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Abstract—Recent researches has focused on nucleic acids as a
substrate for designing biomolecular circuits for in situ monitoring
and control. A common approach is to express them by a set of
idealised abstract chemical reaction networks (ACRNs). Here, we
present new results on how abstract chemical reactions, viz., catalysis,
annihilation and degradation, can be used to implement circuit
that accurately computes logarithm function using the method of
Arithmetic-Geometric Mean (AGM), which has not been previously
used in conjunction with ACRNs.
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I. INTRODUCTION

AN objective of synthetic biology is to design

biomolecular circuits for in situ monitoring and control.

Recently, nucleic acid reactions have been proposed as a

potential solution for these purposes [1]-[4]. A key advantage

of nucleic acid reactions consists in the ease and precision

with which these can be implemented, as their design relies

essentially on the well-known Watson-Crick base-pairing

mechanism (i.e. adenine-thymine and guanine-cytosine

pairing), which enables precise programming and timing

of molecular interactions simply by the choice of relevant

sequences. This approach has allowed the implementation

of a number of complex circuits based on DNA strand

displacement [5], DNA enzyme [6] and RNA enzyme

[7] reactions, and has been used for the modelling and

implementation of various nucleic-acids-based circuits such

as feedback controllers [8] and predator-prey systems [9].

Recently, it has been shown that any chemical reaction
network can be closely approximated by a set of suitably

designed DNA strand displacement reactions [10]. This logic

can be extended to approximate a set of linear ordinary

differential equations (ODEs) by a set of idealised abstract
chemical reaction networks (ACRNs) which can then be

approximated by a set of suitably designed DNA strand

displacement reactions [4].

In order to exchange information with environment and

make decisions on their behaviour, living cells use chemical

reactions as a mean of communication. It was shown that

logarithmic sensing is present in various signal transduction

mechanisms of a cell and is related to the concept of

fold-change detection. Hence, in order to decode the signals

the cell is sending, it is necessary to compute natural logarithm

[11]-[13].
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In this paper, we present a circuit for computing natural

logarithm using the method of Arithmetic-Geometric Mean.

We are also comparing the results obtained by AGM

method with those received from the implementation of

Newton-Raphson method and the method proposed by Chou

[14].

II. NOTATION AND BACKGROUND RESULTS

To ensure consistency, the notation used in [15] and [4]

is used throughout in this paper. For example, a bidirectional

(i.e., a reversible bimolecular chemical reaction) is represented

as

X1 +X2

δ1−⇀↽−
δ2

X3 +X4 (1)

where Xi are chemical species with X1 and X2 being the

reactants and X3 and X4 being the products. Here, δ1 and δ2

denote the forward and backward reaction rates, respectively.

A unimolecular reaction features only one reactant whereas

a multimolecular reaction features two or more reactants.

Degradation of a chemical species X at rate K (or conversion

of X into an inert form at a rate K) is denoted by X K−→ /0.

A. Representing Signals Using Differences of
Concentrations

Whereas signals in systems theory can take both positive

and negative values, biomolecular concentrations (with Molar

(M) as unit) can only take non-negative values. Thus,

following the same approach suggested in [15] and [4], we

represent a signal, x as the difference in concentration of

two chemical species, x+ and x−. Here, x+ and x− are

respectively the positive and negative components of x such

that x = x+−x−. The consequence of adopting this scheme is

that there is no unique representation for a particular signal.

As an example, x = 20 M can be represented by both x+ = 50

M and x− = 30 M or equivalently, x+ = 20 M and x− = 0 M.

In practice, x+ and x− can be realised as single strand DNA

molecules, as illustrated in [4] where these complementary

positive and negative components would annihilate each other

at reaction rate η (i.e. x++x− η−→ /0). A key advantage of using

this scheme is that it allows the realisation of the ‘subtraction’

operation, as discussed further below.

