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Concept of a Pseudo-Lower Bound Solution for
Reinforced Concrete Slabs

M. De Filippo, J. S. Kuang

Abstract—In construction industry, reinforced concrete (RC) slabs
represent fundamental elements of buildings and bridges. Different
methods are available for analysing the structural behaviour of
slabs. In the early ages of last century, the yield-line method has
been proposed to attempt to solve such problem. Simple geometry
problems could easily be solved by using traditional hand analyses
which include plasticity theories. Nowadays, advanced finite element
(FE) analyses have mainly found their way into applications of
many engineering fields due to the wide range of geometries to
which they can be applied. In such cases, the application of an
elastic or a plastic constitutive model would completely change the
approach of the analysis itself. Elastic methods are popular due to
their easy applicability to automated computations. However, elastic
analyses are limited since they do not consider any aspect of the
material behaviour beyond its yield limit, which turns to be an
essential aspect of RC structural performance. Furthermore, their
applicability to non-linear analysis for modeling plastic behaviour
gives very reliable results. Per contra, this type of analysis is
computationally quite expensive, i.e. not well suited for solving
daily engineering problems. In the past years, many researchers have
worked on filling this gap between easy-to-implement elastic methods
and computationally complex plastic analyses. This paper aims at
proposing a numerical procedure, through which a pseudo-lower
bound solution, not violating the yield criterion, is achieved. The
advantages of moment distribution are taken into account, hence the
increase in strength provided by plastic behaviour is considered. The
lower bound solution is improved by detecting over-yielded moments,
which are used to artificially rule the moment distribution among
the rest of the non-yielded elements. The proposed technique obeys
Nielsen’s yield criterion. The outcome of this analysis provides a
simple, yet accurate, and non-time-consuming tool of predicting the
lower-bound solution of the collapse load of RC slabs. By using
this method, structural engineers can find the fracture patterns and
ultimate load bearing capacity. The collapse triggering mechanism is
found by detecting yield-lines. An application to the simple case of
a square clamped slab is shown, and a good match was found with
the exact values of collapse load.

Keywords—Computational mechanics, lower bound method,
reinforced concrete slabs, yield-line.

I. INTRODUCTION

THE assessment of load bearing capacity of RC slabs

and plates has extensively been treated through yield-line

method. Ingerslev [6] was the first to coin the term ’yield-line’

which describes an amount of subsequent points along which

yielding is occurring. Derivation of such yield lines is of

particular interest since it leads to deriving the collapse

mechanism of the slab. Such field of research has attracted

a consistent interest throughout the years. Johansen [8] has
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subsequently further developed and confirmed the theory.

Its method represents a traditional hand solution of the

upper bound problem, aiming to obtain an approximation of

the ultimate load carrying capacity, along with its critical

yield-line pattern. Numerous researchers have then attempted

to further improve such method by implementing new features

such as full automation, optimization procedures, mesh-less

approaches etc. The latest updates on the upper bound solution

are given by Gilbert [5], who has implemented a discontinuous

layout optimization technique into a mesh-less geometry.

Results obtained through upper bound solution, from its

definition, will over-estimate the ultimate load capacity.

Moreover, there is plenty of uncertainty that the most critical

collapse mechanism has been found. Validation of the obtained

results through other means is then imperative. A lower

bound solution instead gives an under-estimation of the critical

load. However, using such approach engineers can enjoy the

luxury of dealing with conservative results, which ensures

an over-estimation of the load-carrying capacity would never

occur. Given such an advantage, however the lower bound

approach has historically attracted less interest, probably

due to its complexity. Jackson and Middleton [7] have set

themselves this task, and have proposed an optimization-based

technique to find the most critical collapse mechanism, and its

related transverse load.

In this paper, the concept of an alternative lower bound

method is presented. The main objective is to propose

an easy-to-compute FE based technique simulating the real

structural behavior of an RC slab under monotonic increasing

transverse load.

II. PROBLEM STATEMENT AND ASSUMPTIONS

A. Problem Statement

In mathematics, given a function f of domain D, and

codomain C, the exact solution, or the so called 0 of the

polynomial, is given by the element y ∈ C for which it

is verified y = f(x), for each x ∈ D. Considering now

to be dealing with a function f so complex that finding its

0-polynomial turns to be particularly difficult, then it would

instead be preferable to find an approximate solution. An

element y ∈ C is an upper bound of f if y > f(x), for each

x ∈ D. Similarly, an element y ∈ C is a lower bound of f if

y < f(x), for each x ∈ D [9].

