Connected Vertex Cover in 2-Connected Planar Graph with Maximum Degree 4 is NP-complete

Priyadarsini P.L.K and Hemalatha T.

Abstract

This paper proves that the problem of finding connected vertex cover in a 2 -connected planar graph (CVC-2) with maximum degree 4 is NP-complete. The motivation for proving this result is to give a shorter and simpler proof of NP-Completeness of TRA-MLC (the Top Right Access point Minimum-Length Corridor) problem [1], by finding the reduction from CVC-2. TRA-MLC has many applications in laying optical fibre cables for data communication and electrical wiring in floor plans. The problem of finding connected vertex cover in any planar graph (CVC) with maximum degree 4 is NP-complete [2]. We first show that CVC-2 belongs to NP and then we find a polynomial reduction from CVC to CVC-2. Let a graph G_{0} and an integer K form an instance of CVC, where G_{0} is a planar graph and K is an upper bound on the size of the connected vertex cover in G_{0}. We construct a 2 -connected planar graph, say G, by identifying the blocks and cut vertices of G_{0}, and then finding the planar representation of all the blocks of G_{0}, leading to a plane graph G_{1}. We replace the cut vertices with cycles in such a way that the resultant graph G is a 2 -connected planar graph with maximum degree 4. We consider $L=K-2 t+3 \sum_{i=1}^{t} d_{i}$ where t is the number of cut vertices in G_{1} and d_{i} is the number of blocks for which $i^{t h}$ cut vertex is common. We prove that G will have a connected vertex cover with size less than or equal to L if and only if G_{0} has a connected vertex cover of size less than or equal to K.

Keywords-NP-complete, 2-Connected planar graph, block, cut vertex.

I. Introduction

A brief overview of the relevent definitions of graph theory ([3],[4]) is presented in this section before introducing the problem.
Any graph G is said to be planar or embeddable in the plane, if it can be drawn in the plane so that the vertices are distinct points in the plane and its edges intersect only at their end points. Such a drawing of a planar graph G is called a planar embedding of G or a plane graph. There are many polynomial time algorithms for finding a planar embedding of planar graph [5]. A subset V_{2} of V is said to be a vertex cut if the removal of the vertices in V_{2} disconnects the graph. A cut vertex is a single vertex, removal of which disconnects the graph. A graph G is said to be 2 -connected if and only if any two vertices of G are connected by atleast two internallydisjoint paths. Any 2 -connected graph does not have a cut vertex. A block of a graph G is a maximal connected subgraph of G that has no cut vertex for itself. Any block of a graph G

This work is a part of the project funded by Dept. of Sci. \& Tech., Govt. of India, under Women Scientist Scheme.
Priyadarsini P.L.K is a research Scholar in the Dept. of Comp. Applns, NIT, Trichy; Corr. Author;E-mail: darsini@nitt.edu
Hemalatha T. is a Professor in the Dept of Mathematics, NIT, Trichy; Email: hema@nitt.edu
is an isolated vertex or a cut edge, or a maximal 2-connected component with more than 2 vertices. Every pair of blocks will have at the most one vertex in common and that will be a cut vertex. So, any cut vertex will be adjacent to a cut vertex in another block, or any other vertex in a 2 -connected component, or a pendent vertex. A Graph G is planar if and only if each of its blocks is planar. There are polynomial time algorithms to identify the blocks in any planar graph and also to find out the cut vertices in a graph [3][6].
A vertex cover in a planar graph G is a subset V_{1} of V such that every edge of G has atleast one end in V_{1} and it is said to be connected if the vertices in this subset are all connected in G. A vertex cover V_{1} is said to be a Minimum Vertex Cover if G has no other vertex cover \bar{V} with $|\bar{V}|<\left|V_{1}\right|$.
The problem of finding a Minimum vertex cover in a graph is NP-complete [7]. Garey and Johnson proved many restricted versions of this problem and specifically, the vertex cover in planar graphs to be NP-complete [2],[8]. They also proved that the problem of finding Minimum connected vertex cover in planar graphs with maximum degree 4 (hereafter referred to as CVC) is NP-complete [4] .
In this paper, we attempt to prove that the problem of connected vertex cover in 2-connected planar graph with maximum degree 4 (hereafter referred to as CVC-2) is NPcomplete. Given a 2 -connected planar graph with maximum degree 4 , the problem is to find a conneted vertex cover with minimum size. The decision version of this problem can be stated as follows:

