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Abstract—Truss spars are used for oil exploitation in deep and 

ultra-deep water if storage crude oil is not needed. The linear 

hydrodynamic analysis of truss spar in random sea wave load is 

necessary for determining the behaviour of truss spar. This 

understanding is not only important for design of the mooring 

lines, but also for optimising the truss spar design. In this paper 

linear hydrodynamic analysis of truss spar is carried out in 

frequency domain. The hydrodynamic forces are calculated using 

the modified Morison equation and diffraction theory. Added mass 

and drag coefficients of truss section computed by transmission 

matrix and normal acceleration and velocity component acting on 

each element and for hull section computed by strip theory. The 

stiffness properties of the truss spar can be separated into two 

components; hydrostatic stiffness and mooring line stiffness. Then, 

platform response amplitudes obtained by solved the equation of 

motion. This equation is non-linear due to viscous damping term 

therefore linearised by iteration method [1]. Finally computed 

RAOs and significant response amplitude and results are compared 

with experimental data. 

   Keywords—Truss Spar, Hydrodynamic analysis, Wave 
spectrum, Frequency Domain

I. INTRODUCTION

Y the discovery of the most main land oil fields 
nowadays new oil and gas sources are being discovered 

less than the past, on the other hand the population increase 
and economics developments in recent decade and more 
request for oil result in the increase of oil price so we can 
see oil production in the sea depths become more and more 
economic .These days advanced countries are attacked to the 
deeper zones for discovering new sources. Platforms, FPSO, 
TLP and SPAR are suitable examples for deeper zones. 
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When water depth exceeds from a specific level, spar for its 
simple shape and structure is one of the most economic 
choices. Classic spar and truss spar are more prevalent spars. 
Classic spar is a deep draught, vertical, large diameter 
cylindrical vessel. The top part of the hull provides the 
buoyancy and the midsection provides plenty room for oil 
storage. The lower compartment holds the ballast, which 
controls the trim for spar. If storage of crude oil is not 
needed truss spar is used. The cylindrical midsection of the 
classical spar is replaced with a truss framework and plated 
horizontal levels. These horizontal steel plates entrap the 
water in vertical motions and bring the effective vertical 
mass of the structure up to the same level as a classical spar. 
Glansville mentioned a number of advantages of the truss 
spar over the classic spar, such as less steel for construction, 
simpler and cheaper; less drag area therefore reduced 
mooring loads, and less drag when towed upright. In marine 
dynamics, there are two basic approaches to solve the 
dynamic responses. This can either be done in the frequency 
domain or via time domain analysis. Frequency domain 
analysis is performed for the linearised problem so; using an 
iterative technique may include some non-linear effects. In 
contrast, time domain analysis utilises the direct numerical 
integration of the differential equations including all the non-
linearities. The results obtained by the frequency domain 
technique are simpler to interpret and apply for further 
analysis [1]-[2]. Therefore, the frequency domain technique 
is preferable as long as the non-linear effects are small. For 
both cases, the equations of motion are the same, but their 
formulation and approximation reflect the strengths and 
limitations of the method used. Also, the non-linear time 
domain analysis does not necessarily produce better results 
compared to a simpler frequency domain analysis because of 
other uncertainties in the interaction problem [2]. The 
Measurements and calculations showed that truss spars have 
better dynamic characteristics than same classic spars. 
Between wind, current and wave, waves are most important 
factor in exerting excitation loads on spar platforms. Purpose 
of this paper is estimating wave loads on a specific truss spar 
and determining its dynamic response to random sea waves. 
This analysis is necessary to show that if a plan is desirable. 
The numerical   results presented in this paper are compared 
with the experimental and numerical results reported by 
Stansberg et al [3], and Downie et al [4]. Details of the 
model and experimental set-up are given by Downie et al 
[4]. Nygaard et al [5], and, Stansberg et al [3]. The model 
was built to 1:100 scale and consist of a conventional spar 
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shaped upper hull and a lower truss section. It was designed 
and constructed at the University Of Newcastle, UK. The 
main dimensions are shown in Fig. 1. In this paper two 
different types of solid square heave plates were used. The 
sides of the large plates are 33.5m and the small plates are 
29.5m. 

Fig.1 Geometry and Dimensions of the Truss Spar [6]

II. EQUATION OF MOTION

The rigid body motions can be modeled by Newton's
Second Law of Motion, Which in general is given in the 
following form: 

∑=
i

iFXM &&                                                                          (1)                                                           

    For a truss spar, (1) takes the form: 

( ) ( )tFKXXXBXmM =+++ &&&&                                (2) 

    Where M, m, B and K are the matrices of physical mass, 
added mass, quadratic damping and stiffness 

respectively, X , X&  and X&&  are the structural displacement, 
velocity, and acceleration vector respectively and F(t) is the 
excitation force vector. The presence of non-linear damping 
and restoring forces make (2) non-linear therefore the non-
linear damping and restoring stiffness must be linearized. 
The non-linear damping term is linearized by assuming an 
effective linear damping which would dissipate the same 
energy at resonance as the non-linear damping [1]-[7]. Also, 
for mooring lines one can assume that the restoring mooring 
force change linearly when given a small change in 
displacement from steady state position. For computed 

matrices of added mass, damping, restoring and excitation 
force, the truss spar divided into three sub-structures; hull, 
truss and heave plates. Also, by assuming that there will be 
no hydrodynamic interaction between the substructures, each 
substructure can be analysed separately. The wave frequency 
response analysis is performed by combining two sub 
problems. First, the loading from the incident waves are 
calculated when the structure is restraint from moving. Then, 
the reactive added mass, damping and restoring terms are 
obtained by oscillating the structure in otherwise calm water. 
First form called radiation problem and second form called 
diffraction problem. 

III. TRANSMISSION MATRIX AND DIRECT COSINES

     In this paper for computed matrices of added mass, 
damping and excitation forces of truss section used the 
transmission matrix. By transmission matrix, transfer 
different parameters from wave reference system 
(

www zyx ,, ), and structure reference system (X, Y, Z) to the 

member reference system (u, v, w). All needful parameters 
calculated in the member reference system and then 
transferred into the structure’s reference system (Fig. 2). 

