
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1287

Abstract—Conflicts identification among non-functional
requirements is often identified intuitively which impairs conflict
analysis practices. This paper proposes a new model to identify
conflicts among non-functional requirements. The proposed model
uses the matrix mechanism to identify the quality based conflicts
among non-functional requirements. The potential conflicts are
identified through the mapping of low level conflicting quality
attributes to low level functionalities using the matrices. The
proposed model achieves the identification of conflicts among
product and process requirements, identifies false conflicts, decreases
the documentation overhead, and maintains transparency of identified
conflicts. The attributes are not concomitantly taken into account by
current models in practice.

Keywords—Conflict Identification, Matrix Maps, Non-functional
Requirements, Requirements Analysis, Software Engineering

I. INTRODUCTION

ESIDES implementing all the desired functionality, it is
highly desirable for software systems to cope with non-

functional aspects as well. These may include reliability,
security, accuracy, safety, performance, look and feel
requirements, as well as organizational, cultural, and political
requirements. These non-functional aspects must be treated as
nonfunctional requirements (NFRs) of the software [1-2].
Unproductive dealing with NFRs has led to a succession of
failures in software development [3-4], including the very
mighty reconnoiter of the London Ambulance System [5],
where the deactivation of the software right after its
deployment was strongly prejudiced by NFRs noncompliance.
These requirements have been pointed out in literature [2],[6-
11] as the most expensive and complicated ones to deal with.

 In spite their importance, NFRs have unexpectedly
received little consideration in the literature and are poorly
tacit compared to less significant aspects of the software
development [2]. The majority of the work on NFRs uses a
product-oriented approach, which is concerned with
measuring how often a software system is in harmony with the

A. Hannan is working as Research Fellow/Lecturer in IQRA University

Islamabad Campus, Pakistan (phone: +92-331-623-1304; fax: +92-51-; e-
mail: hannan@iqraisb.edu.pk).

J. Ahmed was with Ghulam Ishaq Khan Institute (G.I.K.I.) as Head of
Department of Computer Science. He is now Dean of IQRA University
Islamabad Campus, Pakistan (e-mail: jamil@iqraisb.edu.pk).

I. Usman is with the Computing and Technology Department, IQRA
University Islamabad Campus, Pakistan, as an Asst. Professor (e-mail:
imran.usman@gmail.com).

set of non-functional requirements that it should satisfy [10-
14].

Non-functional requirements include constraint and quality.
Quality attributes are properties of the system that its
stakeholders care about, and consequently, will affect their
level of contentment with the system. Constraints are the
scope of the quality. Since constraints are not under
consideration for the negotiation process and, unlike qualities,
are theoretically exclusive during design trade-offs [13].

One of the critical areas in software engineering is the
requirements conflict identification. Since non-functional
requirements are under discussion, conflicts often arise when
two quality-attributes have an opposite behavior to each other.
There is actually a significant difference between the specific
requirements of the same task. Numerous software projects
have failed because they contained impoverished set of non-
functional requirements, even though, they certainly may have
had a good set of functional and interface requirements [14].
The primary motivation for this particular research is an
indispensable step towards achieving successful software
requirements in order to achieve the right balance of non-
functional requirements. To achieve this task, many
requirement engineering techniques are necessary and
important. That is why a remarkable number of leaders in the
area believe that a relatively more powerful technique is the
requirement conflict identification rather than requirement
conflict negotiation.

There are number of models and techniques [14-17] which
identify the conflicts among the non-functional requirements
based on quality attributes. The problem with quality based
conflict identification is that the false conflicts are also
identified along with the potential conflicts. False conflicts are
the contradictions among the non-functional requirements
which are, in fact, not conflicts but are identified under the
umbrella of a particular quality attribute. Hence, it causes an
overhead in the conflict negotiation process.

The rest of the work is organized as follows. Section 2
discusses some related work in literature by contemporary
researchers. Section 3 discusses the proposed model. Section 4
presents results and discussion. Section 5 discusses the
conclusion and section 6 provides the references.

II. RELATED WORK
A variety of conflict identification models are proposed in

literature. These include Sandana and Lui [15] model based on
analysis and detection of conflicts among non-functional

Abdul H, Jamil A, and Imran U

Conflicts Identification among Non-functional
Requirements using Matrix Maps

B

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1288

requirements using integrated analysis of functional and non-
functional requirements “ACONIAN”. This framework is
based on non-functional decomposition “N.F.D.” proposed by
Poort and deWith [18]. Poort provided a model to transform
the conflicting requirements into a system.

