
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

647

Abstract—In this paper we present a way of controlling the

concurrent access to data in a distributed application using the
Pessimistic Offline Lock design pattern. In our case, the application
processes a complex entity, which contains in a hierarchical structure
different other entities (objects). It will be shown how the complex
entity and the contained entities must be locked in order to control
the concurrent access to data.

Keywords—Object-oriented programming, Pessimistic Lock,
Design pattern, Concurrent access to data, Processing complex
entities

I. INTRODUCTION

VERY distributed business application must deal with the
issue of data being accessed and updated by different users

at the same time. If there is no control of the concurrency
implemented, this can lead to data inconsistencies. [1]

In order to avoid this, a business application must implement
a sort of concurrency control. If one user wants to update a
record from the database, then it must be prevented that other
users change the same record at the same time. This situation
is known under the name of synchronizing (or locking) the
access of users to the same data.

II. LOCKING STRATEGIES

There are two different strategies of implementing a
concurrency control to the database:

• Optimistic Lock [2] – can be implemented when there
is a low chance that different users will access and
then change the same entity at the same time.
However, when a simultaneous access occurs, the last
user that updates the data must choose an action
(rollback or overwrite/merge the data).

• Pessimistic Lock [3] – the first user that accesses the
entity locks it, so that the other users can’t change it.
When the user updates the data, the lock is released
so that the other users can access it.

The disadvantage of the Pessimistic Lock is the fact that a
user cannot change an entity if another user has already locked
the same entity. But this is something that a user can easily
understand and accept.

Cosmin Rablou has graduated the Faculty of Cybernetics, Statistics and

Economic Informatics, Bucharest in 2001. He joined the same year the team
at Derdack GmbH, Germany, where his main focus was on the
telecommunications and mobile solutions development. In 2007 he joined
OctaVIA AG, where he mainly develops SAP applications for
telecommunications.

Cosmin Rablou is currently writing his Ph.D. dissertation on design
patterns.

However, the disadvantage of the Optimistic Lock is that

the changes that the user has done to the entity must be rolled
back, if another user changes the data in between. This leads
often to frustration, as in this case the changes are lost. The
user must start processing the entity from the beginning.

From my experience, when it comes to business data, the
better (and the user-friendlier) choice is the Pessimistic Lock.

III. COMPLEX ENTITY

A business complex entity is an object that contains data
from more than one table. The complex entity has a
hierarchical structure, as it contains different objects or
structures or a collection of objects of the same type. Usually,
the entity and the included objects are in a composition
relation, which means the included objects are managed solely
through the complex entity. When the object that represents
the complex entity is destroyed, the contained objects are
destroyed, as well. [4]

The business partner in a FICA SAP module is an example
of an entity that contains both simple entities and collections of
entities. The address, the control data and the status are simple
entities. There is a one-to-one relation between the business
partner and a simple entity.

Fig. 1 SAP business partner containing different objects

Cosmin Rablou

Concurrent Access to Complex Entities

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

648

The bank details and the payment cards represent
collections of entities that are included in the business partner.
The relationship between the complex entity and the contained
entity is in this case one-to-many.

Fig. 2 SAP business partner containing collections of objects

It is important to understand the relation between entities
and the database tables.

A simple entity contains at least a record from a table in the
database. It is possible that the entity contains also other
records, which are bound to the main record by the means of a
foreign key.

A collection of entities is an array of entities and therefore is
represented by a record set. Each record can have other
referencing records, which are connected to the main record
through a foreign key.

A complex entity groups simple entities and/or collection of
entities and therefore represents a complex structure in the
database.

IV. PROBLEM

If more than one user tries to process the same entity at the
same time, this can lead to data inconsistency.

Imagine the following scenario:
• An user reads the information about a business entity

from the database (as a record from a table)
• A second user requests the access to the same entity
• The first user changes something in the entity and

updates the record in the database accordingly
• The second user makes another change and updates

the record later than first user.
The changes made by the first user are now lost, as the data

saved by the second user did not contain the changes made by
the first user.

This situation is known under the name “lost update” and
this is only one example of data inconsistency that might occur
when different users process data simultaneously.

However, when processing a complex entity, this problem
reaches a new level of difficulty.

This is due to the fact that there are different types of
entities (objects) that are contained in the main entity.
Different users can request access to the same entity. The users
can even request access to entities on different levels, by using
different applications.

So the problem is to prevent the change of a complex entity
when another user is changing at least one of the included
entities. Furthermore, when a user changes the complex entity,
no other user is allowed to change the included entities.

It must be considered also the fact that the requests to
change the complex entity and the included entity might come
from different applications.