In mechanics of materials, the above definition can be

applied through analogy of respectively x with stresses, and

of y = f(x) with the yield condition. If all stresses are

contained within the yield-surface, a lower bound solution
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is achieved. Per contra, if the yield-criterion is anywhere

violated an upper bound solution is obtained. The aim is to

find the load-carrying capacity, and collapse mechanism of

the slab, getting as close as possible to the exact solution,

provided by the 0 of the polynomial. Such concepts can be

closely related to Elastic and Plastic Analyses. Nowadays, the

Finite Element Method (FEM) has found endless applications

for equilibrium related problems within the field of civil

engineering. The solution of elastic equations of equilibrium is

a task commonly solved through FEM. However, the analysis

is linear-elastic, meaning that stresses and strains linearly

increase with displacements, and a failure threshold is never

reached. On the other hand, a more reliable solution can be

achieved through plastic analyses. In this case, equilibrium

is satisfied everywhere in the physical domain taking into

account the non-linearity of materials’ constitutive models.

Such challenge is normally faced through iterative procedures

such as Newton-Raphson Method, Modified Newton-Raphson

Method, Arc-Length Method, etc. This latter technique

provides a more reliable estimation of the structural behavior

since the phenomenon of yielding is taken into account, but

with a dramatical increase in computational cost.
This paper proposes a modified elastic-based FE analysis

of the plate bending problem including the yielding effects

of both materials constituting RC: concrete and steel. The

results aim at representing a feasible solution for the

previously-mentioned lower bound problem of RC slabs.

B. Assumptions
Given the evident complexity of the problem, in order to

obtain a reliable approximate solution it is inevitably required

to reduce its complexity with a few assumptions. They are

hereby mentioned as:

• The problem is restricted to static plate bending due to

transverse loads.

• The slab is assumed to behave as a Kirchhoff plate,

thus strains and displacements are small, and flexure is

assumed to be independent of the effects of shear or any

vertical stress. [3]

• It is assumed that in-plane, stresses (or the so-called

Membrane Forces) do not have any significant effect in

increasing the maximum carrying capacity of the slab.

Given that elastic deflections are not significant, such

assumption holds.

• The FEM is run only for the elastic problem, so plastic

deformations of the slab are not taken into account.

Yielding is instead simulated through a modification of

the state of stresses.

• There is large experimental evidence that collapse of

the slab due to monotonically increasing transverse

load is solely caused due to bending. For such reason,

an eventual collapse analysis due to shear should be

separately threated. The maximum load carrying capacity

is hence solely evaluated in function of bending moments.

• The slab is assumed to be ductile enough to not fail in a

brittle manner. A non-ductile failure, due to highly stiff

structural behavior, may cause a significant change in

terms of load carrying capacity.

III. METHODOLOGY

A. Yield-criterion

Given the previous definition of lower bound, in order to

check whether a stress point reached yielding or not, it is

imperative to define a yield-criterion. For the present case,

Nielsen’s yield criterion is the most appropriate choice, hence

yielding condition is solely dependent on state of bending

moments. Large evidence was shown on the applicability of

such criterion to several cases of slabs [11]. A lower bound

solution is then achieved if (1) is fulfilled.

−m−
R(φ) ≤ m(φ) ≤ m+

R(φ) (1)

where φ is Variable angle of potential yield-line. m(φ) is

Triad of Bending Moments at φ. m−
R(φ), m

+
R(φ) is Triad of

Resisting Moments at φ.

Such condition is broke down in the set of (2). [1]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Mxy −M+
R,xy)

2 − (Mx −M+
R,x)(My −M+

R,y) ≤ 0

(Mxy +M−
R,xy)

2 − (Mx +M−
R,x)(My +M−

R,y) ≤ 0

+Mx −M+
R,x ≤ 0

−Mx −M−
R,x ≤ 0

+My −M+
R,y ≤ 0

−My −M−
R,y ≤ 0

(2)

where Mx, My , Mxy is Bending Moments. M+
R,x, M+

R,y ,

M+
R,xy is Resisting Sagging Moments. M−

R,x, M−
R,y , M−

R,xy

is Resisting Hogging Moments.

The fulfillment of such conditions determines whether a

moment triad, (Mx, My , Mxy), is within the surface or not.

