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Abstract—In this paper, fault recovery for parallel interconnected
asynchronous sequential machines is studied. An adversarial input
can infiltrate into one of two submachines comprising parallel
composition of the considered asynchronous sequential machine,
causing an unauthorized state transition. The control objective is to
elucidate the condition for the existence of a corrective controller
that makes the closed-loop system immune against any occurrence
of adversarial inputs. In particular, an efficient existence condition
is presented that does not need the complete modeling of the
interconnected asynchronous sequential machine.
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I. Introduction

AS a unique automatic control theory exclusively targeting

asynchronous sequential machines, corrective control

has been studied actively for the past decade [1]–[4]. The

core of corrective control lies in the property that corrective

controllers are also implemented as asynchronous sequential

machines so that the interaction between controllers and

controlled machines is executed very fast under asynchrony.

Hence, even if the controlled machine does not possess

desirable transitions, it can be controlled to show the

desirable input/state or input/output behavior as long as stable

reachability that can be used to make an appropriate feedback

trajectory exists in the dynamics of the machine.

In the early studies, corrective control is mainly applied to

solving the model matching problem of single asynchronous

sequential machines with various deficiencies such as critical

races [5], infinite cycles [6], nondeterminism in their

transitions [7], etc. Recently, the subject of corrective control is

extended to tackling the problem of model matching and fault

tolerance for composite asynchronous sequential machines.

In [8], a corrective controller is designed to match the

closed-loop system of a composite asynchronous sequential

machine with cascade connection to that of a reference

model. In [9], fault diagnosis of asynchronous sequential

machines with parallel composition is studied. On the other

hand, [10] and [11] address the model matching problem of
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switched asynchronous sequential machines in the framework

of corrective control.

In this paper, we address the problem of fault tolerant

control for a composite asynchronous sequential machine.

The considered machine consists of parallel composition of

two single input/state asynchronous sequential machines in

which two submachines receive the same control input and

undergo their own state transitions. The overall composite

asynchronous sequential machine can be regarded as having

two-dimensional state space. The control objective is to

elucidate the existence condition for a corrective control that

diagnoses any occurrence of state transition faults and steers

the controlled composite machine towards the original state

immediately. We assume that the controller has access to

full state feedback of two single asynchronous sequential

machines. Main consideration will be given to addressing the

existence condition for a controller. The design procedure for

a controller is similar to that in the prior work (e.g., [7], [8]).

Note that a study of fault diagnosis on parallel

interconnected asynchronous sequential machines is already

addressed in the author’s prior work [9]. The present report

is an extension of [9] in which fault recoverability against

unauthorized state transitions is analyzed in the framework

of corrective control. Specifically, we focus our concern

on presenting the existence condition of a controller while

avoiding computational burden of identifying the entire

dynamics of the composite machine. It is known that parallel

composition of two independent finite-state machines causes

the problem of state explosion [12]. But our scheme is efficient

in that it does not require exact transition characteristics of the

composite machine. The derivation of the existence condition

(and design procedure) for a corrective controller needs only

the information on state transitions of each constituent single

machine.

II. Notation and Basics

The modeling formalism for composite asynchronous

sequential machines is first addressed in the author’s previous

work [9]. A parallel interconnected asynchronous sequential

machine Σ � Σ1��Σ2 is composed of parallel composition of

two input/state asynchronous sequential machines Σ1 and Σ2

that are represented as

Σ1 � �A, X, x0, f1�

Σ2 � �A,Y, y0, f2�



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:1, 2018

17

where X and Y are the state set of Σ1 and Σ2, respectively, x0 �
X and y0 � Y are the initial states, and f1 : X�A � X and f2 :

Y�A � Y are the state transition functions partially defined on

X�A and Y �A. Let n :� �X� and m :� �Y� be the cardinality

of X and Y , respectively. The input set A is separated into the

set of normal inputs An and that of adversarial inputs Ad. Thus

we have A � An ��Ad.