Bertagnolli and Lisboa [17] proposed a model which deals
with the requirements from requirements phase to design
phase using aspect oriented software engineering. The conflict
identification methodology is based on the set theory. Another
approach is proposed by Egyed and Grunbacher [16]. It
comprises of identification of conflicts and co-operations with
the help of quality attributes and automated traceability.
Boehm and In [19] used a knowledge based tool, Software
Cost Option Strategy Tool SCOST, which deals with the
conflicts among the process requirements. It assists the
stakeholders to surface and negotiate conflict and risks among
the requirements.

In, Kim, Yun and Yau [20] proposed a quality of service
conflict identification model for situation aware middleware.
Since the application need middleware and it changes as the
application change, so In proposed a quality of service
resource conflict identification model which analyzes whether
the quality of service requirements are met and what tradeoff
relationship are present among requirements.

The experimental study of the above mentioned approaches
concludes that most of the current approaches work in an ad
hoc manner by identifying conflicts either for product
requirements or process requirements. Secondly, these
approaches identify conflicts based on the quality attributes
which result the presence of false conflicts along with the
potential conflicts. Lastly, the aforementioned approaches are
difficult to implement in form of paper implementation.
Therefore, we propose a new model in this work which
identifies conflicts among the non-functional requirements
using matrices by mapping low level conflicting quality
attributes to low level functionalities. The following section
elaborates our proposed approach and thus, devises the
proposed model.

III. THE PROPOSED MODEL
The proposed model is an extension of Sandana and Lui’s

[15] work. It not only identifies the conflicts among non-
functional requirements but also analyzes them by mapping
low level conflicting quality attributes over low level
functionalities using matrices. The following steps achieve the
task.

step 1. Write high level non-functional requirements
in structured form and identify quality and
functionality attributes in each non-
functional requirement.

step 2. Make the hierarchy of functionality attribute
and identify low level functionalities.

step 3. Make the hierarchy of quality attribute based
on the major functionalities.

step 4. Identify conflicts using quality-to-quality
matrix.

step 5. Identify potential conflicts by mapping low
level conflicting low level quality attributes
 over low level functionalities.

Fig. 1 shows our proposed model. It starts with structured
representation of high level non-functional requirements.
Conflict identification is then performed on the high level
quality attribute in order to identify the low level conflicting
quality attributes. By doing so, low level quality attributes are
under consideration. These low level conflicting quality
attributes are then mapped to low level functionalities in order
to identify potential conflicts.

The structured representation for requirement statements,
adopted for this model, is a modified representation presented
in [18], [15]. The constraints have been removed from the
structured representation based on [9] which says that
constraints are not issue in negotiation. The modified
representation can be presented either of the following two
structured forms.

Fig. 1 Model for analysis and detection of conflicts among non-

functional requirements

SF 1: Quality Attribute [Subject S] of Functionality
should be [Verb V] constraint.

SF 2: Functionality should have [Verb V] constraint
Quality Attribute [Subject S].

Where S represents the quality attribute and V represents
the functionality.

The proposed model uses matrices to analyze and detect the
conflicts among the non-functional requirements. These
matrices are used as tool for the identification of conflicts

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1289

among the non-functional requirements. In this research, we
have considered same example of search engine as mentioned
in [15]. For clarity purpose, the following hierarchy diagram
and table are reproduced from [15]. However, we only deal
with low level functionality attributes and quality attributes,
therefore, the hierarchy diagrams of functionality attribute and
quality attribute in [15] are modified and presented in Fig. 2
and Fig. 3 respectively. The high level functionality of a
search engine is “Search” and the high level quality attribute is
“Quality”. The example starts with the following high level
non-functional requirement in structured form: “The quality of
search should be high”

The high level functionality “Search” and high level quality
attribute “Quality” are decomposed. The “Quality” is
decomposed on the basis of major low level functionalities
such as “Search by Title”, “Search by keyword”, “Use
Boolean Logic” and “Use Case (in) Sensitivity Options”.

After the decomposition of high level functionality and
quality attribute, the conflicts are identified on the basis of
quality-to-quality matrix as shown in Table I.

In this table, O shows the supporting attributes and X shows
the conflicting attributes. From this table, the low level
conflicting quality attributes are identified and separated.

Now the low level quality based non-functional
requirements in Table II are mapped to low level
functionalities identified during the hierarchy process of high
level functionality. The potential conflicts are identified
through the matrix shown in Table III.

