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Abstract—Stable bacterial polymorphism on a single limiting 
resource may appear if between the evolved strains metabolic 
interactions take place that allow the exchange of essential nutrients 
[8]. Towards an attempt to predict the possible outcome of long-
running evolution experiments, a network based on the metabolic 
capabilities of homogeneous populations of every single gene 
knockout strain (nodes) of the bacterium E. coli is reconstructed.
Potential metabolic interactions (edges) are allowed only between 
strains of different metabolic capabilities. Bacterial communities are 
determined by finding cliques in this network. Growth of the 
emerged hypothetical bacterial communities is simulated by 
extending the metabolic flux balance analysis model of Varma et al 
[2] to embody heterogeneous cell population growth in a mutual 
environment.

Results from aerobic growth on 10 different carbon sources are 
presented. The upper bounds of the diversity that can emerge from 
single-cloned populations of E. coli such as the number of strains that 
appears to metabolically differ from most strains (highly connected 
nodes), the maximum clique size as well as the number of all the 
possible communities are determined. Certain single gene deletions 
are identified to consistently participate in our hypothetical bacterial 
communities under most environmental conditions implying a pattern 
of growth-condition- invariant strains with similar metabolic effects. 
Moreover, evaluation of all the hypothetical bacterial communities 
under growth on pyruvate reveals heterogeneous populations that can 
exhibit superior growth performance when compared to the 
performance of the homogeneous wild-type population.

Keywords—Bacterial polymorphism, clique identification, 
dynamic FBA, evolution, metabolic interactions. 

I. INTRODUCTION

NDERSTANDING bacterial diversity apart from its 
biological significance is of great applied importance in 

the area of bio-degradation of pollutants, in food preservation 
as well as in human health. Pathogens being able to generate 
extensive variability within populations continue to threaten 

E. Tzamali is with the Institute of Molecular Biology and Biotechnology of 
the Foundation for Research and Technology-Hellas (FORTH) and the 
department of Computer Science, University of Crete, Heraklion, Crete, 
71110 Greece (phone: 302810391721; fax: 302810391101; e-mail: 
tzamali@csd.uoc.gr).

P. Poirazi is with the Institute of Molecular Biology and Biotechnology of 
the Foundation for Research and Technology-Hellas (FORTH) (e-mail: 
poirazi@imbb.forth.gr).

I. G. Tollis is with the Biomedical Informatics Laboratory (BMI) of the 
Institute of Computer Science of the Foundation for Research and 
Technology-Hellas (FORTH) (e-mail: tollis@ics.forth.gr).

M. Reczko is with the Biomedical Sciences Research Center "Alexander 
Fleming", Varkiza, Greece (e-mail: mreczko@gmail.com).

human life.
In most environmental conditions, bacterial cells have 

evolved to maximize their growth performance constrained by 
the physiochemical laws that govern their intracellular 
processes as well as the dynamic environment in which they 
grow. On the other hand, mutations occur in nature. If they 
lead to metabolic improvements, these mutants will dominate 
the population, otherwise they will vanish. However, 
coexistence among different mutants may also evolve in the 
population. Long-term evolution experiments have shown the 
maintenance of more than a single strain in a simple 
environment, where the evolved clones significantly differed 
from one another with respect to their metabolic capabilities 
such as the growth rate and the uptake rates as well as the gene 
expression patterns [1]. The actual ecological reasons together 
with the evolutionary forces that favor more than one 
competitor in a single limiting resource still comprise an open 
issue [7]. However, it is argued that stable bacterial 
polymorphism on a single limiting resource is possible to 
appear if there are metabolic interactions that allow the 
exchange of essential nutrients between the diverse strains [8].

This study is based on the following reasoning. If cells of 
the exact same metabolic capabilities coexist in the same 
environment, the interactions between them as shaped by their 
environment will not result in any new experiences; whether 
they grow on their own or coexist with each other makes no 
difference. On the other hand, the interactions between cells of 
various metabolic capabilities (metabolic diversity) that grow 
in the same environment may give rise to new metabolic 
capabilities for each participant as they differently shape their 
environment. Metabolically different cells may satisfy each 
other’s nutritional needs. Whether these interactions might 
eventually prove beneficial or harmful for the participants 
depends on their dynamical metabolic constraints. 

