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Abstract—Supersonic open and closed cavity flows are 

investigated experimentally and computationally. Free stream Mach 
number of two is set. Schlieren imaging is used to visualise the flow 
behaviour showing stark differences between open and closed. 
Computational Fluid Dynamics (CFD) is used to simulate open 
cavity of flow with aspect ratio of 4. A rear wall treatment is 
implemented in order to pursue a simple passive control approach.  

Good qualitative agreement is achieved between the experimental 
flow visualisation and the CFD in terms of the expansion-shock 
waves system. The cavity oscillations are shown to be dominated by 
the first and third Rossister modes combining to high fluctuations of 
non-linear nature above the cavity rear edge. A simple rear wall 
treatment in terms of a hole shows mixed effect on the flow 
oscillations, RMS contours, and time history density fluctuations are 
given and analysed.  
 

Keywords—Supersonic, Schlieren, open-cavity, flow simulation, 
passive control.  

I. INTRODUCTION 
NVESTIGATION of high speed cavity flow has received 
considerable interest over the years due its implications in 

aeronautical applications such as airborne weapon bays, 
landing gear and cargo bay openings. Studies in this topic 
have also been carried out because similar flow behaviour has 
also been noticed to occur at inlets and nozzles of high speed 
jet engines and in gas turbine blade tips, where the leakage 
flow through the gap between the blade and the engine wall 
can be reduced by a careful cavity design. 

The theory of the flow oscillations in cavities has been 
subject to considerable research since the fifties [1, 2, 3]. Most 
of the research focused on low speed application but in the last 
two decades interest in high speed application has increased. 
These oscillations can lead to an increase in the drag and noise 
generation. The latter can reach sound pressure levels as high 
of 150 dB or higher [4]. All together these flow oscillations 
and associated noise can damage the structural integrity of the 
vehicle through vibration and acoustic fatigue. Furthermore 
the aircraft noise signature can also increase significantly [3].  
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The flow oscillations are caused by a feedback loop 

between the cavity’s front and rear walls. The shear layer 
hitting the rear wall causes a sound wave to be generated and 
propagate upstream towards the front wall. At certain 
frequencies that sound wave will cause hydrodynamic 
instability in the shear layer near the front wall, which in turn 
will cause the shear layer to flap more and intensify the sound 
wave propagating upstream [3]. Such feedback mechanism 
exists in open cavities, i.e. the shear layer bridges over the 
cavity and does not touch the cavity’s floor, see Fig. 1. 
Commonly such conditions happen for cavities of aspect ratios 
of length to depth of 2<L/D<8 depending on the flow 
conditions [5]. Closed cavities occur at ratios of L/D>11 
where the shear layer touches the cavity floor and the 
feedback loop between the two walls is disrupted, see Fig. 2. 
Transitional cavities occur at the intermediate aspects ratios 
between the open and closed cavities, where the shear layer 
sometimes touches the cavity floor. 
 
 
 
 
 
 
 

Fig. 1 Illustration of an open-cavity 
 

 
 

Fig. 2 Illustration of a closed-cavity 
 
At low speed the acoustic wave can propagate within and 

outside of the cavity. Suponitsky et al. [6] showed it causes an 
absolute instability mechanism in the shear layer which was 
called the ‘shear mode’ for 3D flow fluctuations [7]. At 
supersonic speed the upstream propagating acoustic wave is 
limited to the shear layer and within the cavity, nevertheless 
intense flow oscillations were observed experimentally and 
computationally [8, 9, 10].  

Estimate of the frequencies of the shear layer oscillations 
can be pursued by the semi-empirical formula of Rossister, 
which was later modified to include transonic and supersonic 
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incoming Mach numbers [8], yielding,  
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St stands for the Strouhal number, f for the frequency, U∞ 

for the free stream velocity, M∞ for the free stream Mach 
number and γ is the heat capacity ratio. The empirical 
constants of α and k are 0.25 and 0.57 respectively. m is the 
mode number. This approximation was found to yield 
reasonable accuracy when compared with experiments and 
flow simulations [6, 8, 11, 12]. 

Suppression of cavity flow-induced oscillations is of great 
interest. Supontisky et al. [6] applied a simple open loop 
active control approach for a simulated low speed open cavity. 
Steady fluidic injection into cavity was achieved through the 
front cavity wall and steady fluidic suction through the rear 
cavity wall. It was shown that at sufficient levels of fluidic 
flow flux, the instability mechanism of the shear layer 
changed from absolute to convective, reducing significantly 
the shear layer oscillations. Open loop control was also 
applied for supersonic cavities [9] where closed loop control 
was also assessed. 