Basic search

Search

Advanced search

Search by title Search by
keyword Use boolean logic Use case (in)

sensitivity options

Fig. 2 Hierarchy of high level functionality “Search”

Reliability

Quality

Efficiency

Maturity Fault tolerance Time behavior Resource
Behavior

Fig. 3 Hierarchy of high level quality attribute “Quality”

With reference to Table II, “Maturity” and “Fault tolerance”
both have the conflict with same quality attribute i.e. “Time
behavior”. So in Table III, “Time behavior” is shown in a
single column for simplicity. In Table III, the conflict between
the quality attributes “Time Behavior” and “Fault Tolerance”
with respect to low level functionalities does not exist.

TABLE I

 CONFLICT IDENTIFICATION USING QUALITY-TO-QUALITY MATRIX

Quality Attributes M
at

ur
ity

Fa
ul

t
To

le
ra

nc
e

Ti
m

e
B

eh
av

io
r

R
es

ou
rc

e
B

eh
av

io
r

Maturity O O X O

Fault Tolerance O O X O

Time Behavior X X O O

Resource Behavior O O O O

TABLE II
 QUALITY BASED CONFLICTING AND NON-CONFLICTING NFRs

High level
NFR

Low level NFRs
Low level quality
based conflicting

NFRs

Non-conflicting
NFRs

Quality of
search
should be
high

1. Maturity of
search should
be high.

2. Fault tolerance
of search
should be
high.

3. Time behavior
of search
should be
high.

4. Resource
behavior of
search should
be high

1. “Maturity of
search should
be high.”
versus
“Time
behavior of
search should
be high.”

2. “Fault
tolerance of
search should
be high.”
versus
“Time
behavior of
search should
be high.”

1. Resource
behavior of
search
should be
high.

TABLE III
 QUALITY-TO-FUNCTIONALITY MATRIX

Functionality/Quality Maturity Time behavior Fault tolerance

Search by title X X O O

Search by keyword X X O O

Use Boolean logic X X O O

Use case (in)
sensitivity options O O O O

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1290

 Whereas, “Maturity” and “Time Behavior” are
conflicting in nature with respect to “Search by Title”, “Search
by Keyword” and “Use Boolean Logic”. The potential
conflicts are mentioned in Table IV.

In Table IV, the quality based conflicting non-functional
requirements (extracted from Table II) are further elaborated

on the bases of low level functionality and conflicts are
classified into potential conflicts and non-conflicting non-
functional requirements.

TABLE IV

IDENTIFICATION OF POTENTIAL CONFLICTS ALONG WITH NON CONFLICTING NFRs
Quality based

conflicting NFRs
Functionality mapped low level NFRs

NFRs with potential
conflicts

Non-conflicting NFRs

Maturity of
search should be
high.

1. Maturity of search by title should be high.

2. Maturity of search by keyword should be high.

3. Maturity of use Boolean logic should be high.

4. Maturity of use case (in) sensitivity should be high.

1. Maturity of search by
title should be high.
versus
Time behavior of
search by title should
be high.

2. Maturity of search by
keyword should be
high.
versus
Time behavior of
search by keyword
should be high.

3. Maturity of use Boolean
logic should be high.
versus
Time behavior of use
Boolean logic should
be high.

1. Time behavior of search by
title should be high.

2. Fault tolerance of search by
title should be high.

3. Time behavior of search by
keyword should be high.

4. Fault tolerance of search by
keyword should be high.

5. Time behavior of use Boolean
logic should be high.

6. Fault tolerance of use
Boolean logic should be
high.

7. Time behavior of use case
(in) sensitivity should be
high.

8. Fault tolerance of use case
(in) sensitivity should be
high.

9. Maturity of use case (in)
sensitivity should be high.

10. Time behavior of use case
(in) sensitivity should be
high.

11. Resource behavior of search
by title should be high.

12. Resource behavior of search
by keyword should be high.

13. Resource behavior of use
Boolean logic should be
high.

14. Resource behavior of use
case (in) sensitivity should
be high.

Time behavior of
search should be
high

1. Time behavior of search by title should be high.

2. Time behavior of search by keyword should be high.

3. Time behavior of use Boolean logic should be high.

4. Time behavior of use case (in) sensitivity should be
high.

Fault tolerance of
search should be
high.