In a single asynchronous sequential machine Σ1, every valid

state–input pair �x, v�� � X � A is either a stable or transient

pair. If f1�x, v�� � x, �x, v�� is a stable pair at which Σ1 stays

indefinitely unless the input does not change. When the input

v� changes to another value v � A for which f1�x, v� � x, �x, v�
is a transient pair and Σ begins a chain of transient transitions,

e.g.,

f1�x, v� � x1, f1�x1, v� � x2, . . .

during which Σ passes through transient states x1, x2, . . .
instantaneously and v remains unchanged. This chain of

transients may or may not end. If it does not end, it makes

an infinite cycle. In this study we assume that neither Σ1 nor

Σ2 has infinite cycles. Then Σ1 will reach the next stable state
x� where x� � f �x, v�. Often we omit underlying transient

transitions x1, x2, . . . due to their instantaneousness in the

asynchronous mechanism and instead describe the transitions

only in terms of the initial and next stable states—called a

stable transition. To this end, we define the stable recursion
function s as [5]

s1 : X � A � X

s1�x, v� :� x�

where x� is the next stable state of a valid state–input

combination �x, v�. We can expand the domain of s1 to X�A�

n
whenever necessary (A�

n is the set of all nonempty strings of

characters in An), i.e.,

s1�x, v1v2 	 	 	 vk� :� s1�s1�x, v1�, v2 	 	 	 vk�,

v1v2 	 	 	 vk � A�

n .

The definition of the stable recursion function is equally

applied to Σ2.

v C u z
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w

Fig. 1 Control configuration of a parallel interconnected asynchronous
sequential machine Σ � Σ1��Σ2

Fig. 1 shows the feedback control configuration of a parallel

interconnected asynchronous sequential machine Σ � Σ1��Σ2.

C is the corrective controller, also having the form of an

input/ouptut asynchronous sequential machine, v � An is

the externa input, u � An is the control input provided

by C, x and y are the state of Σ1 and Σ2, z is the

output of Σ, and w1,w2 � Ad are the adversarial inputs

infiltrating into Σ1 and Σ2, respectively. We denote by Σc

the closed-loop system consisting of C and Σ. When w1

or w2 enters a single asynchronous sequential machine, it

override the present control input u � An, causing the

corresponding asynchronous sequential machine to experience

an unauthorized state transition. For instance, if Σ2 has

been staying at a stable state y when w2 occurs for which

s2�y,w1� � y�, Σ2 undergoes the unauthorized transition from

y to y�. The next operation of Σ would be incorrect unless Σ2

is counteracted from this fault immediately.

In view of Fig. 1, we can describe Σ by an input/output

asynchronous sequential machine of the form

Σ � Σ1��Σ2

� �An,Z, X � Y, �x0, y0�, f , h�

where An and Z are the input and output set, respectively, X�Y
are the state set with the initial state �x0, y0�, f : X�Y �A �
X � Y is the state transition equation, and h : X � Y � Z is

the output function (assuming that Σ is a Moor machine).

To prevent unpredictable outcomes caused by the absence of

a synchronizing clock, the closed-loop system Σc is supposed

to preserve the principle of fundamental mode operations [13]

whereby an input, state, or output variable must change its

value when both C and Σ are in stable states, and no two or

more variables can be changed at the same time. Under the

principle of fundamental mode operations, we must assume

that if the input u � A changes, one of Σ1 and Σ2 takes a stable

transition in the first, and the second asynchronous sequential

machine doest not start its stable transition until the end of

the first transition. Which asynchronous sequential machine

among Σ1 and Σ2 takes the first transition is nondeterministic in

general. However, without regard to the relative order, the next

stable states reached by Σ1 and Σ2 are always deterministic. In

this respect, the stable recursion function of Σ s : X�Y�A �
X � Y is defined as

s�x, y, u� :�

����
���

�s1�x, u�, s2�y, u�� s1�x, u�! and s2�y, u�!
�s1�x, u�, y� s1�x, u�! and s2�y, u�¡
�x, s2�y, u�� s1�x, u�¡ and s2�y, u�!
undefined otherwise

(1)

where ‘s1�x, u�!’ and ‘s1�x, u�¡’ indicate that s1�x, u� is defined

and undefined, respectively. h�x, y� is the output function

whose value h�x, y� � z � Z is determined by the present

state pair �x, y� � X � Y . Note that in the previous work [9],

we assumed that the output of Σ is given as the form of burst
[1], a quick succession of output characters. In the present

study, on the other hand, we do not use the burst output. Even

the use of output feedback itself is entirely excluded from the

study; only state feedback will be transmitted to the controller

as illustrated in Fig. 1.

Referring to Fig. 1, C can be represented as an input/output
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stable-state asynchronous sequential machine of the form

C � �An � X � Y, An,Ξ, ξ0, φ, η�

where An�X�Y is the input set (v, x, and y), An is the output

set serving as the control input u, Ξ is the state set, ξ0 � Ξ is

the initial state, φ : Ξ�X�Y�An � Ξ is the stable recursion

function, and η : Ξ� Z is the output function. The objective is

to design C such that the closed-loop system Σc maintains the

normal input/state behavior against any occurrence of w1 or

w2. Whenever an adversarial input occurs to Σ, C will diagnose

it and provide a sequence of control inputs so that Σ is steered

towards the original state at which the fault occurred.