The yield criterion is dependent on the specifications of the

cross-section and material. Its derivation is achieved through

the solution of the set of (2). For simplicity, a linearized

bi-conical version of the criterion, has been derived, as shown

in Fig. 1. Through such an approach, computation time has

been significantly decreased, and a more conservative criterion

is obtained, since this latter is contained within the original

quadratic one.

Fig. 1 Linearized Bi-Conical Nielsen’s Yield Criterion

B. Plate Bending Problem

The problem is based on a regular linear-elastic FE analysis

of a bending plate. The plate is constituted by square and
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equidimensional QUAD4 elements, with 3 degrees of freedom

per node: transverse displacement, w, (in out of plane direction

z), and two rotations, θx and θy , with reference to in-plane

directions x and y. A representation of the slab mesh, in the

x-y plane, for a representative mesh of 8 elements in both x-

and y-direction, is shown in Fig. 2. Elements with index e, are

physically detectable through indices of columns and rows on

the mesh, respectively referred with indices i and j.

The plate bending problem is tackled through

Mindlin-Reissner theory, so that also the effects of transverse

shear deformations are taken into account in terms of

displacements. Deformations are obtained through the classic

FE formulation given in:

[K]{U} = {F} (3)

where K is Stiffness Matrix; U is Deformations Vector; F
is Force Vector.

Bending moments are then computed as displayed in (4).

[4]

⎡
⎣
Mx

My

Mxy

⎤
⎦ = D

⎡
⎣
1 ν 0
ν 1 0
0 0 1−ν

2

⎤
⎦

⎡
⎢⎢⎣

∂2w
∂x2

∂2w
∂y2

2 · ∂2w
∂x∂y

⎤
⎥⎥⎦ (4)

where D is Constitutive Matrix and ν is Poisson’s ratio.

C. Proposed Algorithm

The formulations leading to the creation of yield-criterion,

and solution of the elastic equilibrium problem have been

given in the previous two sections. They constitute the basis of

the pseudo-lower bound method that is going to be introduced.

A fully automated algorithm was built in MATLAB [10], and

a flow chart for a sample of RC clamped square slab under

distributed load is given in Fig. 3. The upcoming discussion

is based on such algorithm representation.

The algorithm starts with an input of cross-section geometry,

material properties, boundary conditions, and load. The

Fig. 2 A representation the slab domain meshed with QUAD4 elements.

method provides as final output the maximum load bearing

capacity of the slab, and a map of yielded and non-yielded

elements. As shown in Fig. 3, the program is structured with

three loops: Loop 1 increasing load until failure does not occur,

and Loop 2 and 3 checking whether yielding is occurring

or not. Loop 1 starts at the beginning of the algorithm

for an initial value of load. From the input, the maximum

resisting sagging and hogging moments are automatically

calculated according to the Hong Kong Code of Practice [2].

A yield-criterion is then obtained accordingly by plugging the

derived values into (1). The yield surface is represented in a

(Mx, My , Mxy) space.

Given the physical domain as the whole RC slab, a mesh

of Melosh QUAD4 elements [4] is created, and a FE analysis

is run. Equations (3) and (4) lead to obtaining the values of

Mx, My , and Mxy for each single element. Then, through

the solution of an eigenvalue problem the principal moments

and directions are derived. At this point, given that the

performed analysis was purely linear-elastic, the yield-surface

may have been violated somewhere (Loop 2). A check has to

be performed to establish whether yielding occurred or not.

If in the moments space, each point is contained within the

surface, hence satisfying all the conditions given in the set of

equations (2) (green dots on yield surfaces in Fig. 3), then

the slab is behaving elastically, and yielding did not occur

anywhere. Collapse cannot have occurred yet, so the whole

program can restart with an increased value of load in Loop 1.

Otherwise, the program continues running at the same intensity

of load.

Triad of moments falling out of the yield surface are called

’Over-yielded moments’ (red dots on yield surfaces in Fig. 3),

since they violate the laws of plasticity by which a state of

stress can, at maximum, be on the surface. Given me
o−y as

over-yielded bending moment triads of the element e, falling

out of the yield surface, then

me
o−y = {Me

x , M
e
y , M

e
xy}T | f > 0 (5)

where e is Element located at i-th column, and j-th row and

f > 0 is is the condition of violation of yield surface f .