1. Fault tolerance of search by title should be high.

2. Fault tolerance of search by keyword should be high.

3. Fault tolerance of use Boolean logic should be high.

4. Fault tolerance of use case (in) sensitivity should be
high.

Time behavior of
search should be
high.

1. Time behavior of search by title should be high.

2. Time behavior of search by keyword should be high.

3. Time behavior of use Boolean logic should be high.

4. Time behavior of use case (in) sensitivity should be
high.

In Table II, the quality attributes Maturity and Fault
tolerance are conflicting with time behavior of search. These
quality attributes are mapped over low level functionalities of
search. Since search is a high level functionality, the low level
functionalities are identified in Fig. 2. Table III shows that the
quality attributes maturity and time behavior are potential
conflicts based on low level functionalities search by title,
search by keyword and use Boolean logic. The fault tolerance

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1291

and time behavior don’t have any conflict on the basis of low
level functionalities.

IV. RESULTS AND DISCUSSION

Following are the major achievements of this research
which are actually based on the identified problems mentioned
in section 2.

Product and process requirements conflicts identification:

The proposed model not only identifies the potential
conflicts among the product requirements but also it identifies
the conflicts among the process based requirements

False conflict identification:

Due to the fact that quality based conflict identification has
an inherited problem of the false conflicts, the proposed model
identifies the false conflicts through the mapped analysis of
low level functionality over conflicting low level quality
attributes through a matrix.

Simple implementation

The proposed model takes very less overhead of

documentation as compared to [15] because it reduces number
of diagrams and tables.

Transparency of conflicts:

 The results obtained from this proposed model are very
transparent. We do not need to back track to identify the
conflicting requirements as we do in [15].

Most of the models for conflict identification in literature
deal with the product requirements. They simply skip the
impact of the process requirements on the product
requirements or vice versa. Table V shows that all the models
deal with the product requirements but only the “ACONIAN”
and the proposed model also deals with the process
requirements. The quality based conflict identification results
in the origination of the false conflicts which are the overhead
to the conflict negotiation process. Only the proposed model
and the “identification of conflicts using integrated analysis of
functional and non-functional requirements” identify the false
conflicts.

TABLE V
COMPARISON TABLE

Conflict models

Pr
od

uc
t r

eq
.

Pr
oc

es
s r

eq
.

Fa
ls

e
co

nf
lic

ts

id
en

tif
ic

at
io

n

D
oc

um
en

t o
ve

rh
ea

d

Tr
an

sp
ar

en
t

co
nf

lic
ts

ACONIAN Yes Yes Yes Yes No

FRIDA model Yes No No No No

Conflict & co-
operation

Yes No Yes Yes No

Proposed model Yes Yes Yes No Yes

The objective of this work is that the paper implementation

should be simple. The proposed model and FRIDA model
shows the ideal behavior. In case of the transparency of
conflicts, only proposed model shows transparent conflict
identification. The rest of the models are either does not
identify the false conflicts or the back tracking is involved to
get the transparent conflicts. So in the comparison Table V,
the proposed model shows the ideal behavior for each
comparison parameter.

V. CONCLUSION

We propose a model which not only represents a modified
semantics of NFRs analyze and detect conflicts among non-
functional requirements using the matrices to map low level
conflicting quality attributes over the low level functional
attributes. The model enables us to capture the potential
conflicts based on the relationship among quality attributes
and functionalities. The use of mapping the low level
conflicting quality attributes over low level functionalities is
very promising. Since the constraints are not the area of
interest in negotiation, so there is no need of constraints in the
conflict identification process. The constraints are not
involved because constraints are the scope of the quality
attributes and they can’t be decomposed. If a constraint is able
to decompose then another high level non-functional
requirement must be generated in which the decomposable
constraint should be a quality attribute with some
functionality.

ACKNOWLEDGMENT
We want to thank the management of IQRA University

Islamabad Campus for providing a research oriented and
research friendly environment to the faculty as well as the
students.

Special thanks to Mr. Muhammad Shoaib, Mr. Muhammad
Aamir and Mr. Mehmood Ahmad for their critical and
valuable discussion.

REFERENCES
[1]. L. Chung and B. Nixon, “Dealing with Nonfunctional Requirements:

Three Experimental Studies of a Process-Oriented Approach,” Proc.
17th Int’l Conf. Software Eng., Apr. 2000, pp. 24-28.

