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Abstract—Various mechanisms providing mutual exclusion and 

thread synchronization can be used to support parallel processing 
within a single computer. Instead of using locks, semaphores, barriers 
or other traditional approaches in this paper we focus on alternative 
ways for making better use of modern multithreaded architectures 
and preparing hash tables for concurrent accesses. Hash structures 
will be used to demonstrate and compare two entirely different 
approaches (rule based cooperation and hardware synchronization 
support) to an efficient parallel implementation using traditional 
locks. Comparison includes implementation details, performance 
ranking and scalability issues. We aim at understanding the effects 
the parallelization schemes have on the execution environment with 
special focus on the memory system and memory access 
characteristics.  
 

Keywords—Lock-free synchronization, mutual exclusion, 
parallel hash tables, parallel performance 

I. INTRODUCTION 

ARALLELIZATION is becoming the de-facto solution for 
performance enhancement of all types of algorithms.  

Large scale data processing is a perfect candidate for 
parallelization, as the most time consuming steps execute 
simple transformations on  large amounts of data (e.g. [1] 
claims preprocessing to be responsible for 80% of the 
execution time of data mining process), thus little space is left 
for algorithmic optimizations. 

Speeding up an algorithm requires the analysis and the 
understanding of the factors that determine its performance. 
Algorithmic step count, data movement costs, memory layout 
and usage pattern of data structures all play an important role 
in the runtime behavior of an application. Our main objective 
is to offer different methods to make better use of widespread 
state-of-the-art computer architectures that contain multiple 
processors (and/or processor cores) by identifying the main 
performance factors and examining their effects when various 
parallel approaches are applied to solve the same data 
transformation problem. 

The motivation of this work comes from a large scale web 
log processing project [2] which required the recoding of 
multiple large data fields with limited domain to a more 
compact representation format. The essential of the task was 
to build a large lookup table containing up to several tens of 
millions of key-value pairs. The code table was built on the 
fly, that is, the data structure empty in the beginning was  
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continuously expanded when any unknown field content (key)  
that was encountered on the input. Any existing (long) input 
content was to be replaced by a (short) output value that was 
assigned to the key at the first encounter. The result of the 
process was a new data file more fitting for further processing 
as it carried the same information content as the original web 
log, but only had a fraction of its size. 

For increased efficiency the lookup table was implemented 
by a custom hash table that only supported insertion of new 
elements and looking up the values belonging to specific keys 
(no entry modification or table reorganizations were required). 
For this reason in the further part we focus our effort on 
speeding up these two operations, although it is worth 
mentioning that hints for efficient parallel implementations of 
the missing operations can be found in [7, 8, 9]. 

The fact that the hash table is used in data processing is 
relevant for two reasons. First of all, the vast amount of data 
that goes through the hash table forms our goal to use as few 
indirections in the storage structure as possible; this, however, 
clashes with the concept of one of the synchronization 
solutions we present. Secondly, the size of the table, and 
namely, the number of buckets in the table makes the use of 
locks unfavorable due to their overhead of consuming 
memory; memory which could be used in the caches for data 
storage instead. 

We present and analyze different methods for allowing and 
speeding up parallel access to hash tables. This practical 
example is used for demonstrating the main ideas and 
outlining the performance effects of the different approaches. 
Both the aforementioned issues, namely indirections in the 
storage structure, and memory overhead of the parallelization 
solutions will be studied through the performance evaluation 
of the methods. 

The rest of the paper is organized as follows. In Section II 
we identify the performance factors of parallel algorithms 
running on current desktop architectures and present some 
recent works using locks in concurrent hash tables. Section III 
presents our arguments against the use of locks in general. 
Section IV provides the implementation details of the lock-
free, non-blocking hash table variants that allow several 
threads to cooperate without using traditional synchronization 
mechanisms such as locks, semaphores or barriers. In Section 
V measurement results are presented and analyzed to evaluate 
the different implementation approaches. Section VI 
summarizes our findings and gives a brief overview of our 
findings. 
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II.  RELATED WORKS 

A. Performance Factors of Sequential Implementations 

The most important factor that determines the performance 
of an algorithmic its mathematical complexity. This particular 
aspect is not in our scope now, because hash tables have O (1) 
complexity for accessing an item. The access time being a 
constant means that it is independent of the size or of number 
of elements in the hash table, and with the right choice of 
parameters (size of the hash table, nearly ideal hash function) 
the average access path can be kept nearly as low as a single 
step [3]. 