Passive control is also of significant interest as it offers 
simplicity and reduced burden of maintenance. Various ideas 
have been investigated with some success, from front wall 
treatment of a wire obstacle to treatment of the cavity’s floor 
and a slanted rear wall. In this paper we present a study of a 
supersonic rectangular cavity using experimental and 
computational means. The aim is to investigate the underlying 
physics of this cavity, where the feedback mechanism is 
restricted to the shear layer and within the cavity and the form 
of the near field sound field. A simple method of the cavity’s 
rear wall treatment as a passive control method is also 
assessed. 

Next we present the formulation of the problem, results 
analysis and conclusions. 

II.   PROBLEM FORMULATION 
A basic rectangular cavity subject to an incoming 

supersonic flow of Mach number of 2 is considered. A wide 
range of length to depth, L/D, ratios from open to closed 
cavity flows is considered in this project, but for this paper we 
present mainly our results for an open cavity.  

The Schlieren experimental technique was used to produce 
flow visualisation of flow around the cavity. A simple z-type 
system with parabolic mirrors of a focal length of 2m was 
used. The cavity was generated by an axisymmetric opening in 
a circular rod similar to Mohri & Hiller [10], where the length 
of the cavity was adjustable to yield a range of L/D ratios, 
2<L/D<16. The rod was placed in the supersonic wind tunnel 

of Queen Mary University of London having a work section of 
about 10 cm over 15 cm. 

Computational Fluid Dynamics (CFD) simulations were 
also pursued using our in-house Large Eddy Simulation (LES) 
code. This code was already used successfully to simulate 
high subsonic open cavity flow [11] and supersonic mixing 
layers [13]. The code is based on a finite difference 
formulation and rectangular grid. Flux splitting in form of 
TVD and WENO schemes are used to compute the convective 
terms, where the Van Leer and Superbee flux splitters are used 
for the second order TVD computations [14] and a 5th order 
scheme for the WENO computation. A fourth order central 
finite difference scheme is used for the diffusion term. The 
time marching is achieved using a second order Runge Kutta 
method. 

As only 2D computations are pursued in this study, the LES 
subgrid modelling was not used but instead a small artificial 
viscosity coefficient in the form of min(Δx,Δy)/Re_av was 
added to the diffusion term where 50<Re_av<100. Re_av=80 
was found to be sufficient to prevent spurious oscillations 
without damping the flow oscillations. High grid stretching in 
the stream normal direction y was used to cluster grid points 
near the shear layer, yielding about 10 to 1 ratio between the 
grid spacing near the upper edge of the computational domain 
and in the shear layer area. A hyperbolic sin transformation 
was used for this purpose providing high grid resolution also 
inside the cavity and above the shear layer. 

A no-slip boundary condition was applied to velocity field 
at the wall and a viscous boundary condition was applied to 
the pressure at the wall [14]. The wall was assumed to be 
adiabatic. As a pressure wave is reflected back from the 
cavity’s rear edge it tends to thicken the incoming boundary 
layer as it cannot propagate upstream in the supersonic free 
stream. Thus this can cause an artificial shock wave near the 
computational domain inflow side if the inflow velocity is 
prescribed and an abrupt change in the boundary layer 
thickness occurs near the inflow side. As a result we applied 
non-reflecting characteristic boundary conditions on the inlet 
side as well as on the top side and outlet side of the 
computational domain. In order to enforce an inlet boundary 
layer profile a buffer zone approach was used near the inlet 
side of the computational domain. It forced gently the 
boundary layer profile to the desired one by adding body 
forces. This reduced considerably any artificial shock wave 
caused by the inflow condition. A turbulent boundary layer 
profile was specified. 

III. RESULTS & ANALYSIS 
Schlieren images are shown in Fig. 3a and b for open and 

closed cavities of L/D=4 and L/D=12, respectively. In both 
cases the flow goes from left to right. The difference in the 
flow behaviour is clear. The shear layer bridges the two walls 
in the open cavity while touching the floor of the closed 
cavity. As result the open cavity shows an oblique shock wave 
near its rear edge while the closed cavity shows on its upper 
side a strong normal shock wave that bends afterwards.  
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Fig. 3 Schlieren
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Fig. 7 Instantaneous contours of the stream normal flux of ρv for the 
open cavity without the rear wall treatment (7a – upper) and with the 
rear wall treatment (7b – lower). The rest of the conditions are as in 

Fig. 4 
 
The RMS of the density fluctuations are shown in Fig. 8. 