Fig. 2 Reference systems 

    For obtained the transmission matrix let us consider a Fig. 
3. Let i, j and k be the unit vector along m-, n- and q-axis, 
respectively. Similarly, let i’, j’ and k’ be the unit vector 
along the u-, v- and w- axis, respectively.  

Fig. 3 (u, v, w), (m, n, q) and (X, Y, Z) coordinates systems
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 Therefore, the relationship between the (u, v, w) and (m, n,- 
q) coordinate systems as follows: 

312111 ψψψ qnmu ++=

322212 ψψψ qnmv ++=                                                 (3)

332313 ψψψ qnmw ++=

    Where: 

( )um i  iii ,coscos...11 =′=′= θψ
rrrr

( )un i  jij ,coscos...21 =′=′= θψ
rrrr

( )uq i  kik ,coscos...31 =′=′= θψ
rrrr

( )vm j  iji ,coscos.'.'.12 === θψ
rrrr

( )vn j  jjj ,coscos.'.'.22 === θψ
rrrr

                                 (4)                         

( )vq j  kjk ,coscos.'.'.32 === θψ
rrrr

                                    

( )wmk  iki ,coscos.'.'.13 === θψ
rrrr

( )wnk  jkj ,coscos.'.'.23 === θψ
rvrv

( )wqk  kkk ,coscos.'.'.33 === θψ
rrrr

    Equation (3) in matrix form can be written as follows: 

⎪
⎭
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⎬
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⎩
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⎨
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⎥
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⎩
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ψψψ
ψψψ
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                                          (5) 

    Also from Fig. 3 we have: 

⎪
⎩

⎪
⎨

⎧

−=
−=
−=

 ZZq

  YYn

XXm

1

1

1

                                                                        (6) 

   Therefore the transmission matrix with substituting from 
(6) into (5) yields, 
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⎟
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                       (7) 

    Where TZYX ),,( 111  is coordinate of one end of the 

cylinder and 'ijψ s (i, j= 1, 2, 3) are the direction cosines. 

    By (7) we can transfer different parameters from structure 
reference system into the member reference system. Now for 
transfer the parameters from member reference system into 
the structure reference system we can write: 

Z

Y

X

w

v

u

Z

Y

X

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
−

1

1

1

1

332313

322212

312111

ψψψ
ψψψ
ψψψ

                       (8)  

    Since, direct cosines matrix is orthogonal, we can say that 
inverse matrix equal to transpose matrix. Equation (8) 
therefore may be written as follows: 

Z
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                      (9) 

                          
    By (9) we can transfer different parameters from member 
reference system into the structure reference system. 

IV. CALCULATION OF ADDED MASS COEFFICIENTS

    The added mass concept arises from the tendency of a 
submerged body moving acceleration realative to the 
surronding fluid to induce accelerations to the fluid. These 
fluid accelerations require forces which are exerted by the 
body through a pressure distribution of the fluid on the body. 
Since the submerged body, in effect, imparts acceleration to 
some of the surronding fluid, this phenomenon can be 
equated to the body having an added mass of fluid attached 
to its own physical mass [8]. For computed added mass 
coefficients, the truss spar divided into three sub-structures; 
hull, truss and heave plates. The added mass coefficients 
calculated for each sub-structure then we can simply add the 
results together to find the added mass coefficients of whole 
structure. The added mass coefficients are determined from 
the solution to the radiation problem. In this case, the Truss 
Spar oscillating in otherwise calm water. 
    For truss section added mass coefficients computed by 
transmission matrix and normal acceleration acting on each 
circular cylinder. The derivation of the generalized added 
mass matrix for an arbitrarily oriented circular cylinder 
depends on the assumption that only added mass forces 
normal to the cylinder axis are significant [8]. The added 
mass force of circular cylinder with length l when given 
normal acceleration 

Na   is [8] 

NF
A

N alAF ..=                                                                 (10) 

Where: 

2rCA aF ρπ=                                                                  (11) 

  FA , is the added mass force per unit length of a circular 

cylinder with radius r when given unit acceleration. aC , is 

the added mass force coefficient and ρ  is the density of 

water.     
    For circular cylinder, 1=aC .  From (7) we obtain 

ZYXu &&&&&&&& 312111 ψψψ ++=
ZYXv &&&&&&&& 322212 ψψψ ++=                                                 (12) 

ZYXw &&&&&&&& 332313 ψψψ ++=
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   Since we assumed that the platform oscillates in the X and 

Y directions only, therefore, Z&& equal to zero. Substituting 
from (10), (11), (12) into (9) yield 

YlAXlA

YlAXlA

YlAXlA

F

F

F

FF

FF

FF

T

TA
sway

TA
heave

TA
surge
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⎭

⎪
⎬

⎫

⎪
⎩
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⎨
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⎥
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⎭
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⎨

⎧
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&&&&

&&&&

2313
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332313

322212

312111

.

.

.

ψψ
ψψ
ψψ

ψψψ
ψψψ
ψψψ

             (13) 

                                                                                           
   By expansion (13), we obtained the added mass 
coefficients for the coupled translational motions:
  

( )2
13

2
1211 ψψ += lAa F

T

( )2313221212 ψψψψ += lAa F
T

( )1323122221 ψψψψ += lAa F
T                                             (14) 

( )2
23

2
2222 ψψ += lAa F

T

   For computing added mass coefficients, 31a , 32a , we must 

first obtain the added mass forces on strip of length du of the 
cylinder due to surge and heave motions, these strip forces 
will contribute to a pitch moment due to the lever arm R (see 
Fig.- 4) then, obtain the total pitch moment due to surge and 
heave accelerations by integrating along the cylinder. 
Therefore: 

Y du X
l

a
X du X

l

a
F

l Tl T
TA ..