In data- and memory intensive applications the second most 
important factor is the memory access characteristics of the 
algorithm. Lookup tables require low computation power; 
their performance is rather dominated by the memory access 
times than the number of instructions completed to find the 
element corresponding to the key. Current architectures bridge 
the performance gap between current CPUs and their main 
memory by a multilevel cache, thus in practice the 
performance of data intensive application is always measured 
in the number of the slow memory accesses (cache misses). 
[4] was the first to mention the importance of caches when 
adjusting the parameters of hash tables, while [5] provide in 
detailed study about the cache performance when using 
various hash functions along with different collision avoidance 
methods. [10] proposed a method to combine cache awareness 
and reliability by grouping buckets into cache lines.  In our 
previous work [6] we provided an extensive study explaining 
how the structure (memory layout) and parameters of the hash 
table should be chosen for optimal lookup performance. These 
results will be referenced and used during the presentation of 
the implementation details. 

B. Parallel Execution and Mutual Exclusion 

In parallel environments (such as multi-CPU and multi-core 
systems) further speedup can be achieved by taking advantage 
of the execution environment’s capabilities. Preparing a 
sequential algorithm for parallel executing has many 
approaches. In order to ensure that threads executing in 
parallel provide the same result as the sequential approach, at 
some critical points it must be made sure that only one thread 
has access to certain parts of the data structures to maintain 
their integrity. This kind of mutual exclusion is usually 
enforced by the use of locks. 

Several parallel implementations of hash tables are 
available that use look based synchronization. A single hash 
table level look can easily become a bottleneck, thus several 
method were developed to overcome this difficulty. Larson et 
al. in [11] use two lock levels, there is one global table level 
lock, and there is one separate lightweight lock (a flag) for 
each bucket. The high level lock is just used for setting the 
bucket level flags and released right afterwards. This ensures a 
fine grained mutual exclusion (concurrent operations on 
bucket level), but needs only one real lock for the 
implementation. It was shown by [12] that in case of non-
extensible hash tables simple reader-writer locks can provide a 

good performance in shared memory multiprocessor systems. 
More efficient implementation like [8] use a more 
sophisticated locking scheme with a smaller number of higher 
level locks (allocated for hash table sections including 
multiple buckets) allowing concurrent searching and resizing 
of the hash table.  

III.  A CASE FOR AVOIDING LOCKS 

Locks can be implemented purely by software in theory, 
however all modern architecture provide hardware support in 
form of atomic bitwise test-and-set and word-size compare-
and-swap operations guaranteeing that no interruption, or any 
other bus operation initiated by other processors or bus 
controllers will occur between the read and write part of 
operation. Hardware locking can be used directly, or through a 
wrapping layer provided by the execution environment or the 
operating system (providing extra services like waiting queues 
or thread state control yielding for other threads until the 
critical section becomes available). 

The first problem with locks is that since they are the means 
of communication between threads and the processors the 
threads execute on, they must always be up-to-date, meaning 
that they cannot be cached. The same memory location is 
periodically updated by various threads forcing all processors 
to purge the particular cache line from their caches. The next 
time the lock is tested, the data is read from the system 
memory directly resulting in a cache miss. This is an 
important consideration when locks are used; they are 
expensive to check and modify and the cost is a cache miss at 
all times. 

The second problem is the actual level of parallelism under 
the surface. The use of locks does not provide parallelism; it 
does exactly the opposite. Threads are forced to wait if another 
one is still working the critical section. The threads can wait 
actively (i.e. continuously polling the state of the locks by 
spin-waiting) or passively giving up their time slice until the 
lock becomes available. Either solution has additional costs, 
such as wasting computing power by active waiting, or 
involving the operating system scheduler in the other case. 

