004). Designing a Context-aware Middleware for
Asynchronous Communication in Mobile Ad Hoc Environments. In
Middleware 2004 Companion Proceedings, 304-308, ACM Press.

[16] Ranganathan.A and R. H. Campbell, “A Middleware for Context-Aware
Agents in Ubiquitous Computing Environments”, In
ACM/IFIP/USENIX International Middleware Conference 2003,
Germany, pp. 143 – 161, June 2003.

[17] Ranganathan.A, J. Al-Muhtadi, S. Chetan, R. Campbell and M. D.
Mickunas, “MiddleWhere: A Middleware for Location Awareness in
Ubiquitous Computing Applications”, In Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware, Canada,
pp. 397 – 416, 2004

[18] Riekki.J, O. Davidyuk, V. Rautio and J. Sun, “Context-Aware
Middleware for Mobile Multimedia Applications”, In Proceedings of the
3rd International Conference on Mobile and Ubiquitous Multimedia
(MUM’04), Maryland, Vol. 83, pp. 213 – 220, October 2004

[19] Shilit, B. N. (1995). A Context-Aware System Architecture for Mobile
Distributed Computing. Ph.D. thesis, Dept of Computer Science,
Columbia University.

[20] Smith, M. K., Welty, C., Volz, R., & Mcguiness, D. (2006). OWL Web
Ontology Language Guide. W3C Recommendation February 2004.
Online: http://www.w3.org/TR/owl-guide/.

[21] Veríssimo, P., Cahill, V., Casimiro, A., Cheverst, K., Friday A. &
Kaiser, J. (2002). CORTEX: Towards Supporting Autonomous and
Cooperating Sentient Entities. Proceedings of European Wireless 2002,
Florence, Italy.

[22] Want, R., Hopper, A., Falcao, V. & Gibbons, J. (1992). The active badge
location system. ACM Transactions on Information Systems, 10(1), 91-
102.