[2]. L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, “Non-Functional
Requirements in Software Engineering”, Kluwer Academic Publisher,
London, 1999.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1292

[3]. K. K. Breitman, J. C. S. P. Leite, and A. Finkelstein, “The World’s
Stage: A Survey on Requirements Engineering Using a Real-Life Case
Study,” The Brazilian Computer Soc., July 1999, vol. 6, no. 1, pp. 13-
38.

[4]. D. R. Lindstrom, “Five Ways to Destroy a Development Project,”
IEEE Software, Sept. 1993, vol. 10, no. 5, pp. 55-58.

[5]. A. Finkelstein and J. Dowell, “A Comedy of Errors: The London
Ambulance Service Case Study,” Proc. Eighth Int’l Workshop
Software Specification and Design, 1996, pp. 2-5.

[6]. F. P. Brooks Jr., “No Silver Bullet: Essences and Accidents of
Software Engineering”, IEEE Computer, Apr. 1987,vol. 20, no. 4, pp.
10-19.

[7]. L. M. Cysneiros and J. C. S. P. Leite, “Integrating Non-Functional
Requirements into Data Modeling,” Proc. Fourth Int’l Symp.
Requirements Engineering Ireland, , June 1999, pp. 162-171

[8]. A. Davis, “Software Requirements: Objects, Functions and States.”
Prentice Hall, ed. 2, 1993.

[9]. R. Malan, D. Bredemeyer, “Defining the non-functional requirements”,
Bredemeyer Consulting, Bloomington, 2001

[10]. N. A. Ernst, Y. Yijun and J. Mylopoulos “Visualizing non-functional
requirements” First Int. workshop on Requirements Engineering
Visualization REV’ 06, Sept. 2006, pp.2,

[11]. P. Morris, “Counting non-functional requirements when they are
implemented as software”, Total Metrics, version 2.2, 2006

[12]. J. Musa, A. Lannino, and K. Okumoto, “Software Reliability:
Measurement, Prediction and Application.” McGraw-Hill Inc., New
York, 1989.

[13]. N. E. Fenton and S. L. Pfleeger, “Software Metrics: A Rigorous and
Practical Approach”, International Thomson Computer Press, ed. 2,
1996

[14]. H. In “Conflict Identification and Resolution for Software Attribute
Requirements”, PhD Thesis, Faculty of Graduate School, University of
Southern California, 1998

[15]. V. Sandana and X. F. Liu, “Analysis of Conflicts Among Non-
functional Requirements using Integrated Analysis of Functional and
Non-functional requirements” 31st IEEE Annual International
Computer Software and Applications Conference, Beijing, 2007

[16]. A. Egyed and P. Grunbacher “Identifying Requirements Conflicts and
Cooperation: How Quality Attributes and Automated Traceability Can
Help”, IEEE Software, , 2004, vol. 21, no. 6, pp. 50-58

[17]. S. C. Bertagnolli and M. L. B. Lisboa “The FRIDA Model” 2000
[18]. E. R. Poort and P. H. N. deWith, “Resolving Requirement Conflicts

through Non-Functional Decomposition” Proc. Fourth Working
IEEE/IFIP Conference on Software Architecture (WICSA’04), IEEE
Computer Society, 2004

[19]. B. Boehm and H. In, “Software Cost Option Strategy Tool (S-COST)”
COMPSAC96, Seoul, Korea: IEEE Comp. Society Press, 1996

[20]. H. In, C. H. Kim, U. Yun and S. S. Yau, “Q-MAR: A QoS resource
Conflict Identification Model for Situation-Aware Middleware” Proc.
9th IEEE Workshop on Future Trends of Distributed Computing
Systems (FTDCS’03), IEEE Computer Society, 2003

Abdul H currently working as a Lecturer in IQRA
University Islamabad Campus, Pakistan. He earned his
bachelor degree from Foundation University Islamabad,
Islamabad, Pakistan with majors in software engineering. He
did his MS from IQRA University Islamabad campus,
Pakistan with majors in software engineering.

 He is also working as a research associate in IQRA University-
Computational intelligence Research Group (IU-CIRG). Currently his interest
area is intelligent software engineering.

Jamil A is Dean IQRA University Islamabad Campus,
Pakistan. He is Group Leader of IQRA University-
Computational Intelligence Research Group. His interest
areas are artificial intelligence and neural networks.

Imran U is working as Asst. Prof. in IQRA University
Islamabad Campus, Pakistan. He is the member of IQRA
University-Computational Intelligence Research Group
(IU-CIRG). His interest area is digital water marking.

