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Computational Feasibility Study of a Torsional
Wave Transducer for Tissue Stiffness Monitoring

Rafael Muñoz, Juan Melchor, Alicia Valera, Laura Peralta, Guillermo Rus

Abstract—A torsional piezoelectric ultrasonic transducer design
is proposed to measure shear moduli in soft tissue with direct
access availability, using shear wave elastography technique. The
measurement of shear moduli of tissues is a challenging problem,
mainly derived from a) the difficulty of isolating a pure shear wave,
given the interference of multiple waves of different types (P, S,
even guided) emitted by the transducers and reflected in geometric
boundaries, and b) the highly attenuating nature of soft tissular
materials. An immediate application, overcoming these drawbacks,
is the measurement of changes in cervix stiffness to estimate the
gestational age at delivery. The design has been optimized using
a finite element model (FEM) and a semi-analytical estimator of
the probability of detection (POD) to determine a suitable geometry,
materials and generated waves. The technique is based on the time
of flight measurement between emitter and receiver, to infer shear
wave velocity. Current research is centered in prototype testing and
validation. The geometric optimization of the transducer was able
to annihilate the compressional wave emission, generating a quite
pure shear torsional wave. Currently, mechanical and electromagnetic
coupling between emitter and receiver signals are being the research
focus. Conclusions: the design overcomes the main described
problems. The almost pure shear torsional wave along with the short
time of flight avoids the possibility of multiple wave interference.
This short propagation distance reduce the effect of attenuation, and
allow the emission of very low energies assuring a good biological
security for human use.

Keywords—Cervix ripening, preterm birth, shear modulus, shear
wave elastography, soft tissue, torsional wave.

I. INTRODUCTION

ALTOUGH ultrasonic tissue characterization for clinical

diagnosis has mainly been undertaken with longitudinal

waves [1], shear waves has also been reported, since there are

evidences that shear dynamic viscoelastic properties able to

characterize the tissue state [2]–[5].
Recently, torsional waves have been proposed for tissue

shear modulus characterization [6]. Torsional waves propagate

at shear wave velocity [7]–[9] and have been reported to be

highly sensitive to elastic properties changes in quasifluids

and soft tissues, like those caused by tumors [10], [11]. Shear

stiffness is correlated to tissue micro-structure, which in turn

is more affected by pathologies than the fluid phase.
This work proposes a torsional transducer for shear modulus

characterization of tissues. The methodological approach

applied on its conception, allowed the almost total removal of

P-wave emissions, as a main feature, so that misinterpretations

are avoided due to interferences and mode conversions.

Rafael Muñoz is with the NDE Lab, Department of Structural Mechanics,
University of Granada, Granada, 18071 Spain (phone: +34 958216141; fax:
+34 95829959; e-mail: rmb@ugr.es).

Juan Melchor, Alicia Valera, Laura Peralta, Guillermo Rus are
with the NDE Lab, Department of Structural Mechanics, University
of Granada, Granada, 18071 Spain (e-mail: jmelchor@ugr.es,
avaleramartinez@gmail.com, lperalta@ugr.es, grus@ugr.es).

From the methodological point of view, the geometric

parameters of the proposed transducer has been optimized with

a maximization criterion of its probability of detection (POD)

on shear modulus changes.

II. METHODS

A. Initial Conceptual Design of the Transducer

Figs. 1 and 2 show the geometry of the initial conceptual

design of the transducer. Piezoelectric emitters are located in

the central disk and receivers in the external circular crown

(Fig. 1). The transducer must be put into physical contact with

the tissue (see Fig. 2, bottom part), that will be supposed to

be composed of 2 thin layers, dermic and connective.

The oscillation of the emitters generate a circumferential

shear movement of the disk, that is transmitted to the tissue

and from the latter to the circular crown, that oscillates

circumferentially. Finally, this movement is captured by the

receivers.

The technique to perform is the time of flight measurement

of the signals to extract the shear propagation velocity and

from it, the tissular shear modulus.

B. Forward Model

The coupled electrical-mechanic effect of piezoelectricity

may be described in the constitutive relations of the dynamic

problem assuming linearity, as follows,

T = CE · S + eT · E (1)

D = e · S − εS · E (2)

where (T) is the stress tensor, (S) strain tensor, (D)

charge-density displacement, (E) the electric field, CE the

piezoelectric stiffness matrix, e the piezoelectric coupling

coefficient matrix, eT its transposed and εS the permitivity

coefficient matrix.