Instance: A 2-connected planar graph $G(V, E)$ with all the vertices having degree less than or equal to 4 and an integer L.
Question: Does there exist a subset V_{2} of V, with $\left|V_{2}\right|=$ c_{2}, such that $c_{2} \leq L, V_{2}$ is connected and it covers all the edges in G.
The motivation behind giving the proof of the complexity of CVC-2 is to give a proof of NP-completeness of Top Right Access point Minimum-Length Corridor (TRA-MLC)problem. In the Minimum-Length Corridor (MLC) problem [1], a rectangular boundary partitioned into rectilinear polygons is given and the problem is to find a corridor of least total length. A corridor is a tree containing a set of line segments lying along the outer rectangular boundary and/or on the boundary of the rectilinear polygons. The corridor must contain at least one point from the boundaries of the outer rectangle and also the rectilinear polygons. An access point of a cooridor is any point on the rectangular boundary. If this access point is constrained to be at the top right corner of the outer rectangular boundary, then this problem is referred to as TRA-MLC. In
the MLC problem, and in its variants, it is assumed that the rectangular boundary and the partitions are orthogonal.

This problem has many applications in laying optical fibre cables for data communication and electrical wiring in floor plans.There are many other applcations which include signal communication in circuit layout design [1]. We are going to work towards finding a polynomial reduction from CVC-2 to TRA-MLC thereby proving TRA-MLC is NP-complete.

To prove that any problem P to be NP-complete we need to show that

1. $P \in N P: x$ is a yes instance of P if and only if there exists a concise certificate $c(x)$, and it is verifiable by a polynomial time algorithm.
2. Some known NP-complete problem P^{\prime} is polynomially reducible to P : For any given instance x of P^{\prime}, we should be able to construct an instance y of P within polynomial in $|x|$ time, such that x is a yes instance of P^{\prime} if and only if y is a yes instance of P.
For more explanation on NP-completeness, reader is referred to [7][9]. In the next section, we give a proof of NPcompleteness of CVC-2 by giving a polynomial reduction from CVC to CVC-2.

II. The proof

Theorem:"Connected vertex cover in 2-connected planar graph with maximum degree 4" is NP-complete.

Proof: Inorder to prove that CVC-2 is NP-complete, first we need to show that CVC-2 \in NP. For any instance of CVC2 given by a 2 -connected planar graph G with maximum degree 4 and an integer K, assume that a certificate V_{2} which is a subset of vertices of G is given. We can find whether the vertices of V_{2} are connected and whether they cover all the edges of G in polynomial time. Also we can find, in polynomial time, whether the size of V_{2} is less than or equal to K or not. So it is obvious to say that $\mathrm{CVC}-2 \in \mathrm{NP}$.

Now, we give a polynomial reduction from CVC to CVC2. Assume that an instance of the decision version of CVC is given by a connected planar graph $G_{0}=\left(V_{0}, E_{0}\right)$ (as the required vertex cover is connected, the given graph should obviously be connected), in which the vertex degree is at the most 4 and an integer K, which is the upper bound on the size of the connected vertex cover. We restrict our problem to graphs with more than 2 vertices.
We construct an instance of our problem from G_{0}. First we find the blocks and cut vertices of G_{0}, and let the number of cut vertices be t. As G_{0} is connected, it does not have isolated vertices as blocks. Let $C=\left\{c_{1}, c_{2}, \ldots c_{t}\right\}$ be the set of cut vertices in G_{0}. For any cut vertex c_{i}, let d_{i} be the number of blocks having c_{i} as common vertex for $1 \leq i \leq t$. Now, we find planar representation of each block in G_{0}, by using any polynomial time algorithm, thereby finding a plane graph G_{1} of G_{0}.