III. Condition for Fault Recovery

Since both states x and y are available as feedback in the

proposed architecture, fault diagnosis on occurrences of w1

and w2 is straightforward as already addressed in [9]. Take an

occurrence of w1 for example. Assume that Σ has been staying

at a stable state �x̄, ȳ� � X � Y when w1 occurs, enforcing Σ1

to reach s1�x̄,w1� � x�. C can diagnose the occurrence of w1

by observing that the state feedback of Σ1 changes to x� while

the external input remains fixed. Since only one variable can

change at a time under the principle of fundamental mode

operations [13], w2 never happens at the moment w1 happens.

Thus the next state Σ reaches by w1 is �x�, ȳ�. An occurrence

of w2 is similarly analyzed. In short, when full state feedback

is available to C, we can diagnose any fault event merely by

observing a change of state feedback. A detailed result of fault

diagnosis is found in [9].
In corrective control for a single asynchronous sequential

machine Σ1 � �A, X, x0, f1�, stable reachability between two

states measured in n � 1 (n � �X�) or less steps is sufficient

to describe the entire reachability of the machine [5]. On

the other hand, when two single asynchronous sequential

machines Σ1 and Σ2 are combined into parallel composition,

one must take into consideration more steps because although

the current input makes a valid transition with Σ1, it may not

with Σ2 and vice versa (refer to (1)). To consider more steps of

stable reachability, we introduce a generalized stable recursion

function ŝ1 : X � A � X and ŝ2 : Y � A � Y of Σ1 and Σ2,

respectively, defined as a total function:

ŝ1�x, u� :�

�
s1�x, u� s1�x, u�!
x s1�x, u�¡

ŝ2�y, u� :�

�
s2�y, u� s2�y, u�!
y s2�y, u�¡

All the undefined state–input pairs are considered as stable

combinations in ŝ1 and ŝ2. We assert that this setting is not

restrictive because an asynchronous sequential machine would

not respond to any incoming input that is not defined at the

current state, thus maintaining the same state. In association

with ŝ1 and ŝ2, s in (1) is written as

s�x, y, u� � �ŝ1�x, u�, ŝ2�y, u��.

The domain of s is extended to X � A�

n in the same way as

s1 and s2. Further, we extend it to P�X� � A, where P�X� is

the power set of X, as

s�X�, u� :� 	s�x, u��x � X�
 for X� � X.

Similarly, we extend the domain and range of the output

function to h : P�X� � P�Z� as h�X�� :� 	h�x��x � X�
.
Definition 1: Let X :� 	x1, . . . , xn
 for Σ1 � �A, X, x0, f1�

with �X� � n, and let Y :� 	y1, . . . , ym
 for Σ2 � �A,Y, y0, f2�
with �Y� � m. R̂�Σ1� and R̂�Σ2�, the extended matrix of stable

transitions of Σ1 and Σ2, are n� n and m�m matrices whose

�p, q� entries are defined as

R̂p,q�Σ1� :� 	t � A�

n �ŝ1�xp, t� � xq, �t� � n 
 m � 2


p, q � 	1, . . . , n


R̂p,q�Σ2� :� 	t � A�

n �ŝ2�yp, t� � yq, �t� � n 
 m � 2


p, q � 	1, . . . ,m


R̂�Σ1� and R̂�Σ2� contain not only essential input sequences

representing stable reachability of Σ1 and Σ2, but also

redundant ones that can make valid transitions with other

asynchronous sequential machines. �t� � n 
 m � 2 implies

that R̂�Σ1� and R̂�Σ2� have all the sequences of external input

characters that can induce valid transitions with respect to both

Σ1 (with the maximal length n� 1) and Σ2 (with the maximal

length m � 1).

We now present the existence condition for a corrective

controller C that tolerates unauthorized state transitions caused

by w1 and w2. The recovery procedure by C similar to the prior

work [8]. Assume that Σ1 and Σ2 have been staying at stable

states x̄ and ȳ when w1 occurs to Σ1, causing the unauthorized

state transition s1�x̄,w1� :� x�. As addressed before, C is able

to diagnose this fault occurrence by observing the change of

the state feedback from �x̄, ȳ� to �x�, ȳ�. The control goal is to

design C so as to drive the closed-loop system Σc from �x�, ȳ�
to the original state �x̄, ȳ� before further change of the external

input.