0

11

0

21.
1,3

&&&& ∫∫ −=

( )XYaXa       m
T

m
T &&

1121 −=                                               (15) 

                                                                                       
Where: 

2
21 XX

X m

+=  , 
2

21 YY
Ym

+=                                       (16) 

    Therefore, we find the added mass coefficient, Ta31

m
T

m
TT YaXaa 112131 −=                                                       (17) 

Fig. 4 Definition of velocity, acceleration, moment lever,   
forces and moments 

Similarly, 

m
T

m
TT YaXaa 122232 −=                                                      (18) 

     To obtain the added mass force due to pitch acceleration 
one needs to find the linear acceleration at a point (X, Y, Z) 

due to the angular accelerationθ&& . The tangential 
acceleration is given as: 

RAN .θ&&=                                                                          (19) 

    Or as X- and Y components: 

Y
R

Y
RAA N

N
X ...sin. θθθ &&&& −=−=−=

X
R

X
RAA N

N
Y ...cos. θθθ &&&& ===                                     (20) 

    Then the added mass force on a strip with length du due 
to pitch acceleration is given as: 

duA
l

a
duA

l

a
dF N

Y

T
N
X

T
TA .... 1211.

3,1 +=

duA
l

a
duA

l

a
dF N

Y

T
N
X

T
TA .... 2221.

3,2 +=                                 (21) 

    Now substituting from (20) into (21) and integrating along 
the cylinder axis the added mass coefficients becomes 

m
T

m
TT YaXaa 111213 −=

m
T

m
TT YaXaa 212223 −=                                                      (22) 

    The added mass coefficients for pitch moment due to 
pitch acceleration are obtained by first transforming the 
angular acceleration into linear acceleration in X- and Y- 
direction. These linear accelerations are causing added mass 
forces on the cylinder, which again results in a pitch moment 
due to the lever arm R. The expression for the total moment 
is given as 

duYX
l

a
duXY

l

a
duY

l

a
F

l Tl Tl T
TA .........

0

21

0

122

0

11.
3,3 θθθ &&&&&& ∫∫∫ −−=

duX
l

al T

... 2

0

22 θ&&∫+                                                                (23) 

                                                                                             
    Therefore, by integrating along the cylinder axis the 
added mass coefficient become: 

n
T

n
T

n
T

n
TT XaXYaXYaYaa .... 2221121133 +−−=                  (24) 

    Where: 
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( )

( )

( ) ( )22212111

0

2
221

2
1

0

2

2
221

2
1

0

2

22
6

11

3

11

3

11

YXXYYXYXduXY
l

XY

YYYYduY
l

Y

XXXXduX
l

X

l

n

l

n

l

n

+++==

++==

++==

∫

∫

∫
(25) 

    For spar hull, added mass coefficients in surge and pitch 
can be obtained by using strip theory as described by 
Faltinsen and Newman [9]-[10]. The added mass coefficient 
in heave can readily be obtained by using a flat disk 
approach if one assumes the bottom to be far below the free 
surface. Let us consider a spar hull as shown in the following 
figure: 

Fig. 5 The spar hull in waves    
        

 From strip theory, the added mass force in surge is given as 

XdrCXdyrCF a

d

a
HA &&&& .. 22

0
.

1,1 ρπρπ == ∫
−

                       (26)      

                    
   Therefore 

drCa a
H 2
11 ρπ=                                                               (27) 

For heave motion, when using the disc approach, it becomes 
[8] 

3
22 3

8

2

1
r aH ρ=                                                                   (28) 

    Since the water is only accelerated on one side of the disc. 

    The spar hull is vertical and symmetric body, therefore: 

00 12
,

2,1 =→= HHA aF

00 21
,

1,2 =→= HHA aF                                                      (29) 

    For computing added mass coefficients, 31a , 32a , we must 

first obtain the added mass forces on strip of length du of the 
spar hull due to surge and heave motions, these strip forces 
will contribute to a pitch moment due to the lever arm 
( )GYy −  (see Fig. 5) then, obtain the total pitch moment due 

to surge and heave accelerations by integrating along the 
hull.  

( ) Xdy YyrCF
d

Ga
HA &&.

0
2.

1,3 ∫
−

−−= ρπ

( )XdYdrC       Ga
&&

2.2 += ρπ   

                                      (30) 
Therefore: 

( )2.2
31

dYdrCa Ga
H += ρπ                                             (31) 

Since, spar hull is vertical and symmetric body, therefore: 

00 32
.
2,3 =→= HHA aF                                                      (32) 

    To obtain the added mass force due to pitch acceleration 
one needs to find the linear acceleration due to the angular 
accelerationθ&& . The tangential acceleration is given as 

θ&&.RAN =                                                                        (33) 

    Or as X- and Y components: 

θ&&.RAN
X −=

0=N
YA                                                                             (34) 

In which, 

( )GYyR −=                                                                     (35) 

                                                                 
    Then the added mass force on a strip with length dy due to 
pitch acceleration is given as 

dyA
d

a
dF N

X

H
HA ..11.

3,1 =

dyA
d

a
dF N

Y

H
HA ..22.

3,2 =                                                       (36) 

    Now substituting from (34) and (35) into (36) and 
integrating along the hull axis the added mass coefficients 
becomes 

( )2.1113
dYaa G

HH +=

023 =Ha                                                                              (37) 

    The added mass force in pitch can be written as

RdFdF HAHA ..
3,1

.
3,3 −=

( ) dy Yy
d

a
G

H

... 211 −= θ&&                                                       (38) 

    Therefore, by integrating along the hull axis the added 
mass coefficient become: 
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⎥
⎦

⎤
⎢
⎣

⎡
++= 22

3
2

33 3
dYdY

d
rCa GGa

H ρπ                                 (39) 

The added mass coefficient for a square heave plates is 
given as [8] 

3
22 4

BCa P
a

P πρ=                                                             (40) 

Where 

58.0≅P
aC                                                                        (41) 

V. CALCULATION OF VISCOUS DAMPING COEFFICIENTS

    There are two types of hydrodynamic damping forces that 
may be experienced on the floating structure which oscillate 
near or on the free surface [7]. 