For certain environmental conditions, a network of potential 
synergism is reconstructed based on the metabolic capabilities 
of each single gene knockout strain of the bacterium of E. coli
where metabolic interactions are investigated among strains 
with different capabilities. A genome-scale flux balance model 
of the bacterium E. coli [4] is used to simulate population cell 
growth in various environmental conditions with different 
carbon sources. 

All fully connected groups of strains that exist in the 
network are identified using efficient techniques described in 
[6, 9]. In order to evaluate the bacterial communities that arise 
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as cliques in the network, an extended version of the dynamic 
flux balance model is set up to cope with simulation of 
heterogeneous cell populations that grow in a mutual 
environment. In this study, it is further suggested that 
evolution might support cell communities where metabolically 
diverse and probably more specialized bacterial cells stably 
coexist in an attempt to create and maintain more efficient 
systems. An exhaustive, computational evaluation of all pairs 
consisting of the wild-type and a single gene knockout cell has 
shown that metabolic differences are prerequisite for beneficial 
coexistences [3]. The evaluation of the hypothetical bacterial 
communities that emerge from the network of potential 
synergism, as proposed in this study, can identify the existence 
of efficient, beneficial bacterial communities of any potential 
size.

II. NETWORK RECONSTRUCTION

The active metabolic pathways and consequently the 
metabolic capabilities (cell phenotype) depend on the specific 
environmental conditions (food metabolism). Thus, different 
networks of interactions will arise for each condition. The 
synergistic networks are constructed independently for each 
given environmental condition defined by the initial substrate 
concentrations.

A. Nodes
Different metabolic capabilities for cells of the same species 

may arise when certain metabolic genes that are actively 
involved in metabolism are either over- or under-expressed. In 
this study, single gene knockouts are applied to the wild-type 
E. coli cell, taking into account all genes that are included in 
the metabolic model. Thus, each gene involved in metabolism 
is knockout and its growth is simulated on a given 
environmental condition (nutrition resource). These mutants, 
as well as the wild-type cell, comprise the nodes of the 
network and each one carries information about its metabolic 
capabilities under the same environmental condition. Mutants 
that cannot grow in the certain environmental condition (lethal 
mutations) are excluded from the network.

B. Edges
Among all possible interactions between the different 

strains, those that provide each other with different metabolic 
capabilities will comprise the edges of the network and should 
be considered as candidate coexistences for further analysis.

Specifically, during the metabolism of the main source 
which is initially provided to the population for growth, 
intermediate byproducts are secreted that might either 
constrain the fluxes of the metabolic network or prove 
essential when the main source is exhausted. In that manner, 
when different mutants grow together these byproducts can 
play a key role as the fitness landscape is dynamically shaped 
and new metabolic capabilities are likely to arise. For example, 
if a participant produces more acetate with the cost of biomass 
production (specialized participant) then the other participant 
(if it is greedier) may take advantage of the excess of acetate in 

the mutual environment and eventually achieve to produce 
more biomass. The variation of the metabolic capabilities can 
either be quantitative when certain byproducts are for instance 
overproduced or qualitative when one potential participant 
provides to the other novel nutrients. For each node of the
network, the maximum concentration values over time for each 
byproduct are considered. In the quantitative case, only 
substrates that are eventually consumed by at least one of the 
two interacting mutants (a strict constraint that can be relaxed) 
are considered, while in the qualitative case there is no such 
constraint. Over all byproducts, the maximum absolute relative 
concentration difference is used as a weight for the interaction 
between two nodes, leading to the reconstruction of a naturally 
weighted graph. In that respect, the edges of the reconstructed 
network are multi-flavor depending on the secondary 
metabolite in which the metabolic difference between two 
strains is quantitatively dominant.

Depending on the properties we want to infer from these 
graphs, a threshold is set that reflects the level above which the 
concentration differences are considered important. The way 
in which the interacting candidates will respond to the shaped 
environment depends on their dynamical metabolic properties 
(by-production rate, substrate consumption rate, growth rate). 
The dynamical properties of the community members will 
ultimately determine the efficiency, by which the shaped 
environment is utilized in order to produce biomass.