In the former methodology of controlling single

asynchronous sequential machines [1], [5], [7], the existence

condition for a corrective controller is equivalent to the

existence of a sequence of external inputs that steers Σ from

�x�, ȳ� to �x̄, ȳ�. The latter can be examined by deriving the

complete state transition characteristics of Σ and by deriving

matrix of stable transitions R�Σ� according to [5]. But this

method gives much computationally burden, as the dimension

of R�Σ� is nm � nm.

Here we present an alternative method that does not need the

complete modeling of the composite machine Σ. This is made

possible by utilizing the extended matrix of stable transitions

of Σ1 and Σ2 introduced in Definition 1. In controlling Σ from

�x�, ȳ� to �x̄, ȳ�, Σ1 and Σ2 must be steered such that Σ1 be

driven from x� to x̄ and Σ2 transfer from ȳ to ȳ, i.e., Σ2 must

circulate around ȳ. Let t � A�

n be a control input sequence

that achieves the fault tolerant control procedure from �x�, ȳ�
to �x̄, ȳ�. For notational convenience, assume that x̄ :� xp,

x� :� xq, and ȳ :� yr. In view of Definition 1, an appropriate

condition for t is described as

t � R̂q,p�Σ1� � R̂r,r�Σ2�.

Note that the above condition can be verified by referring

to the dynamics of submachines Σ1 and Σ2. The existence

condition for a corrective controller for tolerating occurrences

of w2 at Σ2 is similarly derived as follows. Assume that Σ
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undergoes an unauthorized state transition from �x̄, ȳ� to �x̄, y��
where there exists w2 � Ad such that s2�ȳ,w2� � y�. Assume

further that x̄ :� xp, ȳ :� yr, and y� :� ys. Then, a fault tolerant

corrective controller C tolerating this unauthorized transition

can be designed if a control input sequence t� � A�

n exists such

that

t� � R̂p,p�Σ1� � R̂s,r�Σ2�.

Let us summarize this result in the following theorem.

Theorem 1: Assume that the parallel interconnected

asynchronous sequential machine Σ � Σ1��Σ2 has been

staying at a stable state �xp, yr�, when an unauthorized state

transition occurs so that Σ transfers to �xq, yr� or �xp, ys�.
Then, a corrective controller C of Fig. 1 exists for which Σc

returns to the original input/state behavior at which the fault

occurred if and only if there exists t � A�

n or t� � A�

n such

that

(a) t � R̂q,p�Σ1� � R̂r,r�Σ2�; and

(b) t� � R̂p,p�Σ1� � R̂s,r�Σ2�,

where R̂�Σ1� and R̂�Σ2� are the extended matrices of stable

transitions of Σ1 and Σ2 defined in Definition 1.

IV. Example
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Fig. 2 Σ � Σ1��Σ2

Consider a parallel interconnected asynchronous machine

Σ � Σ1��Σ2 shown in Fig. 2 where X � �x1, x2, x3, x4� with

x0 � x1, Y � �y1, y2, y3� with y0 � y1, An � �a, b, c, d�, and

Ad � �w1,w2�. We set fi � si, 	i � 1, 2 for the sake of

simplicity.

First, assume that Σ has been staying at the stable

combination ��x2, y2�, c�, when the adversarial input w1 occurs

to Σ1, causing the unauthorized transition s1�x2, c� � x4.

This event is diagnosed by observing that the state feedback

changes from �x2, y2� to �x4, y2� while the external input c
remains fixed. To investigate the existence of a fault tolerant

controller, we apply the result of Theorem 1. Computing R̂�Σ1�
and R̂�Σ2� (omitted) and applying Theorem 1(a) lead to the

existence of a control input sequence t � bad such that

t � R̂4,2�Σ1� � R̂2,2�Σ2�. Hence, by Theorem 1, a corrective

controller C can be designed that achieves fault recovery

against w1.

In a similar fashion, we examine the existence of a fault

tolerant controller for an unauthorized transition by w2.

Referring to Fig. 2, w2 may happen when Σ2 stays at the

stable combination �y3, b� with which Σ1 may stay at �x1, b�
or �x3, b�. Thus possible original stable combinations of Σ

are ��x1, y3�, b� and ��x3, y3�, b�. But no feasible control input

sequences exist that satisfy condition (b) of Theorem 1 for any

initial state. Hence fault recovery against w2 is impossible.

V. Summary

We have investigated fault recovery for a class of composite

asynchronous sequential machines with parallel composition.

We have examined whether an unauthorized state transition

can be tolerated in the closed-loop system of composite

asynchronous sequential machines endowed with full state

feedback. Specifically, the condition for fault recovery is

addressed using an extended matrix of stable transitions, while

avoiding computational burden of deriving the entire dynamics

of the composite machine. The proposed method has been

demonstrated using a simple illustrative example.
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