Now the construction of the instance begins with G_{1}. For every integer i from 1 to t, we construct a plane graph G_{i+1} from G_{i}. Consider the cut vertex c_{i} which is a common vertex for d_{i} blocks and let $b_{0}, b_{1}, \ldots . b_{d_{i}-1}$ be the blocks in clockwise order around c_{i} in G_{i}. Replace
c_{i} with a cycle consisting of $3 d_{i}$ vertices namely $v_{i(j)}$ for $0 \leq j \leq\left(3 d_{i}-1\right)$. There will be $3 d_{i}$ edges in this cycle and they are $\left(v_{i(j)}, v_{i(j+1)}\right)$ for $0 \leq j \leq\left(3 d_{i}-2\right)$ and the edge $\left(v_{i\left(3 d_{i}-1\right)}, v_{i(1)}\right)$. For any block $b_{k}\left(0 \leq k \leq d_{i}-1\right.$) containing c_{i}, assume that there are p vertices $(p>1)$, $v_{1}, v_{2}, \ldots v_{p}$ adjacent to c_{i} in clockwise order around c_{i} within b_{k}. We replace these edges, $\left(c_{i}, v_{1}\right),\left(c_{i}, v_{2}\right), \ldots\left(c_{i}, v_{p-1}\right)$ with $\left(v_{i(3 k)}, v_{1}\right),\left(v_{i(3 k)}, v_{2}\right), \ldots\left(v_{i(3 k)}, v_{p-1}\right)$ and $\left(v_{i(3 k+1)}, v_{p}\right)$. Any cut vertex is a common vertex for atleast two blocks. As the degree of any cut vertex in G_{1} can not exceed 4, there can be at the most three vertices in a block, which are adjacent to the cut vertex ie. $p \leq 3$. So the degree of the vertex $v_{i(3 k)}$, will be at the most 4 and the degree of $v_{i(3 k+1)}$ will be at the most 3. If $p=1$, then the block is a cut edge, ie. c_{i} is adjacent to only one vertex v_{1} in that block which is either a pendent vertex or another cut vertex. In this case we replace the edge $\left(c_{i}, v_{1}\right)$ with two edges namely $\left(v_{i(3 k)}, v_{1}\right)$ and $\left(v_{i(3 k+1)}, v_{1}\right)$. Here, the degrees of $v_{i(3 k)}$ and $v_{i(3 k+1)}$ becomes equal to 3 . The degrees of all other vertices in the cycle will be equal to 2.

Fig.1(a), $1(b), 1(c)$ give an example of this construction. The resultant graph after t steps, $G_{t+1}=G$, is a 2 -connected graph as there will be atleast two paths between every pair of vertices. maximum degree in G is 4 , as we are replacing only the cut vertices of G_{1} with cycles in such a way that the degrees of all the vertices in each cycle does not exceed 4. It is also a planar graph as the individual blocks are planar [1] and we are replacing only cut vertices of G_{0} with cycles. This construction can obviously be done in Polynomial time.

Fig 1(a): Given plane graph G_{1}

Fig 1(b): G_{2} (After first interation)

Fig 1(c): G_{3} (After second iteration) (2-connected plane graph)

Hereafter, in any cycle of G representing a cut vertex of G_{0}, let us call the vertices connected to the other vertices of blocks, as B-type vertices. All other vertices (in the form $v_{i(3 k-1)}$) which have degree 2, will be called as Connector-type vertices for further reference.
Let us take an integer $L=K-2 t+3 \sum_{i=1}^{t} d_{i}$. Now, we show that graph G will have a connected vertex cover of size $c_{2} \leq L$ if and only if G_{0} has a connected vertex cover of size $c_{1} \leq K$.
First assume that G_{0} has a subset of vertices V_{1}, which is a connected vertex cover of size $c_{1} \leq K . V_{1}$ must contain all the cut vertices of G_{0}, because the blocks of G_{0} are connected only through their common cut vertex. Let us construct a subset V_{2} of vertices of G initially starting with $\left(c_{1}-t\right)$ vertices corresponding to the vertices of the set $\left(V_{1}-C\right)$ in G_{0}. From any cycle in G, corresponding to a cut vertex c_{i}, except $v_{i(2)}$ (a connector-type vertex), we add all other $3 d_{i}-1$ vertices to V_{2} and they cover all the edges of the cycle. There are t cycles of this type and the number of vertices added to V_{2} will be $\left(3 \sum_{i=1}^{t} d_{i}\right)-t$. It can easily be understood that the set V_{2} will cover all the edges of G and it is connected. The size of the set V_{2}, given by c_{2}, will be $(c 1-t)+\left(3 \sum_{i=1}^{t} d_{i}\right)-t$ and we can say that $\quad c_{2} \leq K-2 t+\left(3 \sum_{i=1}^{t} d_{i}\right) \quad$ because $c_{1} \leq K$. So, we proved that G will have a connected vertex cover of size less than or equal to L if G_{0} has a connected vertex cover of size less than or equal to K.