1. Wave damping forces due to the dissipation of energy in 
the form of surface waves generated by the rigid body 
motion. 

2. Viscouse damping forces due to turbulent flow and flow 
separation in the lee of body. 

    The viscous damping force is nonlinear. For the truss spar 
the wave damping is assumed to be insignificant and 
therefore neglected. The viscous damping force is assumed 
to be significant for the truss section and steel plates, but 
also important for the spar hull. This force is proportional to 
the velocity squared given as [1], 

jX  jXbF ij
d
ji

&& ., =                                                              (42) 

  Where, ijb , is the viscous damping coefficient. 

  The viscous damping coefficients can be obtained in a 
similar way as for the added mass coefficients, except that 
the force is now proportional to the velocity squared instead 
of the acceleration normal to the cylinder axis. 
    For truss section damping coefficients computed by 
transmission matrix and normal velocity acting on each 
circular cylinder. The derivation of the generalized damping 
matrix for an arbitrarily oriented circular cylinder depends 
on the assumption that only damping forces normal to the 
cylinder axis are significant [1]. The drag force of circular 
cylinder with length l when given normal velocity 

NU   is 

NNF
D

N UUlDF ...=                                                       (43) 

  Where: 

rC D DF ρ=                                                                   (44) 

  
FD , is the drag force per unit length of a circular cylinder 

with radius r when given unit velocity. DC , is the drag force 

coefficient and ρ  is the density of water.     

    For circular cylinder, 6.0=DC .  From (7) we obtain 

YXu &&& 2111 ψψ +=
YXv &&& 2212 ψψ +=                                                            (45) 

YXw &&& 2313 ψψ +=

    Substituting from (43), (44) and (45) into (9) yield 

Y Y  lDXX  lD

Y Y  lDXX  lD

Y Y  lDXX  lD

F

F

F

FF

FF

FF

T

TD
sway

TD
heave

TD
surge

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+
+
+

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

&&&&

&&&&

&&&&

........

........

........

23231313

22221212

21211111

332313

322212

312111

.

.

.

ψψψψ
ψψψψ
ψψψψ

ψψψ
ψψψ
ψψψ

              (46) 

   By expansion (3), we obtained the damping coefficients 
for the coupled translational motions: 
  

( )13
2
1312

2
1211 ψψψψ   .  . lDb F

T +=

( )23231322221212 .... ψψψψψψlDb F
T +=

( )13132312122221 ... ψψψψψψ  . lDb F
T +=

( )23
2
2322

2
2222 ψψψψ   .  . lDb F

T +=                                  (47) 

- Computing drag coefficients, Tb31 , Tb32 : 

Y du XX
l

b
X du XX

l

b
F

l Tl T
TD ....

0

11

0

21.
1,3

&&&& ∫∫ −=

( ) XXYbXb       m
T

m
T && .1121 −=                                         (48) 

   Where: 

2
21 XX

X m

+=  ,  
2

21 YY
Ym

+=                                     (49) 

   Therefore, we find the drag coefficient, Tb31
: 

m
T

m
TT YbXbb 112131 −=                                                        (50) 

    Similarly, 

m
T

m
TT YbXbb 122232 −=                                                        (51) 

- Computing drag coefficients, Tb13 , Tb23 : 

    The tangential velocity is given as: 

RU N .θ&=                                                                        (52) 

    Or as X- and Y components: 

Y
R

Y
RUU N

N
X ...sin. θθθ && −=−=−=
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X
R

X
RUU N

N
Y ...cos. θθθ && ===                                    (53) 

    Then the added mass force on a strip with length du due 
to pitch velocity is given as: 

du U U 
l

b
duUU 

l

b
dF N

Y
N
Y

T
N
X

N
X

T
TD .... 1211.

3,1 +=

du U U 
l

b
duUU 

l

b
dF N

Y
N
Y

T
N
X

N
X

T
TD .... 2221.

3,2 +=               (54) 

    Now substituting from (53) into (54) and integrating along 
the cylinder axis the drag coefficients becomes 

p
T

p
TTD X   . bY   . bF .. 1211

.
3,1 θθθθ &&&& +−=

p
T

p
TTD X   . bY   . bF .. 2221

.
3,2 θθθθ &&&& +−=                              (55)   

                        
Then, 

p
T

p
TT YbXbb 111213 −=

p
T

p
TT YbXbb 212223 −=                                                        (56)                                                                                    

     
Where 

( )( )
( )( ) ( )⎪⎩

⎪
⎨
⎧

<−+

≥++
== ∫ 03

031

2112
3
2

3
12

21
2
221

2
1

0 XX for  XXXXXsign

XX for    XXXXXsign
du X X

l
X m

l

p

( )( )
( )( ) ( )⎪⎩

⎪
⎨
⎧

<−+

≥++
== ∫ 03

031

2112
3
2

3
12

21
2

221
2

1

0 YY for  YYyYYsign

YY for    YYYYYsign
du Y Y

l
Y m

l

p

                                                                                          (57) 
       
                                                                             

- Computing drag coefficient, Tb33 : 

XdFYdFdF TDTDTD .. .
3,2

.
3,1

.
3,3 +−=                                       (58) 

    Now substituting from (54) into (58) and integrating along 
the cylinder yields, 

duXX
l

b
duYYX

l

b

duXXY
l

b
duYY

l

b
F

l Tl T

l Tl T
TD

.......

.......