Such condition is not physically allowable, because f > 0
is not plastically possible, hence the over-yielded moments

are elastically dragged back to the surface (blue dots on yield

surfaces in Fig. 3), and the triad of yielded moments me
y is

obtained.

me
y = {Me

x , M
e
y , M

e
xy}T | f = 0 (6)

where f = 0 is the yielding condition.

At this position, the points in the bending moments

space are not violating any plasticity condition, but are

not allowed to swing on the surface. The idea is to

compensate this moment reduction through a distribution

of ’residual moments’ among non-yielded neighbors of

yielded elements. Normally, in a structural element, when

a single part reaches its ultimate capacity, and load keeps

increasing, other parts of the structure tend to absorb the

residual part. With a monotonically increasing load, such

operation keeps repeating. The previously-mentioned idea tries
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to simulate such structural behaviour. In order to perform

this operation, at first yielded and non-yielded elements

have to be distinguished in the physical space (x,y), so

that their location can be visualized. In Fig. 3, they are

respectively represented as blue- and green-filled elements

on the bi-dimensional mesh. Subsequently, a ’Neighborhood

Relationship’ is established, with the aim of determining

the left-, right-, bottom-, and top-neighbours of each single

element. Non-yielded neighbours of yielded elements are

detected, and represented as red-filled elements. Each yielded

core (group of yielded neighbours of yielded elements) is

divided into x- and y-stripes, and the residual moments

corresponding to each x- and y-stripe are, respectively, split

among x- and y-non-yielded neighbors. No variation of

moments is instead applied to moment triads contained in the

yield surface, hence non-yielded non-neighbours of yielded

elements.

 

 
Input : Cross-Section Geometry, Material Properties, Boundary Conditions, Load. 

Linearized Yield Surface Linearized Yield Surface

Evalute Maximum 
Resisting Moments 
according to HK 
Concrete 2013 

Definition of physical domain: 
Create Mesh 

Check if Moment Triads are within 
the yield surface or not 
Check if Moment Triads are within 
the yield surface or not

If not 

Drag Over-Yielded 
Moments back on the 
surface 

(Loop 2) 

If yes If not

Next Iteration (Loop 1) : 
Increase Load until Yield 
Surface is violated 

M
onotonically Increasing

 
(Loop 1) 

Finite Element Mesh
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41 42 43 44 45 46 47 48
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64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80 81

eig 

Run Elastic 
FE Analysis 

eig

M
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BREAK! BREAK!

Store Amount of Mx, My, and Mxy used in reducing Moments 

Establish a Neighborhood Relationship between 
each element in x- and y-direction, and extract 
neighbours of yielded elements that are not yielded yet 

Establish a Neighborhood Relationship between
each element in x- and y-direction, and extract 
neighbours of yielded elements that are not yielded yet

Distribute Over-Yielded Moment among respective 
neighbours 
Distribute Over-Yielded Moment among respective
neighbours

Check if Moment 
Triads are within the 
yield surface or not 

Check if Moment
Triads are within the 
yield surface or not

If yes If yes If not 

Drag Over-Yielded 
Moments back on 
the surface etc. 

(Loop 3) 

Mechanism 
occurring? 
Mechanism 
occurring?

If not Back to Loop 1 If yes If yes

The ‘first’ lower 
bound solution 
causing a 
mechanism has 
been achieved 

The ‘first’ lower 
bound solution 
causing a
mechanism has 
been achieved

Output  Outputpu
Back to Loop 2 

Fig. 3 Flow chart of Pseudo-Lower Bound Algorithm

Defined the residual moment triads at the element e, Δme,

as the difference of the two moment vectors given in (5) and

(6), then it follows that

Δme = me
o−y −me

y (7)

The residual moments in the x-direction associated to the

j-th x-stripe, ΔM j
x , are equal to the sum of the ΔMx moments

associated with each element contained in the x-stripe, and

similarly the residual moments in the y-direction associated

to the i-th y-stripe, ΔM i
y are equal to the sum of the ΔMy

moments associated with each element contained the y-stripe.

Hence

ΔM j
x =

n∑
j

ΔM i,j
x (8)

ΔM i
y =

m∑
i

ΔM i,j
y (9)

where n is Amount of rows of elements in the mesh; m
is Amount of columns of elements in the mesh; ΔM i,j

x is

Residual moment in x-direction associated with the element

at location (i, j); ΔM i,j
y is Residual moment in y-direction

associated with the element at location (i, j).
Logically, for j-th x-stripe, and i-th y-strip along which no

yielded elements are detected, ΔM j
x and ΔM i

y are null. When

they are not null, instead, yielded elements are detected. Then,

ΔM j
x and ΔM i

y are, respectively, equally distributed among

the x-neighbours of the j-th x-stripes, and the y-neighbours of

the i-th y-stripes.