Conversely, suppose G has a connected vertex cover V_{2} of size $c_{2} \leq L$. We have to prove that G_{0} will also have a connected vertex cover of size $c_{1} \leq K$. First let us consider the cycles in G corresponding to cut vertices in G_{0}. V_{2} should contain $r-1$ vertices from any of these cycles containing r vertices ie.only one vertex can be absent from these cycles in V_{2}. If possible, let us assume that two vertices $v_{i(j)}, v_{i(k)}$, in any cycle S_{i} corresponding to a cut vertex c_{i} for $1 \leq i \leq t$, are not present in V_{2} and also without loss of generality we can assume that $j<k$. If those 2 vertices are adjacent, then the edge between them will not be covered by V_{2}, so they will not be adjacent. Now let us consider vertices of the cycle
S_{i} as a union of four subsets : $A=\left\{v_{i(j)}\right\}, B=\left\{v_{i(k)}\right\}$, $C=\left\{v_{i(l)} / j<l<k\right\}$ and $D=\left\{v_{i(l)} / 0 \leq l \leq\left(3 d_{i}-\right.\right.$ 1) $\left.\wedge v_{i(l)} \notin(A \cup B \cup C)\right\}$. We know that a cut vertex is a common vertex for atleast two blocks in any graph. So, we can assume that the vertices other than the cut vertex in atleast two blocks b_{1}, b_{2}, in G_{0}, are connected to S_{i} representing the cut vertex c_{i}. Also let us recollect that the vertices from different blocks in G_{0} are connected to each other only through cut vertices and there will not be any other path between them. Now let us consider the cases that can arise.

1. Both $v_{i(j)}, v_{i(k)}$ are of B-type :

As they can not be adjacent, $v_{i(j)}, v_{i(k)}$ will not be connected to the vertices of a single block. Without loss of generality, assume that $v_{i(j)}$ is connected to the vertices of a block b_{1} and $v_{i(k)}$ to that of b_{2}. The vertices of b_{1}, present in V_{2}, will be connected to the cycle through only one vertex (either $v_{i(j-1)}$ or $v_{i(j+1)}$). In the same way, the vertices of b_{2}, present in V_{2}, will be connected to the cycle through only one vertex (either $v_{i(k-1)}$ or $v_{i(k+1)}$). Now , two cases arise.
(a) Either C or D, consists of only one vertex which is of connector-type :
If either C or D has only one vertex which is of connector-type, then it should be in V_{2}. On either side of this vertex, there will be $v_{i(j)} \& v_{i(k)}$ and hence it will not be connected to the vertices of V_{2} from b_{1} and b_{2}.
(b) Atleast two vertices are present in each set $C \& D$: By the way we constructed G, we can say that atleast one block each will be connected to vertices of each set, and the veritices of V_{2} from these two blocks are not connected because of the absence of $v_{i(j)}, v_{i(k)}$ in V_{2}.
2. Both $v_{i(j)}, v_{i(k)}$ are of connector-type :