2

0

22

0

21

0

122

0

11.
3,3

θθθθ

θθθθ

&&&&

&&&&

∫∫

∫∫

+−

−=
        (59)                                                                                      

    
 Therefore, by integrating, the added mass coefficient 
becomes: 

X
T

YXY
T

XYX
T

Y
TT IbIbIbIbb .... 2221121133 +−−=                 (60) 

    Where: 

( )( )
( )( )

( )
  

YY for
YY

YYYYYYYYsign

YY for   YYYYYYYsign

duYY
l

I

m

l

Y

⎪
⎩

⎪
⎨

⎧

<
−

++++

≥+++
=

= ∫

0
24

04

1

21
12

4
1

3
2

2
212

2
1

3
12

21
3

2
2

212
2

1
3

1

0

2

(61)                 

( )( )
( )( )

( )
  

XX for
XX

XXXXXXXXsign

XX for   XXXXXXXsign

duXX
l

I

m

l

X

⎪
⎩

⎪
⎨

⎧

<
−

+
+++

≥+++
=

= ∫

0
24

04

1

21
12

4
1

3
2

2
212

2
1

3
12

21
3
2

2
212

2
1

3
1

0

2

                 
(62) 

du XYX
l

I
l

XYX ∫=
0

1

( ) ( )

( ) ( )

( )
( )

  

XX for                                    
XX

XYXYXYX

XXXXYXXXXY

XX for   
XXXXYXXXXY

21

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<
−

−−
+

+++++

≥+++++

=

0
6

34
12

2332

0
12

2332

212
12

121121
3
1

2
221

2
11

2
221

2
12

2
221

2
11

2
221

2
12

      (63)
                                                                                                          

du YXY
l

I
l

YXY ∫=
0

1

( ) ( )

( ) ( )

( )
( )

  

YY for                                  
YY

YXYXYXY

YYYYXYYYYX

YY for       
YYYYXYYYYX

21

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<
−

−−+

+++++

≥+++++

=

0
6

34

12

2332

0
12

2332

212
12

121121
3

1

2
221

2
11

2
221

2
12

2
221

2
11

2
221

2
12

                                                                                  (64) 
- Spar Hull 

    The viscous damping force on the spar hull is assumed to 
be significant in surge and pitch only. The damping 
coefficient for the spar hull can be obtained by strip theory, 
as for added mass.From strip theory, the damping force in 
surge is given as 

X Xrd CdyX Xr CF D

d

D
HD &&&& .

0
.

1,1 ρρ == ∫
−

                 (65) 

   Therefore 

rd Cb D
H ρ=11                                                                 (66) 

    The spar hull is vertical and symmetric body, therefore: 
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00 12
,

2,1 =→= HHD bF

00 21
,

1,2 =→= HHD bF   

                                                                                          (67) 

- Computing drag coefficients, Hb31 , Hb32 : 

( ) XXdy YyrCF
d

GD
HD &&.

0
.

1,3 ∫
−

−−= ρ

( ) XXdYrdC       GD
&&

2. += ρ                                       (68) 

    Therefore: 

( )2.31
dYrdCb GD

H += ρ             

                                     (69) 
    Since, spar hull is vertical and symmetric body, therefore: 

00 32
.

2,3 =→= HHD bF                                                      (70) 

- Computing drag coefficients, Hb13 , Hb23 : 

    The tangential velocity is given as: 

θ&.RU N =                                                                        (71) 

    Or as X- and Y components: 

θ&.RU N
X −=

0=N
YU                                                                            (72) 

    Then the drag force on a strip with length dy due to pitch 
velocity is given as: 

dyUU
d

b
dF N

X
N
X

H
HD ..11.

3,1 =

dyUU
d

b
dF N

Y
N
Y

H
HD ..22.

3,2 =                                              (73) 

                                                                                              
    Now substituting from (72) into (73) and integrating along 
the hull axis the drag coefficients becomes: 

   

dY  for              YdY
d

bb

dY  for      YdY
d

d

Y
bb

GGG
HH

GGG
GHH

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−=

−<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++=

.
3

.

.
33

2
.

2
2

1113

2
23

1113

                                                                                          (74) 

023 =Hb

    The drag force in pitch can be written as 

RdFdF HDHD ..
3,1

.
3,3 −=

( ) ( )( ) ( )GGG

H

Yydy YyYy
d

b
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−−−= ...11 θθ &&              (75) 

     Therefore, by integrating along the hull axis the added 
mass coefficient become: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++=

−<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++=

dY  for    YdYdY
d

d

Y
bb

dY  for             YdYdY
d

bb

GGGG
GHH

GGGG
HH

322
34

1133

322
3

1133

2

3

42

2

3

4

                                                      (76) 

- Heave Plates 

    The drag coefficient for a square heave plates is given as   
[8] 

2
22 2

1
B Cb P

D
P ρ=                                                            (77) 

    Where 

2=P
DC                                                                            (78) 

VI. CALCULATION OF RESTORING COEFFICIENTS

    The stiffness properties of the truss spar can be separate 
into two components; hydrostatic stiffness and mooring line 
stiffness. The mooring characteristic is non-linear, but one 
can assume that the restoring mooring force change linearly 
when given a small change in displacement from a steady 
state position. Also, for small amplitudes, the hydrostatic 
restoring forces are linearly proportional to displacement. 
The linear stiffness matrix can be written as 
  

mooringchydrostati KKK +=                                             (79) 

    The hydrostatic component obtained from basic stability 
theory, which gives the following coefficients: 

2
22 rggAK w
h πρρ ==

( ) ( )
4

4

33

r 
gyygGMgK GB

h πρρρ +−∀=∀=                 (80) 

    The restoring coefficients due to mooring stiffness can 
also obtained if one assume the mooring stiffness to be 
linear. Let xK , be the horizontal mooring stiffness, then 

[11], 

x
m KK =11

( )Gpx
m yyKK −=13

( )Gpx
m yyKK −=31                                                         (81) 

( )2
33 Gpx
m yyKK −=
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VII. CALCULATION OF EXCITATION FORCES

    The first order wave exciting forces and moments on the 
truss spar are loads on the stationary structure due to linear 
incident waves (Diffraction problem). The methods used are 
very much dependent on the size and geometry of the 
structure. The truss spar consists of a large volume hull and 
a truss section with slender structural members. Diffraction 
of waves becomes important on the spar hull and Morison’s 
approach will give a good approximation for calculating the 
forces on the truss section where diffraction is small. Since 
the truss section is far below the free surface, and drag force 
decay fast with depth, the drag forces are assumed to be 
negligible. Further, by assuming that there is no interaction 
between the structural components, the structure can be 
separated into smaller sub structures. In other words, the 
forces are calculated seperately for each structural 
component, then added together to obtain the total wave 
exciting force on the truss spar. 