B. Realising Elementary Linear System Theoretic
Operators

In [15], results on how to represent linear system theoretic

operations such as gain, summation and integration using



International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:13, No:1, 2019

16

idealised abstract chemical reactions are presented and it is

shown that only three types of elementary chemical reactions,

namely, catalysis, annihilation and degradation are needed for

such representations. In [4], this set of elementary chemical

reactions is further reduced to only two. We here summarise

their main results and refer the interested reader to [15] and

[4] for details.

Throughout the rest of the paper, equations with superscript

± and ∓ are used as shorthand notations that represent the ‘+’

and ‘−’ individual reactions — for example, x±i
K−→ x±i + x±o

should be understood as the the set of two reactions: x+i
K−→

x+i +x+o and x−i
K−→ x−i +x−o . Likewise, the notation x±i

K−→ x±i +

x∓o is used to represent the set of two reactions: x+i
K−→ x+i +x−o

and x−i
K−→ x−i + x+o . For brevity and following [15], we will

represent such a set of reactions compactly as x±i
K−→ x±i + x±o

and x±i
K−→ x±i + x∓o .

As noted in [15], one limitation of representing signals as

the difference of concentrations is that the requirement of

having the same reaction rate, K, for both positive and negative

components may not be easy to implement experimentally.

However, as shown in [15], this requirement can be relaxed if

the annihilation rate, η in the annihilation reaction, x+o +x−o
η−→

/0 is chosen to be sufficiently large. Hence, we assume this

condition of η � K throughout the rest of this paper.

Lemma 1. [Scalar gain K]

Let xo = Kxi where xi is the input, xo is the output and K is
the gain. This operation is implemented using the following
set of abstract chemical reactions:

x±i
γK−→ x±i + x±o , x±o

γ−→ /0, x+o + x−o
η−→ /0,

where γK, γ and η are the kinetic rates associated with
catalysis, degradation and annihilation respectively. �
Proof. Using generalised mass-action kinetics, it follows that

the gain operator realised in this manner is described using

the following ODE,

dx+o
dt

= γ(Kx+i − x+o )−ηx+o x−o
dx−o
dt

= γ(Kx−i − x−o )−ηx+o x−o
dxo

dt
=

dx+o
dt

− dx−o
dt

= γ(Kxi − xo) (2)

Using the final value theorem, the steady state value of xo for

constant input xi is given by limt→∞ xo(t) = Kxi(t).

Lemma 2. [Summation]

Consider the summation operation xo = xi + xd , where xi
and xd are the inputs and xo is the output. This operation

is implemented using the following set of abstract chemical

reactions:

x±i
γ−→ x±i + x±o , x±d

γ−→ x±d + x±o , x±o
γ−→ /0, x+o + x−o

η−→ /0.

Using the following set of abstract chemical reactions:

x±i
γ−→ x±i + x±o , x±d

γ−→ x±d + x∓o , x±o
γ−→ /0, x+o + x−o

η−→ /0,

the subtraction xo = xi − xd is implemented. �

TABLE I
STEPS FOR COMPUTING ln(x) USING AGM

Computation steps:

1) Initialization
w(0) = 4/x
g(0) = 1

2) Iteration
wn+1 = (wn +gn)/2

= AGM(1,4/x)gn+1 =
√

wngn

3) Compute ln(x) ln(x) =
π/2

AGM(1,4/x)

Remark 1. Scaled summation xo = K(xi + xd), and scaled

subtraction, can be implemented by choosing the catalysis

rates in the construct of Lemma 2 to be Kγ . �
Lemma 3. [Scaled Integration]

Consider the integrator xo = K
∫

xi dt where xi is the input, xo
is the output, and K is the DC gain. Using the following set

of abstract chemical reactions:

x±i
K−→ x±i + x±o , x+o + x−o

η−→ /0,

such an integrator is implemented. �
Proof. Using generalised mass-action kinetics the ODEs for

the summation and integrator operations are given by dxo
dt =

γ(xi+xd −xo) and dxo
dt = Kxi, respectively. Then, the proof for

Lemmas 2 and 3 can be trivially obtained following the same

logic as for the proof of Lemma 1.