The rest of the problem is given by the equilibrium and

cinematic relationships,

∇ · D = 0; E = −∇φ (3)

∇S · T = 0; S =
1

2
(∇u +∇uT ) (4)

being u = (u1, u2, u3) the displacement vector field, and φ
the electric potential or voltage.

The equations are solved using finite element method

implemented in FEAP software, incorporating the boundary

conditions. A more detailed description can be found in [6].

Fig. 2 shows the stress distribution on different instants.
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Fig. 1 The geometry of the transducer: Piezoelectric elements are shown in dark gray; four inner elements in the disk are the emitters and four outer
elements in the external circular crown are the receivers
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Fig. 2 Torsional transducer at instants t = 9 , 18 , 117 , 135 μs: The lower soil is the tissue

C. Probability of Detection

Pathology is inferred when there is a change in the

mechanical properties of the tissue layers, in this case, their

shear moduli [Gc Gd]. This means that there are values of

reference r for healthy state, and pathology exist if different

values are observed patp = [ΔGc ΔGd] with p = c, d (the

layer, connective and dermic), being ΔGp = Gp −Gp
r .

The probability of detection (POD) is defined as the

probability that the alteration of the received signal caused

by the presence of pathology (SIGNAL) exceeds the signal

changes originated by noise (NOISE),

POD = P

(
|SIGNAL|2
|NOISE|2 > 1

)
(5)

Consequently, the change in signal and noise must be

deduced.

A robust POD (RPOD) is defined, since signal and noise

changes are dependent on several parameters patp (two in the

example [patc patd]). RPOD selects the less favourable case,

RPOD = min
patp

POD(patp) (6)

POD(patp) = P

(
|SIGNAL(patp)|2
|NOISE(patp)|2

> 1

)
(7)

The signal variation can be computed applying a Taylor

series expansion of the received signal centred at the healthy

case and with no noise.

ψi(patp, σ) = ψi(0, 0)

+
∑
p

patp
dψi

dpatp
(0, 0)︸ ︷︷ ︸

SIGNAL(patp)

+σ
dψi

dσ
(0, 0)︸ ︷︷ ︸

NOISE

+hot (8)
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TABLE I
METHODOLOGY

Step Target Results Tools or inputs

1. Forward physical
model development

Simulate generation, propagation, and
reception of waves

Physical model: differential equations Conceptual design of the transducer:
geometry, materials, etc.

2. Finite element model
(FEM)

Computational implementation of the
physical model

Computational code of the model Physical model
Boundary cond. (geometry and
properties of the conceptual design,
etc.)

3. Discretization study Improve convergence
Trade off computational burden-time

Spatial element
Time interval

Forward model (FEM)
Initial sensor geometry and tissue
mechanical properties

4. Validation of FEM
results

Assure some accuracy of simulations Check large discrepancies with
approximated models

Use of an analytic simplified torsional
(T-wave) model to compare results.

5. Sensitivity analysis
on geometric
parameters of the
transducer

Knowing the response to geometry
Select the better materials
Minimize P-wave emission
Maximize received T-wave amplitude
New FEM validation

Knowledge of material influence
Better geometric parameters among
tested with almost null P-wave and high
s/n ratio
Ranges of P-wave existence
Sensible response, no anomalies

Forward model
Established discretization
Ranges of geometric parameters
Material candidates

6. Sensitivity analysis
on mechanical
properties [Gc Gd]
of tissue

Knowing response in the ranges of G
Test P-wave in the whole range of G
Forward model validation

No apparent anomalies on response
P-wave ranges of existence in tissue

Fordward model
Use of selected geometric design,
discretization and materials

7. Test of the inverse
problem with genetic
algorithm (GA)

New test for the forward problem
Evaluate convergence of the GA
- Quality of identification
- Convergence speed

Confirmed right behavior with clear
identification of the tissular mechanical
properties [Gc Gd] (Fig. 4)

Forward model
Misfit cost functional as GA
optimization criterion

8. POD evaluation
of sensor with better
performance in step 5

Evaluate POD of the better design
Testing coherency on results

POD graphics on changes of tissue
mechanical properties
No apparent anomalies

Forward model
POD estimator

9. POD optimization Search the geometric design that
maximize RPOD
Evaluate difference between better
(selected) and best (optimized)

Optimal design

Quantification of better-best
improvement

RPOD estimator
GA with RPOD estimator as GA
optimization criterion

being i = 1, ..., N the receiving locations (one in this case).