III. COMPRESSED NETWORK RECONSTRUCTION

All strains with the exactly same metabolic capabilities 
under a given initial environmental condition are grouped 
together. From this partitioning of the nodes to classes, a 
representative node of each class is arbitrarily chosen to form 
the compressed network. Each class actually contains all the 
single gene deletions that have exactly the same effect on cell 
functioning under a certain condition. It’s important to notice 
that when investigate coexistences among various strains, the 
environment might be differently shaped and novel substrates 
may also arise. Therefore, under heterogeneous population 
growth these gene deletions representing different constraints 
in the metabolic network might not have the same phenotypic 
effect. Thus, the members of each class should be one by one 
evaluated on novel substrates. 

The compressed network is reconstructed in order to keep 
the clique finding problem tractable without losing any 
valuable information about the ability of the system to form 
communities of heterogeneous strains.

IV. BUILDING AND EVALUATING POTENTIAL BACTERIAL 
COMMUNITIES

A. Clique Identification
The property of ‘difference’ as defined in the previous 

sections is not transitive. When mutants A and B are different 
and mutants B and C are different, then mutants A and C may 
or may not be different. Therefore, to form groups of mutants 
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that are different in all pairwise comparisons of their metabolic 
capabilities, cliques (complete sub-graphs) should be 
identified in the graph. The maximum clique size as well as the 
number of maximal cliques (cliques not contained in any other 
clique) of each possible size provides valuable information 
about the ability of the system to generate variable nutritional 
environments from metabolic gene knockouts for a given 
condition.

The maximum clique identification problem is an NP-
complete problem, which means that the time required for 
solving the problem in general increases exponentially with 
respect to the number of nodes in the graph. The compressed 
network reconstruction (nodes less than 200) as well as the low 
edge density (less than 20%) of our graphs, allow the fast 
identification of all cliques particularly when efficient, exact 
methods proposed elsewhere are used [9]. Small cliques can be 
found efficiently using the methods presented in [6].

B. Clique Evaluation
In metabolic simulations, cells are assumed to work greedy 

in the dynamic environment – optimizing for the best choice at 
each time step, which simulates adequately a competitive life 
(competition for food).

This study is based on the dynamic metabolic flux balance 
analysis model of Varma et al [2]. Flux balance models are 
constraint-based models that aim to integrate knowledge at 
different levels in the cascade from genes to proteins and 
further to metabolic fluxes in a genome-scale metabolic 
network to describe and understand the overall cellular 
functions. Flux balance analysis (FBA) models estimate the 
optimal flux distribution of the entire biochemical reacting 

system, providing a quantitative description of the system 
when the intracellular fluxes are in balance. When simulating 
dynamic phenomena within the greedy framework [2], the 
whole time regime that represents the time of growth in cell 
populations is properly divided into temporal windows of 

size t . The current exchange concentrations ( excC ) that
describe the environmental conditions in which populations 
grow for the certain time interval, properly scaled by the 
amount of the total biomass ( bm ) that has been produced 

ALGORITHM I
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For each strain participatingin the heterogeneous population of strain
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TABLE I
MUTANT DEGREE DISTRIBUTION OF THE COMPRESSED NETWORKS OF CERTAIN CARBON SOURCES

Carbon Nodes Edge
density

Node degree distribution

Arg_L 196 0.1842 k: 16 19 21 26 186 194 195
N(k): 7 161 7 2 3 6 10

4abut 187 0.1635 k: 15 16 183 184 186
N(k): 3 168 5 3 8

Cit 192 0.1875 k: 18 19 20 27 181 186 187 188 189 190 191
N(k): 8 158 6 1 1 1 2 5 3 2 5

Sucr 192 0.1016 k: 9 10 11 12 187 188 191
N(k): 1 176 3 2 1 2 7

Melib 193 0.1009 k: 7 9 10 11 12 187 188 192
N(k): 1 1 178 1 2 1 2 7

Glc 194 0.1461 k: 10 11 13 14 15 173 182 184 190 192 193
N(k): 3 3 6 3 164 1 1 3 2 2 6

Ser_D 188 0.1231 k: 8 12 183 185 187
N(k): 1 175 4 4 4

Pyr 0.0834 k: 7 8 182 183 184 186
N(k): 2 177 1 2 3 2

Gly 175 0.0228 k: 2 174
N(k): 173 2

Glyclt 182 0.0110 k: 1 181
N(k): 181 1
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TABLE III
METABOLIC INFORMATION OF THE MUTANTS OF MAXIMUM CONNECTIVITY

gene rxns subsystems

‘b0116’ '2 Oxogluterate dehydrogenase'
'Glycine Cleavage System'
'pyruvate dehydrogenase'