The above mentioned mathematical artifice is a

representation of the phenomenon of stress redistribution

occurring when a single part reaches its ultimate capacity,

load keeps increasing, and other parts of the structure tend

to ’absorb’ the residual part of stresses. This is exactly what

happens when an over-yielded moments is artificially dragged

back to the yield surface, and its ΔMe
x and ΔMe

y components

are, respectively, distributed among the x- and y-neighbours

of the x- and y-stripe in which it is contained. Such concept

does not apply to ΔMe
xy moments instead. They are equally

distributed among all the non-yielded elements of yielded

elements, independently of their neighbourhood relationship.

The whole moment configuration has been artificially altered,

meaning that yielding may have occurred again somewhere

in the slab. Then, such condition has to be checked again.

Loop 3 is reached. If yielding occurred, then the program

goes back to Loop 2, and starts dragging over-yielded

moments back to the surface, and then re-distributing moments

again. Otherwise, if all the bending moments are contained in

the surface, a pseudo-lower bound solution has been reached.

The last step is constituted by a check of whether a

mechanism causing collapse of the slab is occurring or not.

If that is not the case, the program goes back to Loop 1,

and restart the whole analysis increasing load intensity. If

instead a mechanism is occurring, a lower bound solution and

its relative collapse mechanism are given as output, and the

program breaks.
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Fig. 4 Collapse Mechanism of a square clamped RC slab obtained with the
Pseudo-lower bound solution

Fig. 5 Collapse Mechanism of a square clamped RC slab obtained with
Jackson’s lower bound solution [7]

D. Mechanism Detection Criterion and Preliminary Results

In order to detect, at the last step of the algorithm, whether

a mechanism is occurring or not, an occurrence criterion

has to be established. The obtained collapse mechanism for

the studied case is shown in Fig. 4. Yielded elements have

obviously already reached their maximum capacity in terms

of strength. Potential yield-lines may form along yielded

neighbours then. In this way, a domain is for the existence

of yield-lines has been created. Fig. 4 also gives an idea about

which are the next elements to yield, namely the non-yielded

neighbours of yielded elements. A further increase in load, or

eventual redistribution of moments, will cause them to yield.

Yield-lines spread out from the centre of load (in this

case coinciding with the centre of the slab), once they touch

the boundaries, and yield occurs also along the lines joining

such intersections of yield-lines and boundaries, namely axes

of rotation, a collapse mechanism occurs. The problem now

is reduced to minimizing the amount of energy necessary

to cause collapse. Minimization of yield-lines and axes of

rotations are computed through analogies with two well-known

combinatorial algorithms, respectively Shortest Path Problem

(SPP) and Travelling Salesman Problem (TSP). In Fig. 4,

the black lines represent the yield-lines, and the orange lines

represent the axes of rotation. If a solution is found, satisfying

the above mentioned conditions, collapse occurs.

As shown by Fig. 5, the derived mechanism shows good

agreement with the yield-line indicators obtained by Jackson,

which were validated with experimental results [7].

IV. CONCLUSIONS & FUTURE DEVELOPMENTS

The concept of a lower bound method for the assessment

of RC slabs has been presented in this paper. Investigations of

various researchers on the topic have been studied, and their

progresses have tried to be improved. The main idea of the

proposed method is to reproduce a simulation of the overall

historical process, in terms of stresses, from steady unloaded

condition until collapse. The method has been purposely

called ’pseudo’-lower bound to underline the non-naturally

mechanical root of the analysis. The aim was to build a

simple algorithm based on a linear method, which may run

in a shorter time, and give results that take into account the

effects of plasticity. The elastic solution is altered through

the described iterative moment distribution. This concept is

significantly related to the real structural behaviour, hence

gaining valid reliability. As it was mentioned in the previous

section, the obtained results well fit the exact solutions, and

the method has high potential of improvement. With the future

implementation of a wider library of element types, boundary

conditions, and load pattern, the program could also be adapted

to more complex geometrical configurations. Furthermore,

with reference to non-linear FE analyses, computation costs

are significantly reduced.
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