- Truss Section  

    The truss section is a framework of circular members with 
different dimensions and inclined in different directions. 
This complex geometry makes it difficult to predict the wave 
excitation forces. By assuming that there will be no 
hydrodynamic interaction between the memebers each 
member can be analysed separately. Then the forces for each 
member are summed together to obtain the total force. The 
drag force is assumed to be insignificant and is therefore 
neglected. The Morison equation reduces to the inertia term 
only. A modified inertia term of Morison’s equation can be 
written as 

( ) na
n arCdF 21 ρπ+=                                                   (82) 

   Where 
aC is the added mass coefficient and na is the fluid 

acceleration normal to the cylinder axis, evaluated at the 
center of the cylinder. The radius of the cylinder is r. For 
simplicity, let the structure reference system be aligned with 
the wave reference system except for the origin. The orogin 
is placed at the center of gravity instead of the mean free 
surface. (See Fig.  2), i.e. 

Zz

YYy

Xx

w

Gw

w

=
+=

=
                                                                   (83) 

    The total inertia force is obtained by integrating this strip 
force along the cylinder axis. The force components in the 
member reference system’s v- and w-direction can be shown 
to be [7], 

( )
⎭
⎬
⎫

⎩
⎨
⎧

++= ∫ ∫
l l

yxaIw duUduUrCF
0 0

2313
21 && ψψρπ

( )
⎭
⎬
⎫

⎩
⎨
⎧

++= ∫ ∫
l l

yxaIv duUduUrCF
0 0

2212
21 && ψψρπ            (84) 

  Where 
xU& and yU& are the horizontal and vertical fluid 

particle acceleration. By using (83), trigonometric identities 
and integrating, the expressions above can be rewritten as 

( )
( ) ( )[ ] tilikkXi

Iw e ee
ik

AF ωψψφ

ψψ
ψψ −++ −

+
+

= 1112111

1121

2
23

2
13

( )
( ) ( )[ ] tilikkXi

Iv e ee
ik

AF ωψψφ

ψψ
ψψ −++ −

+
+

= 1112121

1121

2
22

2
12      (85) 

Where 

( ) ( )GYYk
wa e kHrgCA ++−= 121

2

1 πρ

23

13
1tan

ψ
ψφ =   ,   

22

12
2tan

ψ
ψφ =                                            (86) 

                                                                                             
    Further, the inertia term of the pitch moment is given as 

( ) [ ]

( )
( )

( )
( ) ( )121221131231

11211121

2
23

2
1332

2
22

2
1233

1121

11
1121

12

1

ψψψψ
ψψψψ

ψψψψψψ
ψψ

ψψ

φφ

YXFYXF

ik
e

ik
l

ee
ik

Ae
M

IvIw

lik

ii
ikX

I

−+−

+⎥
⎦

⎤
⎢
⎣

⎡

+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−

×+−+
+

=

+

                                                                                          (87)                 
               
    There is a special case for 

11ψ =
21ψ = 0, i.e. the strip force 

remains constant along the member. Then (85) and (87)      
reduces to 

( ) tikXi
Iw e leAF ωφψψ −++= 112

23
2
13

( ) tikXi
Iv e l eAF ωφψψ −++= 212

22
2
12                                     (88) 

[ ]
( ) ( )121221131231

2
2
23

2
1332

2
22

2
1233 2

121

ψψψψ

ψψψψψψ φφ

YXFYXF

l
eeAeM

IvIw

iiikX
I

−+−

++−+=

                                                                                              
    When the local member forces and moment are calculated 
by (85) and (87) or (88), it can be transformed into global 
forces along the principal axis, given by 

IvIwX FFF 1213 ψψ +=

IvIwY FFF 2223 ψψ +=                                                       (89) 

IZ MM =

    Then the forces and moments from each truss member are 
added together to obtain the total force on the truss section. 

- Spar Hull 

    The total surge force acting on the spar hull have been 
approximated using the linear diffraction theory of McCamy 
and Fuchs [12], although strictly speaking it applies to a 
bottom standing cylinder, and the spar hull is a truncated 
cylinder. The force can be written as [13],  
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( )[ ] tiikdwH e e ekrA
k

gH
F ωαρ −−−= 11

2
21

( )
( ) ( )2'

1
2'

1

1

krYkrJ
krA

+
=                                            (90) 

( )
( )krY

krJ
'

1

'
1

1tan =α

    Where d is the distance from bottom of the hull to the free 
surface (see Fig. 5), and r is the radius of the hull 
and ( )krJ '

1 ,  ( )krY '
1

 are the first order Bessel functions of 

first and second kind, respectively. 

Weggle & Rosset [14], derived an expression for the total 
vertical diffraction force on truncated cylinder range of kr
values, ( )π<< kr0 .The expression was obtained by 

comparing the Froude-Krylov force on the bottom of a 
truncated cylinder with the vertical diffraction force obtained 
in experiments. From this comparison a diffraction 
coefficient ( )( )krsin5.01 −  was obtained. The Froude-Krylov 

force can be obtained by integrating the dynamic pressure 
over the bottom of the spar hull. Therefore: 

( )[ ] ( ) tiikd
w

H e e 
kr

krJ
krrgHF ωαπρ −+−⎟

⎠
⎞

⎜
⎝
⎛−= 212

2 sin5.01    (91)  

    The pitch moment can be obtained by integrating the 
product of the surge force given in (90) and lever arm R (see 
Fig. 5) along the cylinder axis. The pitch moment is given as 

XZ rdFdM −=                                                                 (92) 

Or 

( ) tii
G

kd
G

wH e e  
k

dYe
k

YkrA
k

gH
M ωαρ −−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++−⎟

⎠
⎞

⎜
⎝
⎛ += 1

112
23

                                                                                        (93)  
- Heave Plates 

    Since these solid plates are located far below the free 
surface drag forces are assumed to be small and therefore 
neglected. Also, there will not by any Froude-Krylov force 
due to the infinitesimal thickness. The plates do not 
contribute to the surge force and pitch moment is assumed to 
be small and neglected. The only significant wave force 
component on the plates is the vertical acceleration 
force.The heave force on square, solid plate at the depth 

1yy = is then given as 

y
PAP UMF &..

