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Abstract—This paper deals with the current space-vector 

decomposition in three-phase, three-wire systems on the basis of 
some case studies. We propose four components of the current space-
vector in terms of DC and AC components of the instantaneous 
active and reactive powers. The term of supplementary useless 
current vector is also pointed out. The analysis shows that the current 
decomposition which respects the definition of the instantaneous 
apparent power vector is useful for compensation reasons only if the 
supply voltages are sinusoidal. A modified definition of the 
components of the current is proposed for the operation under 
nonsinusoidal voltage conditions. 

 
Keywords—Active current, Active filtering, p–q theory, Reactive 

current.  

I. INTRODUCTION 
wide variety of approaches have been proposed to 
decompose the current waveform into various 

components in the general case of nonsinusoidal conditions 
[1]–[4]. Especially, the decomposition into necessary and 
useless components is needed for the control of compensators 
such as active filters. 

In 1983, Akagi and his coauthors introduced the so-called 
“p–q theory” in three-phase, three-wire systems which was 
expected to be valid for any instantaneous variation of voltage 
and current [3]. This theory uses the complex space vector 
theory and introduces the concepts of instantaneous active 
power (p) and instantaneous reactive power (q). Then, the 
definitions of d and q-axis instantaneous active and reactive 
currents use only the instantaneous powers and the voltages in 
d-q coordinates [4]. Many extensions of the original p-q 
theory have been developed [5]–[7].  

However, some conceptual limitations of this theory were 
pointed out by Willems in [8], [9]. Moreover, Professor L.S. 
Czarnecki from Louisiana State University has investigated 
how power phenomena and properties of three-phase systems 
are described and interpreted by the instantaneous p–q theory 
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[10], [11]. The argumentation through which Czarnecki 
disagrees with the p-q theory is principally based on the 
relativity of the active and reactive character of the currents 
defined by Akagi and his followers. Czarnecki introduced his 
own current decomposition in 1988 [12]. These components 
are referred to as Current’s Physical Components (CPC) and 
used as a tool for study [13]. Still, there are discussions about 
p–q and CPC theories [14], [15]. 

The decomposition of the currents proposed by the authors 
avoids both terminology and interpretation ambiguities by 
practical examples.  

Under nonsinusoidal voltage conditions, the proposed 
components of the current do not respect the definition of the 
complex apparent power introduced by Akagi.  

II. P-Q THEORY AND CURRENT’S COMPONENTS 
The p–q theory introduced by Akagi and his coauthors uses 

the complex space-vector theory that implements a 
transformation from a reference system in R-S-T coordinates 
to a stationary system with only two orthogonal axes d-q [3].  

By using a space-vector notations, the complex apparent 
power ( s ) is calculated as [4], 

 

*

2
3 ius ⋅= . (1) 

 
It should be mentioned that the constant used in the space 

vector definition was selected to be 2/3, which is a non power 
invariant scaling. 

As a result, if the zero-sequence components are absent, the 
real part of the complex apparent power named as 
instantaneous active power may be expressed by using the 
peak-value scaled space-vector representation as 
 

{ } ( )qqdd iuiusp +==
2
3Re . (2) 

 
Moreover, the imaginary part of the complex apparent 

power named as instantaneous reactive power is 
 

{ } ( )dqqd iuiusq +−==
2
3Im  . (3) 

 
We specify that Akagi originally defined q as a negation of 

(3). 
The expression (1) allows expressing the current vector  
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where 2u  is the square of voltage space-vector modulus.  

Thus, the active ( ai ) and reactive ( ri ) components of the 
instantaneous current vector have been introduced [4]: 
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The names assigned to the previous currents have been 

criticized with good reason by Czarnecki [10] who has found 
examples in which the current defined by (5) has not 
corresponded to the active power, and the current defined by 
(6) has not corresponded to the reactive power. 

This remark is right because, as he has shown, the 
instantaneous powers p and q contain both active and reactive 
power as well as the components which characterize the 
nonsinusoidal and unbalanced power. 

III. CORRECT INTERPRETATION OF P-Q THEORY 
In order to obviate the above ambiguity, a possible 

decomposition of the current space-vector takes into account 
the DC components (P and Q) and the AC components ( ~p  
and ~q ) of the instantaneous powers p and q. Thus, the 
expression (4) of the current space-vector becomes 

 

( ) ( )[

( ) ( )( )]qd

qd

upPuqQj

uqQupP
u

i

~~

~~2
1

3
2

+++−+

++++⋅=
 (7) 

 
Starting from expression (7), the following current space-

vectors can be defined. 
1. The active and reactive current vectors ( ai  and ri ), 

whose components are: 
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2. The supplementary useless current vectors on account of 
~p  ( spi ) and ~q  ( sqi ), whose components are: 
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It is also possible to define the total supplementary useless 

current vector ( si ) as a sum of the two supplementary useless 
current vectors. Thus, its components are: 
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It is easy to see that the moduli of above vectors comply 

with the next orthogonality condition 
 

222
iiiii sqrspa =+++ . (13) 

 
As far as sum of ai , ri and si  moduli are concerned, it has 

been found that 
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By integrating (14), the next expression has been obtained 
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where aI , rI , sI and I  denote the rms values of ai , ri , 

si and i . 