Both cavities show high RMS levels around the shear layer 
that intensifies near the rear edge of the cavity. The latter 
indicates the high amplitude flapping of the shear layer near 
the rear edge. There are four rays of high RMS radiating away 
from the shear layer in an angle similar to the expansion – 
shock waves system seen in Fig. 7. This indicates a dominance 
of low mode numbers in the shear layer oscillations. We can 
also see that the cavity with the rear wall treatment shows 
mildly lower RMS levels than the cavity with the rear wall 
treatment. 

 

Fig. 8 RMS contours of the density fluctuations for the open cavity 
without the rear wall treatment (8a ) and with the rear wall treatment 

(8b). The rest of the conditions are as in Fig. 4 
 

The time history of the density fluctuations at the middle of 
the cavity but 0.5D above its shear layer are shown for both 
cavities in Fig. 9. Two modes of oscillations are revealed are 
seen after time 30. The primary oscillation has a time period 
of a bit less than 5 agreeing well with the time period of the 
third mode of Rossister mode (1). The other mode has about 
three times longer time period and thus agreeing fairly with 
Rossister first mode time period (1). The combination of the 
two modes leads to a continuous increase in the oscillations 
until the level saturates around time 150. Also one can see that 
the density oscillations due to the cavity with the rear wall 
treatment are mildly higher than those without and thus at this 
point of space the rear wall treatment actually did not achieve 
noise suppression. This corresponds to Fig. 7 showing higher 
density fluctuation at that point for this kind of cavity. 

 

Fig. 9 Density fluctuations at (x,y) = (8,1.5)D for the open cavity 
without the rear wall treatment (9a) and with the rear wall treatment 

(9b). The rest of the conditions are as in Fig. 4 
 

A zoom view on the density fluctuations is seen in Fig. 10, 
showing a nearly linear fluctuations but with slight steepening, 
indicating mild non-linear activity. On the other hand strong 
non-linear fluctuations were recorded for above the rear edge 
of the cavity as seen in Fig. 11. A system of sharp 
compression followed by shallow expansion waves is seen. 
This is better illustrated in the zoom view of Fig. 12. This kind 
of density fluctuations was reported to have crackle-like 
features in jet noise [15]. However, unlike crackling 
supersonic jets, the time history here does not show any 
random process and the high density fluctuations indicate 
some movement of the shock wave. The cavity with the rear 
wall treatment shows a much reduced compression wave but 
an enlarged expansion wave, showing that this simple rear 
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wall treatment has a moderate success in terms of reducing 
flow oscillations.  

 

Fig. 10 Zoomed view of the density fluctuations of Fig. 9(a) 
 

Fig. 11 Density fluctuations at (x,y) = (10,1.5)D for the open cavity 
without the rear wall treatment (11a) and with the rear wall treatment 

(11b). The rest of the conditions are as in Fig. 4 
 

Fig. 12 Zoomed view of the density fluctuations of Fig. 11(a) 

IV. SUMMARY 
Supersonic open and closed cavities were studied 

experimentally to show clear pattern of expansion – shock 
wave system and features of different flow behaviour. CFD 
simulations have been carried out for two supersonic open 
cavities one of a box configuration and aspect ratio of L/D=4 
and the other with the same configuration but with a rear wall 
treatment of a small square hole of a length of D/3. All 
cavities were subject to an incoming free stream Mach number 
of 2 whether in the wind tunnel or in the computer 
simulations. 

The simulations showed a system of expansion and shock 
waves around the cavity, having an inclination angle very 
similar to that found experimentally. Both open cavities 
showed a large vortex near the rear wall that clips over the 
rear edge causing the shear layer to flap. However, the rear 
wall treatment reduced somewhat the size of the vortex. 
Contours of RMS density indicate the dominance of low mode 
fluctuations in the shear layer. This was confirmed by the 
examining the density time history above the cavity. Non-
linear fluctuations density were observed, particularly above 
the rear edge. This was attributed to the strong oblique shock 
wave emerging from the rear edge. The rear wall treatment 
showed mixed effect of flow oscillations suppression, 
reducing mildly the overall density RMS but increasing at 
some points the flow oscillations and reducing the 
compression fluctuations above the rear edge on the expense 
of increasing the expansion fluctuations. The latter showed 
crackle-like features similar in some sense to features found 
around supersonic jets. 

It is planned to pursue 3D simulations of open cavity flows 
that will include turbulence development, such effect can alter 
the flow oscillations and will assist in designing better rear 
wall treatments. 
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