22 =                                                                 (94) 

    Where 
yU& the vertical fluid particle acceleration is is 

evaluated in the center of the plates, and PAM .
2

is the added 

mass coefficients for solid plate given as [15], 

3.
2 4 P

P
a

PA B CM πρ=                                                         (95) 

    Where 58.0=P
aC  and pB is solid plate side. 

  The heave force for a plate now becomes 

ti
P

ky2wP
a

P e B e 
H

CF 1 ωωρπ −−= 3
2 8

                                (96) 

   The total wave exciting force on the truss spar is obtained 
by adding the contributions from the spar hull, the plates and 
truss section. 

VIII. SOLUTION OF MOTION EQUATION

    The response of a truss spar in waves can be obtained by 
solving (2) when the force components are known. The 
viscous damping term gives a non-linear term in the equation 
of motion and must therefore be linearised [1]-[7]. This can 
be done by using the equivalent damping term. In other 
words, let eq

nlB  approximate XBnl
&  in (2) so that they both 

dissipate the same energy at resonance. This gives 

03

8
XBB nl

eq
nl π

ω=                                                           (97) 

    Where
0X ,

0Y  and 
0θ  are the amplitudes in surge, heave 

and pitch, respectively. 
    Introducing the equivalent linearised damping term into 
(2) gives a new set of equation, which must be solved by an 
iterative technique [1]. Equation (2) can now written as 
  

( ) tieq
nl eFKXXBXmM ω−=+++ 0

&&&                           (98) 

    When, complex notation is used. The solution is assumed 
to be harmonic, i.e. 

tieXX ω−= 0                                                                    (99) 

    Where,
0X , is a complex amplitude vector. The time 

derivative of X is given: 

tieXiX ωω −−= 0
&

tieXX ωω −−= 0
2&&                                                         (100) 

    Introducing (99) and (100) into (98) gives 

( )[ ] titieq
nl eFeXKBimM ωωωω −− =+−+− 00

2        (101) 

    And the solution becomes 
  

( )[ ] 0

12
0 FKBimMX eq

nl

−+−+−= ωω                       (102) 

    The response amplitudes are now given as complex 
numbers, 
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Where the magnitude is  

( ) ( ) ( )2Im2Remax iiii XXXX +==                           (104) 

    The response amplitude operator, RAO, is defined as the 
response divided by wave amplitude [16]. 

( ) ( )
w

ii

w

i
i H

XX

H

X
RAO

5.05.0

2Im2Re +
==                          (105) 

    The RAOs can be combined with a wave spectrum to 
obtaine the response spectrum. The response spectrum of the 
ith mode of motion is given as [16], 

( ) ( )ωω SRAOiRS i

2=                                              (106) 

    The response spectrum can thereafter be used to obtaine 
the significant response amplitude given as [16] 

( )∫
∞

=
0

, 2 ωω dRSX ii sig                                          (107) 

- Natural Frequency  

    The responses are expected to be significant at the 
structures natural frequencies (or resonance frequency) 
where the mass and restoring forces cancel. At or near these 
resonance frequencies, the truss spar will experience 
response of large amplitudes. However, these resonance 
responses are inversely proportional to the damping so that 
large damping gives small response. The undamped and 
uncoupled natural frequency is given as 

iiii

ii
i n mM

k

+
=,ω                                                     (108) 

IX. NUMERICAL STUDY

- Natural Frequency 

In Table I, the natural frequency in heave, surge and pitch 
compared with measured values reported by Stansberg et al 
[3]. 

TABLE I 
 Natural frequencies 

L.P, large heave plates; S.P, small heave plates 

- Wave frequency response 

    The surge, heave and pitch responses of the truss spar are 
derived for a sea-state defined by the JONSWAP wave 
spectrum, with a significant wave height of 15m and a peak 
spectral period of 15s.  
    The RAOs for the truss spar with large and small heave 
plates are shown in the following figures. The estimated 
values are plotted together with the experimental results.  
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Fig. 6 Estimated and measured surge RAO with large, solid 
heave plates. 
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Fig. 7 Estimated and measured pitch RAO with large, solid 
heave plates. Surge 

motion 

Heave motion Pitch motion

L.P S.P L.P S.P 

Estimated 0.0123 0.197 0.247 0.102 0.102 

Measured 0.0123 0.209 0.251 0.102 0.097 

Deviation 
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0 -5.74 -1.59 0 5.15 
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Fig. 8 Estimated and measured surge RAO with small, solid 
heave plates. 
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Fig. 9 Estimated and measured pitch RAO with small, solid 
heave plates. 
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Fig. 10 Estimated and measured heave RAO with large, 
solid heave plates. 
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Fig. 11 Estimated and measured heave RAO with small, 
solid heave plates. 

   In Figs. 6, 7, 8,9,10 and 11, the RAOs estimated by (105).   
For the truss spar with small and large, solid heave plates are 
compared with the experimental results reported by Downie 
et al [4]. The measured RAOs for surge and heave 
displacement shows a small scattered formation. The 
estimated surge RAO correlates well with the measured 
RAO as a mean value. A local peak at the pitch natural 
frequency can be observed on the surge RAO. This is due to 
the coupling effect between surge and pitch. The estimated 
pitch RAO seems to be slightly over predicted compared to 
the experimental results. A small change in mass moment of 
inertia can give significant change in the pitch RAO, and 
since this is a large uncertainly in the input data, this is also 
expected to reflect the results. Nevertheless, the results are 
still comparable, even though it over predicts the measured 
results. The theoretical heave RAO shows good agreement 
with the experimental results.  