The amount of time lost at waiting can be reduced by 
creating multiple finer-grained critical regions. In case of hash 
tables this means that instead of locking the whole table we 
apply the lock on smaller regions of an open hash table, or on 
bucket or bucket groups of a bucket hash table. As number of 
locks increases collisions become less and less probable, 
providing better performance and scalability. Unfortunately 
using high number of locks is often not supported by the run-
time environment (we may just have a few thousands), and 
they have a relatively large memory footprint. Even if we use 
only one bit, we cannot create an array of locks because of the 
effect of “false sharing.” False sharing hints on the shared use 
of the same cache line by multiple independent locks, where 
the modification of one lock will not only effect that single bit, 
but it will purge all other unrelated neighboring bits (for a 64 
byte long cache line 511 other locks) form the cache of the 
concurrent processors. We can solve this problem by assigning 
a complete cache line to each lock, or merging the lock with 
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data items (adding one extra byte for each lock) thus spreading 
locks all over the memory resulting in higher memory 
allocation. 

In general all lock-based algorithms suffer from the 
drawbacks of blocking synchronization such as deadlocks, 
long and undefined delays and priority inversions which is 
especially true when using extensible hash tables [9]. 

Using locks is not really convenient: threads can hinder the 
execution of each other, extra memory is required, data 
structure should be reorganized (to place the lock) and in cases 
of unfortunate implementations the interaction of multiple 
locks can stall the whole processing (deadlock situations). A 
great amount of research efforts has been made in the 
literature to develop non-blocking synchronization methods. 
In the following section we present two ideas that give a kind 
of workaround of the lock-based mutual exclusion particularly 
applicable to hash tables. 

IV.  IMPLEMENTING A CONCURRENT HASH TABLES 

This section presents the concurrent implementations of the 
hash table. We start from a single threaded, optimized variant, 
which then will be altered according to three different 
parallelization schemes: traditional mutual exclusion with 
locking, lock-free with hardware atomic operations, and lock-
free rule-based cooperation. 

A. Optimized Hash Table 

Parallel performance optimization begins with an optimized 
sequential hash table. As discussed in detail in Section II the 
performance is significantly affected by the memory 
characteristics. Multiple works as well as our experiences [5, 
6, 10, 11] show that the number cache misses in the search 
path should be a primary concern. We have found [6] that the 
best choice in this case is a hash structure that uses no 
indirections for storing the items if there is no collision (see 
Fig.1). This is a bucket hash table using chaining for resolving 
collisions. The most important benefit of this structure is that 
the first item in each bucket can directly be accessed. (This 
property will be relevant when discussing the CAS solution in 
Section IV.C.) 

 

 
Fig. 1 Memory layout of hash table we use 

 
Each item consists of the key, a pointer to the next item, and 

the stored value associated with the particular element. The 
key and the pointer are placed next to each other to increase 
the chance of being in the same cache line beneficial when 
following the bucket chain. The hash table body is compact, 
no cache line alignment or padding is used to reduce memory 
footprint. 

Another import factor for good performance is short search 
path. This can be guaranteed by a uniform hash function and 
the right choice of the table size. Although this hash table is a 
kind of bucket hash implementation the average bucket size 
should be kept as low as 1, which is achieved by choosing the 
size of the hash table about 20-40% bigger, than the number of 
items it should hold. In this working point the compact 
structure functions rather like an open key hash table with 
special list-based collision avoidance mechanism. 

B. Traditional Locking 

Little effort is required for a simple locking 
implementation. A single table-level lock sufficiently solves 
the concurrency problem, but it basically serializes all 
accesses to the table easily resulting in performance loss 
instead of gain. On the other hand using too many locks (i.e. 
one for each bucket) it is a waste of memory space: if we place 
a lock to each bucket, than threads only collide when trying to 
access the same bucket at once (practically never), but we 
have to maintain tens of millions of locks in the memory. 

Based on previous research [8, 11, 12] and verified by our 
experiments region locks are the best choice. We chose to set 
up 1024 locking regions (Fig.3.a) from consecutive hash table 
items. 

C. CAS Based Implementation 

Lock free parallel implementations usually use atomic 
compare-and-swap (CAS) operations instead of explicit 
locking. This method is founded on the fact that all modern 
computer architectures provide hardware support for atomic 
combined read-write operations (e.g. the CMPXCHG 
instruction in thex86architecture) that allow the non-
destructive manipulation of a single machine word.The basic 
idea is that we should construct algorithms where it is 
sufficient to manipulate a single machine word to achieve the 
necessary result. In practice the manipulated value is a pointer 
(which has the length of one machine word), thus in the first 
step we create the composite data structure in the memory 
according to the current situation, than we try to move it in 
place with the conditional CAS operation. If the compare 
condition does not hold true anymore (the memory location 
has been modified by another thread) than the swap operations 
fails. We adapt the structure to the new condition and we try 
the insertion again. 