By the way of construction of G, the vertices of V_{2} from atleast one block each will be connected to the vertices of C and D. So, the absence of $v_{i(j)}, v_{i(k)}$ will disconnect V_{2}.
3. one vertex is of connector-type, and another is of B-type: Atleast one vertex of B-type, connected to a block say b_{1}, will be present in either C or D, say C, as $v_{i(j)}$ and $v_{i(k)}$ are not adjacent. The vertices of V_{2} from b_{1} are connected to the cycle through this vertex. Atleast one more block will be connected to the other set D, and the vertices of V_{2} from that block are not connected to that of b_{1} as $v_{i(j)}, v_{i(k)}$ are not present in V_{2}.
From the above discussion, we can say that any cycle with r vertices, corresponding to the cut vertex in G_{0}, either $r-1$ or r vertices should be present in V_{2}. Even with the absence of one vertex of connector-type (in some cases B-type vertex can be absent) in V_{2}, all the edges of the cycle will be covered and the set V_{2} will be connected. So for any cycle S_{i} corresponding to cut vertex c_{i} in G_{0}, only $r-1$ vertices are sufficient to be present in V_{2}. Let $v_{i(j)}$ in S_{i} be the single vertex not present in V_{2}, and if it is not of connector type, check whether there is a subgraph K_{3}, formed by $v_{i(j)}, v_{i(j+1)}, v_{k}$ or $v_{i(j-1)}, v_{i(j)}, v_{k}$ and v_{k} is of degree 2. If yes, v_{k} must be present in V_{2}. This
implies that v_{k} is a pendent vertex in G_{0}. We can replace v_{k} with $v_{i(j)}$ without affecting the covering. Consider the cycles corresponding to the cut vertices and which are having all the r vertices in V_{2}. We can take out a connector-type vertex, of these cycles, from V_{2} without affecting the covering and reducing the size of the vertex cover. Now, from each cycle S_{i} corresponding to c_{i} for $1 \leq i \leq t, d_{i}-1$ vertices are present in V_{2}, implying that $\left(3 \sum_{i=1}^{t} d_{i}\right)-t$ vertices of V_{2} will be from the cycles corresponding to cut vertices of G_{0}. So the number of vertices in V_{2}, which are outside these cycles will be at the most $K-t$. These $K-t$ vertices will cover the edges in all the blocks, in G_{0}, probably excepting those incident on cut vertices. If we consider a subset V_{1} of V_{0} in G_{0} containing these $K-t$ vertices along with t cut vertices, it will cover all the edges in G_{0} and is connected. The size of V_{1} will be at the most K. Hence the proof.

III. Conclusions

As we have already mentioned, The inspiration to prove this result is to next prove that TRA-MLC is NP-complete. A.Gonzalez-Gutierrez \& T.F.Gonzalez have proved this problem and many of its varients to be NP-complete [1]. But we are going to work towards a shorter proof and also by using most commonly known graph theory concepts.

Acknowledgments

We wish to thank Dr. Venkatesh Raman professor of IMS, Chennai for his timely help in getting important references without which this work would have been delayed further.We also would like to thank Dr. A. Ramakalyan, Asst. Professor, NITT for his support.

REFERENCES

[1] A.Gonzalez-Gutierrez and T.F.Gonzalez, " Complexity of the MinimumLength Corridor Problem", J. Comp. Geometry, Theory and Applns.,Els. vol.37, no.2,2007,pp. 72-103.
[2] M.R.Garey and D.S.Johnson, "The Rectilinear Steiner Tree Problem is NP - complete",J. Appl. Math.(SIAM), vol. 32, no. 4, 1977, pp. 826-834.
[3] D.B.West, Introduction to Graph Theory, Prentice Hall of India, 1999.
[4] J.A.Bondy and U.S.R.Murty, Graph Theory With Applications, The Macmillan press Ltd, 1976
[5] R.Weiskircher, "Drawing Planar Graphs", from M.Kaufmann \& D.Wagner (Eds.): Drawing Graphs, LNCS 2025,Springer-Verlag, 2001, pp. 23-45.
[6] D.Jungnickel, Graphs, Networks and Algorithms, Springer-verlag, 2005.
[7] M.R.Garey \& D.S.Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman \& Co., 1979.
[8] M.R.Garey, D.S.Johnson and Stockmeyer, "Some simplified NP-complete problems",Proc. of the sixth annual ACM Symposium on theory of computing, 1974, pp. 47-63
[9] C.H.Papadimitriou \& K.Steiglitz, Combinatorial optimization: Algorithms and Complexity, Prentice Hall India, 1997.