III. MAIN RESULT

Here, we are presenting block diagram and computation

details of the circuit for computation of ln(x). It is an important

function for biological systems as it can be related to the

cell signalling mechanisms. To design the circuit, we used the

principle of Arithmetic-Geometric Mean. Also, we recreated

the circuits based on Newton-Raphson method and by Chou,

and compared the obtained results.

AGM is a hybrid quantity which is defined by combining

the arithmetic and geometric means of two positive numbers.

The arithmetic mean of two numbers w and g is defined

as wn+1 = (wn + gn)/2; the geometric mean of same two

numbers is gn+1 =
√

wngn. Further, the process is iterative and

converges to a number that is between the arithmetic mean and

the geometric mean.

It has been shown by [16] that AGM can be used for

approximating the value of natural logarithm:

ln(x)≈ π/2

AGM(1, 4
x )

(3)

The steps for implementing the computation are listed in

Table I. Firstly, we set out the initial values of signals w and

g,where one signal is set as ” 4
x ” and the other is ”1”. Then

we find the Arithmetic-Geometric Mean of two inputs, after

which we can approximate the ln(x).
Fig. 1 illustrates a block diagram for computing AGM (steps

1 and 2 from TableI). In Fig. 2 the output of AGM block (Fig.

1) serves as one input, the second input is a signal of the value
π
2 . This circuit performs accurate division of two signals and

was presented by us earlier [17]. Since all the blocks can be

derived using abstract chemical reactions, we note down all

ACRNs and ODEs in Table III.
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TABLE II
COMPUTATION OF ln(x) USING AGM: DNA IMPLEMENTATION, THE ACRNS AND THE ODES

DNA Implementation Formal CRNs ODEs

Block 1

g±+G±
1

q1−→ /0+O±
1

}
g±

1
2

γ1−−→ g±+ z±
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

O±
1 +T±

1

qmax−−−→ g±+ z±

w∓+G±
2

q2−→ /0+O±
2

}
w∓

1
2

γ1−−→ w∓+ z± ż = γ1(
1
2
(g−w)− z)

O±
2 +T±

2

qmax−−−→ w∓+ z±

z±+G±
3

q3−→ /0 . . . z±
γ1−→ /0

z+ +L1z
qmax−−−⇀↽−−−
qmax

H1z +B1z
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

z−+LS1z
qmax−−−⇀↽−−−
qmax

HS1z +BS1z z+ + z−
η−→ /0

z−+H1z
qmax−−−→ /0

Block 2
z±+G±

4

q4−→ /0+O±
4

⎫⎬
⎭

z±
γ2−→ z±+w± ⎫⎬

⎭ ẇ = γ2z
O±

4 +T±
4

qmax−−−→ z±+w±

w+ +L1w
qmax−−−⇀↽−−−
qmax

H1w +B1w
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

w−+LS1w
qmax−−−⇀↽−−−
qmax

HS1w +BS1w w+ +w− η−→ /0

w−+H1w
qmax−−−→ /0

Block 3
w±+g±+G±

5

q5−→ /0+O±
5

⎫⎬
⎭

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

O±
5 +T±

5

qmax−−−→ w±+g±+u± w±+g±
γ3−→ w±+g±+u±

u±+G±
6

q6−→ /0 . . . u±
γ3−→ /0 u̇ = γ3(w∗g−u)

u+ +L3u
qmax−−−⇀↽−−−
qmax

H3u +B3u
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

u−+LS3u
qmax−−−⇀↽−−−
qmax

HS3u +BS3u u+ +u−
η−→ /0

u−+H3u
qmax−−−→ /0

Block 4
1
2

u±+G±
7

q7−→ /0+O±
7

} ⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

O±
7 +T±

7

qmax−−−→ 1
2

u±+ v± 1
2

u±
γ4−→ 1

2
u±+ v±

v±+G±
8

q8−→ /0 . . . v±
γ4−→ /0 v̇ = γ4(u

1
2 − v)