With this method complete lock-free data structures and 
algorithms can be build, as it was done with linked list by 
Michael in [12], whose works was further extended to 
resizable hash tables by in [9].When creating a CAS based 
implementation (see Fig. 3.b) the data structure manipulation 
consist of a series of pointer adjustments. For this reason we 
have to modify the data structure we use (see Fig. 2). This 
works exactly the same way as the previous variant except for 
the data items not being embedded into the body of the hash 
table.This extra indirection in the structure clashes with our 
goal to store the items accessible without indirection from the 
table body, and is expected to be accountable for an increased 
number of cache misses. 
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Fig. 2 Memory layout of hash table adopted to be used with CAS 
 
The main advantage of this approach is high scalability 

using hardware supported optimistic concurrency handling, 
while its price is the development effort put into finding and 
implementing an algorithm which produces the right results 
with applying the pointer manipulations one by one in the 
right order. When using this approach we expect less waiting 
due to the omission of locks, but at a cost of increased cache 
misses that originate from the memory layout modification 
required. 

D.  Rule-Based Cooperation 

The last method for implementing a lock-free hash table is 
what we call rule-based cooperation. The main idea is to do a 
kind a reverse work allocation compared to the traditional lock 
based scenario where each thread is capable of executing any 
task and while doing so they protect their working area with 
lock to avoid the interference with other tasks. In the reverse 
case we specialize our threads by assigning individual work 
areas to them that do not overlap (separate functions, pipeline 
stages, spatial domains or graph branches). In this case a 
specific service requests can be served by just one thread, and 
it is up to the right selection of domains to provide the load 
balancing. 

The selection rules are usually based on data decomposition 
as functional decomposition generally does not provide free 
scalability and we easily reface the problem of critical sections 
on the level of organizing the control. According to our 
knowledge this kind of cooperation is never mentioned in the 
literature of shared memory algorithms, but the idea is not 
unknown in distributed systems, where there low cost shared 
memory synchronization is not available, thus the coarser 
grained cooperation between the nodes is maintained by 
directed point-to-point messages or implicit work allocation 
rules (e.g. distributed file servers, horizontally partitioned data 
bases, documents groups allocated to separate web servers). 

In practice with n threads the original hash table is divided 
into n regions (sub-hash tables, see Fig. 3.c) where each thread 
is responsible for exactly one region. As the thread is the 
owner of its region no locking is required, as nobody else is 
allowed to reach the data inside. 

 

 
Fig. 3 Concurrent hash table implementation: a) hash table with 
section locks, b) CAS based cooperation, and c) rule-based task 

separation 
 
The threads share a common input and output region which 

can be addressed directly (with the index of the input or the 
output element). Each threads reads each input element (no 
locking is needed, this is just a read only access for everyone) 
and based on a rule they decide whether to process that 
specific element or to move to the next one (Figure 3.c). The 
rule is constructed in such a way that it chooses exactly one 
thread for processing the element, and that thread is 
responsible for creating the output (no locking required as 
writing as each element is written by one single thread).   

In the case of lookup tables the rule should be constructed 
in a way that ensures the elements with the same key always 
go to the same thread. In our implementation we used a simple 
modulo n rule, which was applied the hash function of the key 
(the same hash function is used as the one used inside the sub-
hash tables for placing the elements). That is, if the threads are 
numbered between 0 and n-1 then thread m (0 <m<n) selects 
itself for processing if hash (key) mod n equals to m. We 
should use complex hash functions in both the external 
decision and the internal placement as we seek for providing a 
highly uniform load distribution between the threads and 
between the table slots as well. The advantage of sharing the 
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same hash function is that it needs to be calculated only once 
when handling an item. The complex external decision 
function has its disadvantage as well as all threads need to 
calculate it for each item just to find out whether is belongs to 
their scope or not. We expect to see higher instruction count 
on behalf of this approach. 

In the case of rule based workload distribution there is no 
need for locking neither at software nor at hardware level, no 
special instruction are required, no additional cache misses 
appear and implementation is relatively simple. These benefits 
come at the cost of increased computation as all thread has to 
apply the rule to all items which is just a kind of 
synchronization overhead for n-1 out of the n threads. 