V. SOLUTION

The data inconsistencies occur when several users are
processing the same data at the same time. In order to avoid
such situations, the first user that accesses the data must also
lock it.

In this case, the first user is the only one who can process
the entity and later save the changes in the database. While the
first user locks the entity, no other user is allowed to process it.
Another user can only process the entity when the first user has
finished updating it.

However, as the complex entity contains a hierarchical data
structure, it is not enough to lock only a record. When a user is
accessing a complex entity, it is necessary to lock both the data
directly included in the complex entity and the data belonging
to the simple entities contained in the complex entity.

This means that it is necessary to implement Lock and
Unlock methods in all entities. Therefore, it is useful to define
an entity interface that includes the methods Lock und Unlock.
Even better, the interface can also include the Save method.
The Save method updates the data in the database and
eventually initiates the process of unlocking the entity.

It is important that all applications that process the data use
the same type of locking mechanism for the same entity (no
matter if complex or simple). If not so, the locking mechanism
would only guarantee a proper processing within the
application boundaries. Cross-application processing of the
same entity would still lead to data inconsistency.

This means the developers of a new application must always
consider the locking strategy and mechanism already
implemented by existing applications.

VI. STRUCTURE

The structure of the presented solution is depicted in the next
class diagram.

The following components are included in the class
diagram:

• The model – as defined in the MVC-pattern [5], the
model contains the business data and rules. When
processing a complex entity, the model can be

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

649

reduced to a Singleton [6], as the business data and
rules are mainly grouped in the complex entity.

• The interface for the entities – defines methods that
have to be implemented by the entities, like Lock,
Unlock and Save. These methods are implemented
both in the complex entity and in the simple entities.
The methods for setting and getting the attributes of
the entities cannot be included in this interface, as
their signature differs from entity to entity.

• The complex entity – contains not only the business
data belonging to the complex entity, but also the
simple entities and collections of simple entities.

• The simple entity – groups the business data that
belong to the simple entity.

Fig. 3 Class diagram for locking a complex entity

Fig. 4 Sequence diagram for locking the complex entity

When a complex entity is instantiated, it is immediately
locked. The complex instance triggers then the instantiation of
the simple entities, which then will also be locked.

Fig. 5 Sequence diagram for saving and unlocking the complex entity

When the user saves the entity, the data is written to the
database and the complex entity is unlocked. Furthermore, the
complex entity initiates the saving of the simple entities. The
Save method in the simple entities unlocks these, too.

VII. CONSEQUENCES

The main advantage of using the Pessimistic Lock when
processing a complex entity is that it ensures a cross-
application concurrency control and thus eliminates the data
inconsistencies.

The main downside of the solution is the fact that the data is
locked for an undefined time interval.

When a complex entity is processed, the locking affects not
only the complex entity, but also the included entities. Thus,
no other user can change the locked entities, not even by using
another application. This is not a disadvantage, as long as
another user actually processes the entity.

However, it is possible that the connection between the
server and the user that processes the entity is lost. The entity
would remain locked and there would be no way to unlock it.

The solution to this problem is to use the destructor of the
entity to unlock it. Even if the connection is interrupted, at
some point the session of the user on the server will time out.
When the session times out, the server removes all the objects
related to the session from the memory and the destructor of
the entity is called, thus unlocking the object.

In order to increase the availability of the complex entities,
it is possible to define in the application two different ways of
acquiring a complex entity:

• A display mode, where the user can see the
complex entity, but cannot process it. In this mode
the entity is not locked.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

650

• A change mode, where the user locks the complex
entity for processing.

The user loads in the beginning the entity in the display
mode. He/she must actively switch to the change mode in
order to process the entity. This reduces the interval where the
entity is locked to the minimum, therefore increasing the
availability of the entities.

Another problem that might occur when locking entities is
the deadlock. Imagine the scenario where our application locks
the complex entity and want to acquire a lock on an included
simple entity. In the meantime, an existing application locks
first the simple entity and then tries to lock the complex entity.
This would lead to a deadlock, as both applications would wait
for the other entity, which is already locked.

This kind of situation can be avoided if every application
implements the same order of acquiring the lock. In our
example, it would be necessary that both applications lock first
the complex entity and then the simple entity. Luckily enough,
this is also the logical way of acquiring the locks and therefore
such collisions are quite rare.

VIII. IMPLEMENTATION

The following code, that shows how to implement the
concurrency control for a complex entity is part of an
ASP.NET application written in C#. The application uses
SQLServer as a database.

The definition of the entity interface contains at least the
methods for locking, unlocking and saving the entity.