'Citric Acid Cycle'
'Folate Metabolism'
'GlycolysisGluconeogenesis'

‘b2903’ 'Glycine Cleavage System' 'Folate Metabolism'

‘b2276’ 'NADH dehydrogenase ubiquinone 8 35 protons '
'NADH dehydrogenase menaquinone 8 2 protons '
'NADH dehydrogenase demethylmenaquinone 8 28 protons '

'Oxidative Phosphorylation'

‘b3236’ 'malate dehydrogenase' 'Citric Acid Cycle'

‘b0721’ 'succinate dehydrogenase' 'Citric Acid Cycle'
'Oxidative Phosphorylation'

‘b0451’ 'ammonia reversible transport' 'Transport Extracellular'

‘b3731’ 'ATP synthase four protons for one ATP ' 'Oxidative Phosphorylation'

shape the actual boundaries of the uptake fluxes 
( excBounds ). Optimum operation within each time interval is 
assumed for the system to effectively reach its goal of growth 
and development.

To evaluate the growth of the possible bacterial 
communities the model of Varma et al [2] is extended to 
embody heterogeneous cell population growth in a mutual 
environment (Algorithm I). In heterogeneous cell populations, 
each population grows respecting the constraints that its 
network imposes as well as the dynamically shaped 
environment. When none of the different populations can grow 
further in the shaped medium the simulation terminates.

V. RESULTS

Simulations are performed using the genome-scale 
metabolic model of E. coli (iJR904) by Reed et al [4]. All 
simulations are performed using the COBRA toolbox [5]
suitably modified to incorporate dynamic growth of interacting 
heterogeneous populations as described in Algorithm I. The 
initial biomass (0.003 g/lt) is equally distributed to the strains 
of the heterogeneous population under study. A carbon source 
of initial concentration 10mmol/lt is provided to the system for 
growth. Oxygen and ammonia are assumed to be in excess. In 
different carbon sources, strains exhibit different metabolic 
capabilities, thus different networks of potential synergism are 
produced.

The results that are presented here correspond to the 

networks obtained after omitting all edges below a threshold of
0.6 (60% relative ‘difference’) in their corresponding weighted 
graphs. Structural properties of the reconstructed networks 
such as the node degree distribution and the number of all and 
maximal cliques that have been found are presented in order to 
help our understanding of the metabolically different 
capabilities of these systems. All the structural properties 
presented here concern the compressed networks. 

Table I presents the number of nodes N(k) of degree k for 
each different carbon source we have studied. Lethal mutations 
are environmental specific, thus each network might consist of 
different mutants. The number of nodes of each of the 
compressed networks is presented in Table I as well as the 
graph density. For each environmental condition there are 
certain mutants with the highest possible node degree 
(k=nodes-1) - maximum connectivity. The group of mutants 
with this property actually forms a clique of the size of the 
group and represents the most metabolically different bacterial 
community for the certain environmental condition. Certain 
mutants are identified to consistently participate in these 
bacterial communities under most environmental conditions
implying a pattern of growth-condition-invariant strains that 
are consistently metabolically different from the rest mutants.
Table II presents the strains of maximum connectivity that are 
commonly present in more than two conditions. The metabolic 
reactions in which the certain genes participate in as well as 
the metabolic subsystems in which they are involved are 

TABLE II
MUTANTS OF MAXIMUM CONNECTIVITY

Carbon
source

Single gene deletions

Arg_L 'b0116' 'b2903' 'b2276' 'b3236' 'b0721' 'b0451'
4abut 'b0116' 'b2903' 'b2276' 'b3236' 'b0451'
Cit 'b0116' 'b2903' 'b2276' 'b0721' 'b3731'
Glc 'b0116' 'b2903' 'b2276' 'b3236' 'b0721'
Glyclt 'b2276'
Gly 'b2276'
Melib 'b0116' 'b2903' 'b3236' 'b3731'
Sucr 'b0116' 'b2903' 'b3236' 'b3731'
Ser_D 'b0116' 'b2903' 'b0721' 'b0451'
Pyr 'b0116' 'b2903'
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summarized in Table III.
The clique size distribution is also constructed for each 

environmental condition. The number of secondary 
metabolites that can be by-produced during the metabolism of 
the main source as well as the number of strains that arise to 

metabolically differ from most strains (highly connected 
nodes), indicate the maximum clique size that can be found in 
the network. These properties are summarized in Table IV and 
actually place the upper bounds of diversity that can be 
emerged in certain conditions from single-cloned populations 
of E. coli.