v+ +L4v
qmax−−−⇀↽−−−
qmax

H4v +B4v
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

v−+LS4v
qmax−−−⇀↽−−−
qmax

HS4v +BS4v v+ + v−
η−→ /0

v−+H4v
qmax−−−→ /0

Fig. 1 Block diagram of the AGM block

Fig. 2 Block diagram of the circuit for obtaining ln(x) by AGM method

In Table III, we note down the ODE’s, ACRNs, and

DNA implementation details for our circuit. The annihilation

reaction rate η is to be chosen arbitrarily large.

Fig. 3 provides the overview of the computation

results obtained by 3 different methods: AGM, Chou and

Newton-Raphson. More detailed investigation showed that the

system by our method has the lowest percentage error of

3,09× 10−4% for the chosen example. The system tends to

have smaller error (less than 8%) for x between 50 and 300,

and the error increases as x moves further away from this

interval. So, the system is to be improved to overcome this

disadvantage.

IV. CONCLUSIONS

We have presented a circuit for computing natural logarithm

using the method of Arithmetic-Geometric Mean, and its

abstract chemical reaction network representation. We have

compared the obtained results with those received from

Newton-Raphson and the method by Chou [14]. Our design

shows the lowest percentage error, however, the improvements

can be made to reduce it even more for chosen parameter

range.
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(a) (b) (c)

Fig. 3 Matlab simulation results for computing natural logarithm using a) AGM method; b) method by Chou [14] and c) Newton-Raphson method

TABLE III
COMPUTATION OF ln(x) USING AGM: DNA IMPLEMENTATION, THE ACRNS AND THE ODES (CONTINUED)

DNA Implementation Formal CRNs ODEs

Block 5
v±+G±

9

q9−→ /0+O±
9

⎫⎬
⎭

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

O±
9 +T±

9

qmax−−→ v±+g± v±
γ5−→ v±+g±

g±+G±
10

q10−−→ /0 . . . g±
γ5−→ /0 ġ = γ5(v−g)

g++L5g
qmax−−⇀↽−−
qmax

H5g +B5g
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

g−+LS5g
qmax−−⇀↽−−
qmax

HS5g +BS5g g++g− η−→ /0

g−+H5g
qmax−−→ /0

Block 6
g±+G±

11

q11−−→ /0+O±
11

}
g±

Kγ6−−→ g±+m± ⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

O±
11 +T±

11

qmax−−→ g±+m±

p∓+G±
12

q12−−→ /0+O±
12

}
p∓

Kγ6−−→ p∓+m± ṁ = γ6(K(r− p)−m)

O±
12 +T±

12

qmax−−→ p∓+m±

m±+G±
13

q13−−→ /0 . . . m± γ6−→ /0

m++L6m
qmax−−⇀↽−−
qmax

H6m +B6m
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

m−+LS6m
qmax−−⇀↽−−
qmax

HS6m +BS6m m++m− η−→ /0

m−+H6m
qmax−−→ /0

Block 7
m±+G±

14

q14−−→ /0+O±
14

⎫⎬
⎭

m± γ7−→ m±+n±
⎫⎬
⎭ ṅ = γ7m

O±
14 +T±

14

qmax−−→ m±+n±

n++L7n
qmax−−⇀↽−−
qmax

H7n +B7n
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

n−+LS7n
qmax−−⇀↽−−
qmax

HS7n +BS7n n++n− η−→ /0

n−+H7n
qmax−−→ /0

Block 8
g±+n±+G±

15

q15−−→ /0+O±
15

} ⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

O±
15 +T±

15

qmax−−→ g±+n±+ p± g±+n± γ8−→ g±+n±+ p±

p±+G±
16

q16−−→ /0 . . . p± γ8−→ /0 ṗ = γ8(g∗n− p)

p++L8p
qmax−−⇀↽−−
qmax

H8p +B8p
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

p−+LS8p
qmax−−⇀↽−−
qmax

HS8p +BS8p p++ p− η−→ /0

p−+H8p
qmax−−→ /0



International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:13, No:1, 2019