It can be seen that the second term at the right side of (15) 
is zero only if u  is constant. It means that the rms values of 
the current components moduli are mutually ortogonal, i.e. 
 

2222 IIII sra =++ , (16) 
 
only under sinusoidal voltage conditions. 

If the voltages waveform is not sinusoidal, then u  is not 
constant and, consequently,  
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The proposed decomposition of the current gives us a new 
point of view on the reference current calculation for active 
power filters. Thus, if Akagi has focused his attention on 
powers to be compensated, we think that the concern has to be 
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on the supply current waveform. In this way, as mathematical 
solutions should not ignore practical implementation issues, it 
will result a diminution of the amount of calculation.  

Taking into account that the main goal is to obtain a supply 
current that has to provide only the required active power, the 
active filter has to provide the current vector 

 
aLF iii −=  , (18) 

 
where Li  is the load current vector. 

Therefore, in the reference current calculation, only one 
integral is to be made in order to calculate the active power. 

As it will be shown in next section, the above current 
decomposition is not useful for reference current calculation 
under nonsinusoidal voltages. It is pointed out that a simple 
replacement of u  with its rms value in expressions from (8) 
to (12) of the current components makes possible the use of 
this theory even if the voltages are not sinusoidal in shape. 

IV. CASE STUDIES 
Three case studies have been taken into consideration in 

order to validate the proposed current decomposition for 
compensation reasons. 

The simulations were carried out under Matlab-Simulink 
environment.  

A. Sinusoidal Voltages and Nonsinusoidal Currents  
Let us consider the thee-phase system with sinusoidal 

voltages and nonsinusoidal currents in the primary of a D/Y 
transformer which supplies a DC motor via a full controlled 
rectifier. The waveforms of phase voltage and distorted 
current for a control angle of 30° are shown in Fig. 1. 

 

 
Fig. 1 Phase voltage and current in the primary of the transformer 
 
As it can be seen in Fig. 2, the proposed active current 

waveform is sinusoidal, unlike the active current defined by 
Akagi in (5) (Fig. 3), although the both currents are in phase 
with the phase voltage. This happens because the Akagi’s 
active current contains both the proper active component and 
the distortion component. 

 

 
Fig. 2 Phase voltage and proposed active current waveforms  

 

 
Fig. 3 Phase voltage and active current defined by (5) 

 
As regards the proposed reactive component of the current, 

it has a sinusoidal shape like the active component, but shifted 
by 90° behind the voltage, as expected (Fig. 4). 

 

 
Fig. 4 Phase voltage and proposed reactive current waveforms 

 
Although the Akagi’s reactive current expressed by (6) lags 

the voltage by 90°, it is much distorted owing to its 
components which characterize the nonsinusoidal conditions 
(Fig. 5). 

 

 
Fig. 5 Phase voltage and reactive current defined by (6) 

 
As the active power transfer is achieved only on the 

fundamental frequency in the case of sinusoidal voltage 
conditions, the components of the current introduced by (5) 
and (6) have nothing in common with the meaning of the 
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active and reactive currents as used in electrical engineering 
[1], [8], [10], [11].  

Obviously, the trajectories of the active and reactive current 
space-vectors are circles only with the proposed definitions 
(Fig. 6). 

 

 
Fig. 6 Space-vector trajectories of the active current (a) and reactive 
current (b) defined by Akagi (thin line) and proposed (thick line) by 

(8) and (9)  
 

The total supplementary useless current according to (12) 
and its vector locus are shown in Fig. 7 and Fig. 8. 

 

 
Fig. 7 Phase voltage and total supplementary useless current 

 

 
Fig. 8 Space-vector trajectory of the supplementary useless current 

 

B. Nonsinusoidal Voltages and Balanced Resistive Load  
As voltages in the secondary of the transformer have low 

distortion level, we have chosen another case study to serve as 
a model to current decomposition. A three-phase balanced 
resistive load of R = 2 Ω is supplied by a three-phase 
nonsinusoidal voltage system as follows: 

 
( )ttuR ωω 5sin50sin1002 += ; 

( ) ( )( )325sin5032sin1002 πωπω −+−= ttuS ; (19) 

( ) ( )( )325sin5032sin1002 πωπω +++= ttuT . 

The waveforms of phase voltage and supply current are 
both nonsinusoidal but they are in-phase (Fig. 9). 