All small size-cliques are found to be parts of larger cliques. 
Whether this fact means that the maximal cliques of saturated 
capabilities are more beneficial or stable coexistences than 
their constituent sub-cliques comprises an issue for further 
investigation.

In the following results from aerobic growth on pyruvate are
thoroughly presented.

Case study: Aerobic growth on pyruvate
The pyruvate graph consists of 383 mutants in its full 

representation and of 187 nodes in the corresponding
compressed representation.
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Fig. 1 All and maximal clique-size distribution for growth on 
pyruvate

The compressed network consists of 1451 edges in total for 

the chosen threshold of 0.6, which is a sparse network with 8% 
graph density. The node degree distribution of the pyruvate
network is shown in Table I. As this threshold changes, minor 
changes arise in the way the node degrees are distributed. The 
degree distribution (Table I) shows the existence of few nodes 
of high degree and many nodes of low degree. Actually, this 
indicates that there are few nodes that consistently differ from 
all the rest nodes of the graph, therefore these few nodes show 
high connectivity (preferential attachment to 8 high degree 
nodes).

The pyruvate network is capable of forming bacterial 
communities with up to 6 mutually different strains. The 
number of these potentially synergistic communities is shown 
in Fig. 1. Most cliques are of size 4. Maximal cliques are also 
presented in Fig. 1.

To quantitatively describe superior performance in 
heterogeneous bacterial population systems, the overall growth 
performance of the heterogeneous population is compared with 
the best among all the performances of the homogeneous strain 
populations under the same initial conditions. If the 
heterogeneous system can achieve a better outcome (biomass) 
utilizing the given limited amount of resources then it is 
considered more efficient, thus beneficial.

All cliques have been evaluated. From each clique size the 
most efficient group and its corresponding performance are 
presented in Table V. The performance of the homogeneous 
wild-type population is also presented as a reference. The 

benefit is calculated as the relative difference of the final 
biomass that is produced by the group of strains with respect to 
the best homogeneous population performance, which is the 
mutant coming from the knockout of the gene 'b3403' for 
growth on pyruvate. However, the benefit with respect to the 
growth performance of the homogeneous wild-type population 
is presented as well in Table V.

As Table V shows, none of the hypothetical bacterial 
communities is maximal; only the last (last row in Table V), 
which has the maximum clique size and by definition is 
maximal. Apart from the mutant of the gene deletion 'b3403' 
all the other mutants of the group are of high degree. This 
might be expected although it means that these high degree 
nodes significantly differ from each other as well. The most 
efficient bacterial community for aerobic growth on pyruvate
consists of the pair of ‘b3403’ and ‘b0721’ mutants. Any new 
member that is added in this efficient pair provides no further 

TABLE V
PERFORMANCE OF THE MOST EFFICIENT CLIQUES

strains Total
biomass

Benefit 
(%)

BenefitWT
(%)

WT 0.23654 -  2.1    0.0
'b3403’ 0.24169    0.0    2.1
'b3403b0721' 0.24891    2.9    5.2
'b2903b3403b0721' 0.2435    0.7    2.9
'b2276b2903b3403b0721' 0.2418    0.0    2.2
'b1982b2903b3403b0721' 0.2418    0.0    2.2
'b2276b1982b2903b3403b0721' 0.2403 -  0.5    1.5
'b0116b2276b1982b2903b3403b0721' 0.2342 -  3.1 -  0.9

TABLE IV
UPPER BOUNDS OF DIVERSITY

Carbon
source

#
byproducts

#Nodes of 
highest
degree

Min
maximal 
size

Max
clique
size

Arg_L 8 10 14 16
4abut 10 8 11 12
Cit 7 5 10 12
Sucr 9 7 9 10
Melib 9 7 8 10
Glc 7 6 9 10
Ser_D 6 4 7 8
Pyr 4 2 4 6
Gly 2 2 3 3
Glyclt 2 1 2 2
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improvement regarding the benefit. Thus, the pair is saturated 
with respect to efficiency. However, all cliques except the one 
of the maximum size (last row in Table V) have better growth 
performance than the homogeneous wild-type population.
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Fig. 2 Total biomass production over time of the homogeneous 
populations of strains b3403 and b0721 as well as the best cliques of 