The term labelled SIGNAL represents the variation of the signal

originated by pathology, while the term labelled NOISE the

variation in the signal originated by noise, from the reference

signal ψi(0, 0) obtained in healthy tissue and no noise.

The derivatives in the SIGNAL can be deduced applying

finite differences,

dψi

dpatp
( ˜patp, 0) = ψi,patp

( ˜patp, 0)

=
ψi( ˜patp +Δpatp, 0)− ψi( ˜patp −Δpatp, 0)

2Δpatp
(9)

where ˜patp → 0 is a very small pathology that guarantees the

FEM to capture the perturbations produced at small Δpatp
(since the case patp = 0 with no pathology needs to be

computed with a topologically different mesh). It is important

to note that the evaluation of this derivative implies running

the FEM code.

The NOISE term needs the following derivative,

dψi

dσ
= ξiRMS(ψFEM

i ) = ξiRMS (10)

with ξi, a random noise generator (a random variable).

Applying the expression |Yi|2 = 1
m

∑m
i=1 Y

2
i to (5), and

introducing (8), (9) and (10),

PODp = P

(
patp

2 1
N

∑N
i=1(ψi,patp

(0, 0))2

σ2RMS2 1
N

∑N
i=1 ξ

2
i

> 1

)
(11)

= P

⎛
⎜⎜⎜⎜⎝patp

2 >
RMS2σ2

∑N
i=1 ξ

2
i∑N

i=1(ψi,patp
(0, 0))2︸ ︷︷ ︸

Sp

⎞
⎟⎟⎟⎟⎠ (12)

The evaluation of the expressions must be performed

running the FEM model, through the functions Sp, that

includes the derivative of ψi, and RMS. The right hand

expression is the probability distribution given by noise

translated by the FEM to random variability on the considered

parameter (its square). The cumulative probability of this

distribution function is,

PODp = F

(
RMS2σ2

∑N
i=1 ξ

2
i

Sp

)
(13)

Using Monte Carlo techniques and error propagation theory

the noise ξi in the measurement points can be concluded to

follow a normal distribution [12]. In that case, its square ξ2i
will be a Chi-square distribution, since

∑N
i=1 ξ

2
i −→ χ2

N

(e.g. [13]). The parameter of the Chi-square distribution is

the number of degrees of freedom N , which is the number of

measurement points. In the case that N > 10, the Chi-square
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Fig. 3 9th step of methodology: Genetic algorithm to optimize the transducer geometry, maximizing RPOD
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distribution can be approximated by a Gaussian or normal N
distribution χ2(N) ≈ N(N −2/3,

√
2N) with mean N −2/3

and standard deviation
√
2N . This approximation in (13)

yields,

patp
2 −→ N

[
RMS2σ2(N − 2/3)

Sp
,
RMS2σ2

√
2N

Sp

]
(14)

Since F (x) =
∫ x

−∞ f(y)dy is the cumulative of the normal

probability density function f , whose inverse is x = G(F (x)),
the useful pathology severity to noise ratio patp/σ can be

expressed from (14) given a POD level as,

patp
σ

=

√√√√RMS2(N − 2/3)

Sp

(
1 +G[PODp]

√
2N

N − 2/3

)
(15)

These expressions are only valid for noise with normal

distribution at the measurement points. The last one will be

further used to optimize the transducer geometry, maximizing

the value of the expression. Its evaluation implies running the

FEM code to calculate Sp and RMS.

D. Inverse Problem

Inverse problem is used to obtain the optimized parameters

of a model that maximize or minimize some condition. Here

is used as (1) an additional coherency test on the forward

model, looking for tissular mechanical properties that reduce

the discrepancy between simulated and experimental signals,
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Fig. 5 Convergence evolution through generations to maximum

and more importantly (2) to optimize the geometric parameters

of the transducer that maximize RPOD.

Genetic Algorithms (GA) are global search algorithms that

reasonably explore the whole parameter space to look for the

optimal parameters, avoiding the maximization/minimization

process to fall in local maxima/minima. More detailed

explanation of the algorithm that is used here can be found

in [12], [14]. The cost functional is the key point of the

optimization criterion. The methodological step 7 uses a misfit

function that represents the difference between experimental

and simulated signal, to be minimized. More detail can be

found in [6]. On the other hand, GA in Step 9 uses 15 as a

function to maximize.