V.  MEASUREMENTS AND RESULTS 

In this section we compare the performance of above 
mentioned three implementation types (high-level section 
lock, CAS, rule-based co-operation) considering different 
number of threads and various workload types. 

The measurements were executed on an Intel Core i7-2600 
CPU (3.6 GHz, 4 core and Hyper Threading) with 8 GB 
system memory and Windows 7 operating system. The hash 
tables and every locking mechanism were implemented in 
C++ with careful manual optimization and compiled by 
Microsoft Visual Studio 2010 in default release build mode. 

Each test scenario reports the average of 5 executions. We 
measured the execution time, the number of last level cache 
misses (8 MB L3 cache shared by all cores) and the number of 
executed instructions. 

The first type of workload (see Figure 4) has 50% insert and 
50% lookup operations, while the second (see Figure 5) 
consists of 10% insert and 90% lookup operations. (Please 
note that operations in this context are searches/inserts in the 
table, while the instructions are executed by the CPU). 

 

What we are interested in is on one hand the performance 
which is measured in terms of operations (lookup/insert) per 
millisecond (the higher the better) and the reason behind the 
performance differences. We measure the number of 
operations per 1000 CPU instructions and number of 
operations for each dozen cache misses. The scales are of 
practical choice for the visibility. Both are better when higher 
(i.e. more lookups completed by the same number of CPU 
instructions). 

The lock-based solution and the CAS method have their 
peak performance at 8 threads achieving 2.9 and 3.5-4.25 
speedup over the baseline while the cooperation method is at 
its the best with 7 threads with a speedup of 2.3-2.5. 

The lock-based solution dominates the lock-free solutions 
up to about 8 concurrent threads, which is exactly the number 
of (virtual) cores in the CPU. 

The CAS solution has mostly the same performance. We 
also see that it increased cache miss count (the operations per 
10 cache misses is lower) which is due to the extra indirection 
in the data structure. It also has the best instruction count 
(locks do spin-waiting consuming instructions, cooperation 
calculates more hash functions). The biggest gain is the 
scalability. 

The cooperation solution behaves unevenly with different 
number of threads, which is due to the implicit load balancing 
of the chosen hash function which performs the data 
decomposition. It has the worst utilization of CPU instructions 
(lowest count of lookups/inserts completed by the same 
amount of CPU instructions). Since the hash function is 
calculated by all threads, it goes to waste for all but one of 
them. It also seems that this solution is not really cache 
friendly. Since the threads are not controlled or synchronized 
it seems that they have uneven loads and work in different 
regions of the system memory, which puts more strain on the 
system. 

 
Fig. 4 Operations per millisecond for various number of threads using the four different schemes (left); and the same for 2 and 8 threads with 

the corresponding number of operations per instructions and cache misses (right). The workload consist of 50% insert and 50% lookup 
operations 
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Fig. 5 Operations per millisecond for various number of threads using the four different schemes (left); and the same for 2 and 8 threads with 

the corresponding number of operations per instructions and cache misses (right). The workload consist of 10% insert and 90% lookup 
operations 

 
VI.  CONCLUSION 

This paper presented two lock-free implementations of hash 
tables. Our hypothesis is that locking solutions are not 
practical, since they have limited applicability (constraint on 
the number of locks), require invasive modification of the 
algorithms (placement of the locks, memory concerns), 
threads can hinder each other’s performance, and lastly, it is 
prone to faulty or crashed threads. 

It can be said that really good performance can be achieved 
with locks, but it must also be taken into consideration that the 
locks we used are implemented as assembly level bit-test-and-
set based solutions allowing for very low overhead and 
unlimited number of locks. The use of locks also potentially 
hinders executing, while lock-free solutions are incapable of 
causing deadlocks. 

The lock-free solutions this paper examined included a 
well-known technique of using the CAS primitive, which 
provides a good alternative to locking, but required changes in 
the storage structure, which causes more cache misses and 
results in more complex algorithm where extra manual labor 
was put into the implementation and verification. The biggest 
advantage of this approach is its scalability. 

The rule-based cooperation with data decomposition is an 
idea borrowed from distributed systems and applied to shared 
memory parallel algorithms. The performance of this approach 
is limited by the increased amount of instructions all threads 
need to perform redundantly, but has a nice feature of being 
applicable without any modification to the algorithms and data 
structures. 
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