 

 
Fig. 9 Nonsinusoidal supply voltage and current waveforms in the 

case of purely resistive load  
 

As it can be seen, the active current, as defined by (8), is 
substantially different in shape compared to the supply voltage 
even in the case of linear load (Fig. 10). 

 

 
Fig. 10 Nonsinusoidal supply voltage and active current, as defined 

by (8), in the case of linear balanced load 
 
This situation is generated by the fact that the square of 

voltage vector modulus in active current component definition 
is time-dependent (Fig. 11). 

 

 
Fig. 11 Evolution of the voltage vector modulus 

 
As expected, the reactive component of the current does not 

exist and the supplementary useless current is shown in Fig. 
12. 

On the other hand, the linear character of the balanced load 
makes the Akagi’s current defined by (5) have the same 
waveform as the supply voltage in this particular situation 
(Fig. 13). 
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Fig. 12 Total supplementary useless current, as defined by (12), 

related to supply voltage in the case of linear balanced load 
 

 
Fig. 13 Akagi’s active current related to supply voltage in the case of 

linear balanced load 
 

C. Nonsinusoidal Voltages and Balanced Nonlinear Load  
In this example, a series RL load of R = XL = 2 Ω is 

supplied by the three-phase nonsinusoidal voltage system 
specified by (19). This time, the distorted current and voltage 
have different waveforms. Moreover, a delay of the supply 
current with respect to the supply voltage occurs in such a 
circuit (Fig. 14). 

 
Fig. 14 Nonsinusoidal supply voltage and current waveforms in the 

case of RL load  
 
The distorted active component of the current (Fig. 15), as 

defined by (8), has the following properties: its zero-passing 
coincide with the voltage zero-passing; it leads to an active 
power of 7.6 kW which is equal to the power consumed by the 
resistive component of the load; its rms value is of 29.4 A. 

The nonlinear character of the load makes the Akagi’s 
active current be much distorted with respect to the supply 
voltage (Fig. 16), unlike the purely resistive load situation 
shown in Fig. 13. 

As it can be seen in Fig. 17, the reactive current, as 
proposed by (9), lags the voltage by 90°. 

 

 
Fig. 15 Nonsinusoidal supply voltage and active current, as 

defined by (8), in the case of nonlinear balanced load 
 

 
Fig. 16 Akagi’s active current related to supply voltage in the case of 

nonlinear balanced load 
 

 
Fig. 17 Nonsinusoidal supply voltage and reactive current, as defined 

by (9), in the case of nonlinear balanced load 
 

D. Results Interpretation  
Taking into account the results obtained by analyzing the 

previous typical examples, some concluding remarks can be 
made evident with reference to decomposition of the 
nonsinusoidal current in three-phase, three-wire systems. 

1. The Akagi’s component of the current, as introduced by 
(5), can be an active one only if the load is linear and 
balanced. 

2. The component of the current, as proposed by (8), can be 
the active one only under sinusoidal voltage conditions for 
both linear and nonlinear balanced load. 

3. If the supply voltage system is not sinusoidal, the current 
proposed by (8) cannot be an active component. This result 
can be explained by the fact that the voltage vector modulus in 
the denominator has a time variation (Fig. 11). As a result, the 
harmonics spectrum of this component of the current is not the 
same with the voltage harmonics spectrum.  

The results in these simple case studies allow us to 
conclude that the current components expressed by (8)–(12) 
are not useful for reference current calculation in active 
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filtering if the voltages have not a sinusoidal shape. 
Indeed, for the second case study, if the compensation is 

achieved by a parallel active filter and its reference current is 
distorted related to the supply voltage, the rms value of the 
supply current is higher than the initial load current even if 
this new current provides the necessary active power, removes 
the AC component of the instantaneous active power ( ~p ) 
and has the same phase with the voltage. For example, in this 
case study, the rms initial load current is exceeded by about 
30% after compensation. Consequently, it is not a better 
solution. 

In the last case study, the component of the current defined 
by (8) contains harmonics whose order is 6k+1. Clearly, such 
a current generates active power only on fundamental 
frequency, which explains the rms value of 29.4 A of this 
current. 

4. In order to solve this aspect of the problem, the 
replacement of u  in (8)–(12) with its rms value is proposed, 
i.e. 
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After this replacement, the new active, reactive and 

supplementary useless components of the current are: 
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It is obvious that the use of expression (21) for the active 

current calculation makes this current keep the voltage 
waveform. In the case of last case study, the active current 
calculated with (21) provides the required active power with 
only 22.8 A rms value of this current (Fig. 18). 

 

 
Fig. 18 Nonsinusoidal supply voltage and active current, as 
defined by (21), in the case of nonlinear balanced load 

 

4. Undoubtedly, the proposed current decomposition based 
on complex apparent power vector is useful in the calculation 
of the reference current for active power filters. Thus, when 
total compensation is expected, the reference current requires 
only the load current and its active component. 
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