    The significant wave frequency response amplitudes 
obtained from the simulation and the experiment are 
summarized in Table II.  

TABLE II 
The significant response amplitude 

L.P, large heave plates; S.P, small heave plates 

For heave result where slightly over predicted.  

X. CONCLUSION

    In this article, the linear hydrodynamic analysis of a truss 
spar in random waves has been formulated and investigated 
theorically for three modes of motion. This investigation was 
done in order to understand the dynamic behaviour of a truss 

Surge 
motion 

Heave motion Pitch motion

L.P S.P L.P S.P 

Estimated 4.508 0.581 1.058 2.672 2.334 

Measured - 0.360 1.040 2.336 2.574 

Deviation 
(%) 

- 61.38 1.73 14.38 -9.32 
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spar in waves. Drag forces has been neglected, but viscous 
damping is considered in the calculations. The result has 
been used to develop a Matlab computer program, which 
solves the linear hydrodynamic analysis in frequency 
domain. Furthermore, the theorical work in this article has 
been validated against experimental results. The wave 
frequency response was well predicted by the theoretical 
model used. The estimated values for heave and pitch was 
over estimated but within acceptable limits.  

APPENDIX

-   Numerical data 

Mass and added-mass coefficients: M= 52100 tonne; 

33I = 297000000 2mtonne − ; 11a =50502.43tonne;      

12a = 21a = 0; 22a =150423.78 tonne (large heave 

plate); 22a =76092.88 tonne (small heave plate);    

13a = 31a =-388068.6tonne-m; 23a = 32a =0; 

33a =51143498.77 2mtonne − . 

Restoring coefficients: 11K =15.5 kN/m; 31K = -155kN; 

13K = -155kN; 22K = kN/m. 33K = 3317284.381 kN. 

Damping coefficients: 11b = 1385.57tonne/m;                 

13b = 8379186.21tonne-m; 31b =67151.33 tonne;           

33b = 1118595134.39 2mtonne − ; 22b =8387.01tonne/m 

(large heave plate); 22b =5315.85 tonne/m (small heave 

plate). 

REFERENCES  

[1] M. Patel, J. Witz, “Compliant Offshore structures,” Butterworth-
Heinemann Ltd.: Oxford, UK, 1991. 

[2] S. Chakrabarti, “Hydrodynamics of Offshore Structures,” 
Computational Mechanics Publications, Southampton.ISBN 0 
905451 66 X, 1987. 

[3] CT. Stansberg, I. Nygaard, H. Ormberg, et al, “Deep-water truss spar 
in waves and current-experiments vs. time-domain coupled 
analysis,” Deep Offshore Technology Conference, Rio de Janeiro, 
2001. 

[4] MJ. Downie, JMR Graham, C. Hall, et al, “An experimental 
investigation of motion control devices for truss spars,” Marine 
Structures 13:75-90, 2000. 

[5] I.  Nygaard, W.  Lian, CT. Stansberg, “Motion behaviour of a truss 
spar in deep water,” Deep Offshore Technology Conference, New 
Orleans, 2000. 

[6] K. Sadeghi, A. Incecik, “An Approximation Model for the First- and 
Second-Order Dynamic Response Analysis of Truss Spar platforms,” 
25th conf. on Offshore Mechanics and Arctic Engineering, Hamburg, 
Germany, 2006. 

[7] A. Incecik, “Design Aspects of Hydrodynamic and structural 
Loading on Floating Offshore Platforms under Wave Excitation,” 
PhD thesis University of Glasgow, UK, 1982. 

[8] M. Patel, “Dynamics of Offshore Structures,” Butterworth-
Heinemann, ISBN 10:0 408 01074 6, 1989. 

[9] O. Faltinsen, “Sea Loads on Ships and Offshore Structure,” 
Cambridge, Ocean Technology Series, Cambridge University Press, 
Cambridge, UK. ISBN 0 521 45870 (paperback), 1990. 

[10] J.N. Newman, “Marine Hydrodynamics,” The MIT press, 
Massachusetts, USA. ISBN 0 262 14026 8, 1977. 

[11]  B. Mekha, D. Weggel, C. Johnson, J. Rosset, “Effects of Second 
order Diffraction Forces in the Global Response of Spars,” in’ 
Proceeding of the sixth International Offshore and Polar Engineering 
Conference’, Vol. 1, The International Society of Offshore and Polar 

Engineers, ISOPE, Los Angeles, USA, pp. 273-280, ISBN 1 880653 
23 0 (vol. 1), 1996. 

[12] R.C.  McCamy, RA. Fuchs, “Wave Forces on Pile: A Diffraction 
Theory,” US Army Corps of Engineering, Beach Erosion Board, 
Technical Memo No. 69 pp 1-13, Washington, DC, 1954. 

[13] JM. Niedzwecki, AS. Duggal, “Wave run-up and forces on cylinder 
in regular and random waves,” J Waterway Port Coast Ocean Eng 
118:615-634, 1992. 

[14] D. Weggel, J. Rosset, “Vertical hydrodynamic forces on truncated 
cylinders,” in’Proceedings of the fourth International Offshore and 
Polar Engineering Conference’, Vol. 3, The International Society of 
Offshore and Polar Engineers, ISOPE, Osaka, Japan, pp. 210-217. 
ISBN 1 880653 13 3 (vol. 1), 1994. 

[15] T. Sarpkaya, M. Isaacson, “Mechanics of Wave Forces on Offshore 
Structures,” van Nostrand Reinhold Company, New York, USA. 
ISBN 0 442 25402 4, 1981. 

[16] A. Incecik, “Lecture notes in mar855 advanced offshore design,” 
Department of Marine Technology, University of Newcastle, UK, 
1999.