19

ACKNOWLEDGMENT

This research is supported, in parts, by the EPSRC

INDUSTRIAL CASE AWARD (CASE Voucher 16000070),

Microsoft Research, and the EPSRC/BBSRC grant

BB/M017982/1 to the Warwick Integrative Synthetic

Biology Centre.

REFERENCES

[1] Seelig, G., Soloveichik, D., Zhang, D.Y., & Winfree, E. (2006).
Enzyme-free nucleic acid logic circuits. Science, 314, 1585-1588.

[2] Zhang, D.Y., Turberfield, A.J., Yurke, B. & Winfree, E. (2007).
Engineering entropy-driven reactions and networks catalyzed by DNA.
Science, 318, 1121-1125.

[3] Padirac, A., Fujii, T., & Rondelez, Y. (2013). Nucleic acids for the
rational design of reaction circuits. Current Opinion of Biotechnology,
24, 575-580.

[4] Yordanov, B., Kim, J., Petersen, R.L., Shudy, A., Kulkarni, V.V., &
Philips, A. (2014). Computational design of nucleic acid feedback control
circuits. ACS Synthetic Biology, 3, 600-616.

[5] Zhang, D.Y. (2011). Towards domain-based sequence design for
DNA strand displacement reactions. DNA Computing and Molecular
Programming, Springer Berlin Heidelberg, 162-175.

[6] Montagne, K., Plasson, R., Sakai, Y., Fujii, T., & Rondelez, Y. (2011).
Programming an in vitro DNA oscillator using a molecular networking
strategy. Molecular Systems Biology, 7, 466.

[7] Kim, J., & Winfree, E. (2011). Synthetic in vitro transcriptional
oscillators. Molecular Systems Biology, 7, 465.

[8] Chen, Y.-J., Dalchau, N., Srinivas, N., Philips, A., Cardelli, L.,
Soloveichik, D., & Seelig, G. (2013). Programmable chemical controllers
made from DNA. Nature Nanotechnology, 8, 755-762.

[9] Fujii, T., & Rondelez, Y. (2013). Predator-prey molecular ecosystems.
ACS Nano, 7, 27-34.

[10] Soloveichik, D., Seelig, G., Winfree, E. (2010). DNA as a universal
substrate for chemical kinetics. Proceedings of National Academy of
Sciences, USA, 12, 5393-5398.

[11] Alberts, B. and Johnsosn, A. and Lewis, J. and Raff, M. and Roberts,
K. and Walter, P. (2007). Molecular Biology of the Cell (5th Edition).
Garland Science, New York, NY.

[12] Lim, W. and Mayer, B. and Pawson, T. (2014). Cell Signaling. Garland
Science, New York, NY.

[13] Ma, K.C. and Perli, S.D. and Lu, T.K. (2016). Foundations and emerging
paradigms for computing in living cells. Journal of Molecular Biology,
428, pp. 893-915.

[14] Chou, C. T. (2017) Chemical reaction networks for computing logarithm.
Synthetic Biology, 2(1), ysx002.

[15] Oishi, K., & Klavins, E. (2011). Biomolecular implementation of linear
I/O systems. IET Systems Biology, 5, 252-260.

[16] Brent, R. P. (2018). Fast Algorithms for High-Precision Computation of
Elementary Functions, 5.

[17] Zarubiieva, I., Tseng, J.Y. and Kulkarni, V. (2018). Accurate Ratio
Computation using Abstract Chemical Reaction Networks. IAENG
WCE 2018: International Association of Engineers World Congress on
Engineering.