If f is the function to optimize, an improved convergence

performance of the GA has been reported using an altered

version of f [15], consisting of,

f l = log(f + ε) (16)

with ε, a very small value that ensure the existence of the

logarithm.

E. Methodological Process

Table I, shows the methodological steps that has been

followed to develop the models and obtaining the optimal

geometry of the transducer that maximizes RPOD. A detailed

explanation of steps 1 to 8 can be found in [6].

The optimization process (step 9) is graphically detailed

in Fig. 3. It consist of a GA that explores the space of the

geometric parameters of the transducer. In this case, it is a
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Fig. 6 Slices of the function p
σ

around the maximum for a 99.9% level of POD

8-dimensional space [pw, pl, pt, dpe, dr, rpe, rw, drt]. The GA

uses the RPOD as optimization criterion, particularly (15).
A first generation that contains Nd = 20 individuals is

selected, being each individual a particular sample of the

8D parameter space (a candidate to be the optimal). Each

individual d is subject to calculate Sp for a fixed POD level of

99.9%, and a variety of mechanical properties patp = [GcGd]
of the tissue. This sampling of the 2D mechanical parameter

space is done using a Montecarlo procedure, obtaining j points

(Gc, Gd)j . From these point, a variety of values Spj, with

p = c, d. The next step is evaluating [
patp
σ ]j . The RPOD

criteria is applied keeping only the minimum value (the less

favorable) of all, disregarding the rest, so that the individual is

assigned just one value of pat
σ from all calculated. Comparing

the results of the Nd = 20 individuals, the winner of the

generation will be the one with higher value of pat
σ (maximum

RPOD). A new generation is created from the current one with

new Nd = 20 individuals, applying operations of mutation,

tournament and crossover [14]. After dealing with this second

generation its winner is compared with the former, keeping

the best of both. This process is repeated for 50 generations.

III. RESULTS

The results of the optimization are, (1) a winner individual,

in terms of the best geometric properties of the transducer that

maximize RPOD, (2) the discretely sampled 8-dimensional

function pat
σ (pw, pl, pt, dpe, dr, rpe, rw, drt) of all individuals

tested from all generations, to check the quality of the

maximum, and finally (3) the convergence evolution of the

successive winners towards the maximum.

Table II shows the winner geometric parameters of the

transducer (Opti. column), and the reference values were used

in the methodological steps previous to optimization with POD

maximization (Ref. column).

TABLE II
DIMENSIONS OF TRANSDUCER: CONSIDERED RANGES OF VARIATION,

REFERENCE VALUES AND POD OPTIMIZED VALUES

Design Parameters [mm] Range Ref. Opti. Label
Piezoelectric Width [0.75 2] 1 1.9 pw
Piezoelectric Length [0.5 2] 1 0.8 pl
Piezoelectric Thickness [0.4 4] 2 2.8 pt
Disc Piezoelectric Eccentricity [1.5 3.5] 2.5 2.7 dpe
Disc Radius [1.75 5.75] 4.25 5.1 dr
Ring Piezoelectric Eccentricity [5.75 8.5] 7.5 5.9 rpe
Ring Width [1.5 2.5] 2 1.6 rw
Disc-Ring Thickness [3 13] 8 4.6 drt

Fig. 4 presents the RPOD curve of two transducer designs,

the winner and the reference. The winner shows a higher

sensibility to detect lower changes in the mechanical properties

for the same values of POD. This represents a 17,199.5%

of improvement (about 172 times). The evolution of the

convergence trough the generations can be observed in Fig. 5,

where the winner has been captured by about 27th generation.

The GA implies a sampling of the function pat
σ in the

8-dimensional space of geometric parameters. Fig. 6 shows

different slices of the function around the maximum.

The final geometry of the transducer leads to a central

frequency of 28kHz.
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IV. CONCLUSION

A method to optimize the geometry of a torsional transducer

has been shown. The optimization is aimed to maximize

the probability of detection in a two-layer tissue. The use

of torsional waves is based on the evidences of their

higher sensitivity to changes in the tissular microstructure,

correlated with shear modulus changes. A genetic algorithm

has been developed in order to implement the optimization

process, with a cost functional derived from the POD. The

geometric parameter space is globally sampled through several

generations and another sampling of the tissular mechanical

properties is performed on each generation. The POD is always

calculated selecting the less favorable case, constituting a

robust POD criterion.

An iterative sequence of prototypes are being produced

to test the real performance of the transducer, and to solve

new non-simulated problems related to radioelectrical and

mechanical isolation, alignments and transducer calibration.
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