size 2 and 4 for growth on pyruvate

Acetate, formate, glycine and glycolate comprise all the 
intermediate nutrients that can be produced during the 
pyruvate metabolism. The maximum concentrations values 

that each of the strain that participates in the hypothetical
synergistic bacterial community can produce are shown in 
Table VI.
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Fig. 3 Acetate metabolism of the homogeneous populations of 
strains b3403 and b0721 as well as the best cliques of size 2 and 4 for 

growth on pyruvate

Glycine is not produced by any of ‘b3403’ and ‘b0721’ 
mutants, which means that this substrate does not play a key 
role in efficient growth. Acetate though, seems to be an 
essential byproduct. The mutant ‘b0721’ is an acetate
specialist (Fig. 3), a specialization that comes with the cost of 
its growth performance as shown in Fig. 2.

Furthermore, the specific mutant is not capable of 
consuming the acetate it produces. Fig. 3 shows that the best 
clique of size 4 eventually produces less acetate than the best 
pair, thus the pair benefits when pyruvate is exhausted. The 
dynamics (by-production rate, consumption rate, growth rate) 
as shaped by the network constraints and the medium will 
eventually determine the efficiency of the system to utilize the 
available nutrients in order to produce biomass.

VI. DISCUSSION

The reconstructed network of potential synergism and the 
resulting structural sparseness observed, comprise an efficient 
method for exploring the search space of all possible mutant 
pairs, triples or any multiples for beneficial growth 
performance even though the implied  clique identification 
problem is an NP decision problem. Features of the network 
such as the degree distribution, the maximum clique size, the 
maximal clique size distribution can be used in order to 
compare networks for different environmental conditions. 
Furthermore, these network properties place limits to the 
diversity that can emerge from single-cloned populations of E.
coli when single knockouts are allowed.

The network reconstruction is based on the hypothesis that 
metabolic interactions may explain the emergence and 
maintenance of heterogeneous bacterial populations. Is it 
possible from growth simulations of homogenous populations 
to predict growth performance of heterogeneous populations? 
The interactions between cells of various metabolic 
capabilities allow them to satisfy each other’s nutritional 
needs. This change in the supply and demand conditions can
shape the environment and the fitness landscape in a different 
way than the one experienced by homogeneous populations. In 
that respect, new metabolic capabilities may arise for each of 
the participants. A qualitative difference (or equivalently a 
maximum quantitative difference) between two strains appears 
when novel nutrients are produced by at least one of the 
participants. Novel nutrients may constrain the fluxes of the 
metabolic network in an unexpected manner, change the 
dynamics and produce unexpected phenotypes which are not 
trivial to predict. Simulation of mutants can be conducted in an 
environment where novel byproducts are present and tested for 
changes in their metabolic capabilities. On the other hand, the 
dynamical metabolic properties of the participants play a
major role in the final performance of a population and can be 
used as features to improve predictability.

While searching for efficient bacterial communities, the 
necessary but not sufficient condition that arises for all 
involved participants is to have quantitative differences with 
each other. This rationale extends the undirected graph we 

TABLE VI
MAXIMUM CONCENTRATION VALUES OF CERTAIN BYPRODUCTS

KO [acetate]max [formate]max [glycine]max [glycolate]max

'b3403' 2.1830 8.3576 0 0.01208
'b0721' 7.6501 0.4541 0 0
'b2903' 1.4528 9.4621 0.0482 0.01173
'b2276' 5.1896 5.7116 0 0
'b1982' 0.1202 0.7617 0 0.00082
'b0116' 1.4742 10.8052 3 E-05 0.01015
WT 1.4732 9.4604 0 0.01155
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formed into a directed one where bidirectional relations are 
considered. Another extension of the current network 
reconstructions would be the incorporation of nodes that 
represent over-expressed genes to reflect the natural sources of 
variability more accurately. Our simulations already show that 
efficiency might be one explanation to develop and maintain 
biodiversity. Robustness in changing ecological conditions 
might also be proved as a source of diversity using the 
suggested approach.

This study broadens our perspective regarding the 
emergence of co-existence in bacterial populations from single 
cells to cell communities, investigates interactions between 
cells of various metabolic capabilities, and comprises a step 
towards understanding biodiversity. Furthermore, the
identification of heterogeneous bacterial cultures with superior 
desired properties might further exhibit a broad range of 
applications in metabolic engineering.
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