This interface is implemented in the complex entity and in
the contained entities.
interface IEntity
{
 bool Lock();
 void Unlock();
 bool Save();
}

The constructor of the complex entity has as a parameter the
key that uniquely identifies the data included in the object (the
primary key). This key can have a null value, when the
complex entity does not exist yet in the database, as it is just
being created by the application.

The constructor loads the data belonging directly to the
complex entity and initializes also the included entities.

public Invoice(int nID)
{
 m_nID = nID;
 m_InvoicePos = new ArrayList();
 LoadInvoicePositions();
}

In this case the application does not lock the entities from
the beginning. This happens only later, when the user is
switching to the change mode.

The complex entity must then lock its own data and then
loop over the included entities in order to initiate the locking
process for these, too.

The data is locked using special forms of the SQL Select
command in a transaction.

Sadly enough, the SQL standard does not offer a general
form of the Select command for locking records. However,
each database system offers its own command for locking.

For example, Oracle uses the Select command with the
clause “For Update”. SQLServer uses the Select command
with the clause “With (Updlock, Rowlock)” for the same
purpose.

public bool Lock()
{
 if (m_nID == 0)
 return false;

 string strSQL = "SELECT * FROM Invoices WITH
(UPDLOCK, ROWLOCK) WHERE ID = @ID";

 m_Connection = new
SqlConnection(m_SqlConnectionString);

 DataSet lDS = new DataSet();

 try
 {
 m_Connection.Open();
 m_Transaction =
m_Connection.BeginTransaction(IsolationLevel.Serializable);
 SqlCommand lCommand = new SqlCommand(strSQL,
m_Connection, m_Transaction);
 lCommand.Parameters.Add("@ID", SqlDbType.Int);
 lCommand.Parameters["@ID"].Value = m_nID;
 lCommand.CommandTimeout = 1;
 m_Adapter = new SqlDataAdapter(lCommand);
 m_Adapter.Fill(lDS);
 }
 catch (Exception err)
 {
 return false;
 }

 for (int i = 0; i <= m_InvoicePos.Count - 1; i++)
 {
 IEntity lInvoicePos = (IEntity)m_InvoicePos[i];
 if (lInvoicePos.Lock() == false)
 return false;
 }
 return true;
}

The Save method updates the data in the database, unlocks
the data belonging to the entity and finally initiates the Save
procedure for the included entities. The Save method of the
included entity saves and unlocks the respective entity.

public bool Save()
{
 if (m_nID == 0)
 {

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

651

 if (Insert() == false)
 return false;
 }
 else
 {
 if (Modify() == false)
 return false;
 }
 Unlock();
 for (int i = 0; i <= m_InvoicePos.Count - 1; i++)
 {
 IEntity lInvoicePos = (IEntity)m_InvoicePos[i];
 if (lInvoicePos.Save() == false)
 return false;
 }
 return true;
}

The destructor of the object must call the method Unlock, to
make sure that the entity is unlocked when the object is
destroyed. This way, even if the user forgets to properly close
the application, the lock will be released when the session on
the server times out.

~Invoice()
{
 Unlock();
}

The Unlock method of the complex entity unlocks its own
records and initiates the unlock process of the simple entities.

public void Unlock()
{
 if (m_Connection != null)
 {
 // Close connection to unlock the record
 if (m_Connection != null)
 {
 m_Connection.Close();
 m_Connection = null;
 }
 m_Adapter = null;
 m_Transaction = null;
 }
 for (int i = 0; i <= m_InvoicePos.Count - 1; i++)
 {
 IEntity lInvoicePos = (IEntity)m_InvoicePos[i];
 lInvoicePos.Unlock();
 }
}

REFERENCES

[1] Martin Fowler, “Patterns of Enterprise Application Architecture”,
Addison-Wesley Professional, 2002, pp. 64-65

[2] Martin Fowler, “Patterns of Enterprise Application Architecture”,
Addison-Wesley Professional, 2002, pp. 416-425

[3] Martin Fowler, “Patterns of Enterprise Application Architecture”,
Addison-Wesley Professional, 2002, pp. 426-437

[4] Cosmin Rablou, “Processing complex entities in MVC applications”,
World Academy of Science, Engineering and Technology, Issue 62,
February 2012, Florence, Italy, pp. 2549.

[5] Glenn E. Krasner, Stephen T. Pope, “A cookbook for using the model-
view controller user interface paradigm in Smalltalk-80”, Journal of
Object-Oriented Programming, August/September 1988, pp. 26–49.

[6] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design
patterns: elements of reusable object-oriented software”, Addison
Wesley, 1994, pp. 127–134.

