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Abstract—As there are also graph methods of circuit analysis in 

addition to algebraic methods, it is, in theory, clearly possible to 
carry out an analysis of a whole switched circuit in two-phase 
switching exclusively by the graph method as well. This article deals 
with two methods of full-graph solving of switched circuits: by 
transformation graphs and by two-graphs. It deals with the circuit 
switched capacitors and the switched current, too. All methods are 
presented in an equally detailed steps to be able to compare. 
 

Keywords— Switched capacitors of two phases, switched 
currents of two phases, transformation graph, two-graph, Mason’s 
formula, voltage transfer, summary graph. 

I. INTRODUCTION 

NALYSING electric circuits is necessary not only for 
computing of circuit properties but also for 
understanding their principles. Computer methods are a 

powerful tool for symbolic analysis of circuit parameters [1], 
[5]. But it is advantageous to have a tool capable of clear and 
simple symbolic analysis, too. Graph methods can be 
considered this tool. Thanks to its clarity, a graphic method is 
extremely suitable even for understanding of these networks. 
A clearly arranged set of transformation graphs derived for 
different types of switching circuits can be used for analyzing 
capacitor switched networks and of course for understanding 
them, too. The M-C signal flow graphs are used to design [1] 
and analyze [2] continuous time circuits and periodically 
switched linear circuits, too. 

II. SOLUTION OF SWITCHED CAPACITOR CIRCUITS 
A circuit with a switched capacitor has got the schematic 

wiring diagram shown in Fig.1. 
The circuit has five nodes; two switched capacitors 1C  

and 3C , capacitor 2C  and an ideal operational amplifier. We 
will show two methods of solving: a solution based on a 
transformation graph and a solution based on two-graphs. 

A. Solving Based on Transformation Graphs 
The circuit has five nodes; therefore the starting graph of 

the circuit in Fig.2 has also five nodes.  
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Fig. 1 schematic diagram of the SC circuit from the example 

 
The 1C  capacitor is connected to the second node, the 

2C capacitor then between the third and fifth nodes, which in 
the simplified starting graph in Fig. 2 is marked by noting 1C  
above the second node and 2C  between the third and fifth 
nodes. 

In the even-numbered EE phase nodes 1 and 2 will be 
connected by closing the switch, which is demonstrated in the 
graph by their transformation – uniting into a single node 
1E.=2E. The capacity in this resulting node is given generally 
by the relation α..~. QV aCaC = , where C~  is the capacity of the 
original node, Va , Qa  are then the branches of the 
transformation graph with the transfers of voltage  and 
of charge . Thus the resulting capacity here will be 1C .  

The operational amplifier is connected to the third node by 
its inverting input and into the fifth node by its output, and 
consequently the branch with the charge transfer of the 
transformation graph goes from the node 3, the branch with 
the voltage transfer of the transformation graph enters the 
node 5. Following this transformation graph, the capacity 2C  
connected between nodes 3 and 5 then transforms into the 
resulting capacity of the amount 2C− , as the capacitor 2C is 
connected to the node 3 by one of its ends, therefore the 
inherent loop at this node has the transfer 2C  and is 

transformed according to the equation α..~. QV aCaC = . The 
branch between the nodes 3 and 5 with the transfer 2C  is 
transformed to the inherent loop with the transfer 2C− , 

because in the relation α..~. QV aCaC =  is now 1−=α , as the 
branch of the original graph converts to the inherent loop in 
the resulting transformed graph. In the odd phase OO by 
closing the switch the nodes 2 and 3 will be connected and 
nodes 4 and 5 too, which will demonstrate in the graph by 
their transformation – uniting into a single node 2O.=3O. and 
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4O.=5O., and this resulting node is at the same time the input 
node of the operational amplifier. 
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Fig.2 the transformation graphs for EE, OO, EO and OE phases 

 
In the remaining phases EO and OE, we start, according to 

the equation α..~. QV aCaC = , along the branch with the voltage 
transfer Va from the resulting node to the original node and 
we enter back to the resulting node along the branch with the 
charge transfer Qa . The transformation graphs for all the four 
cases are in Fig.2. 

The summary graph obtained from the partial transformed 
graphs from the Fig.2 by the above mentioned procedure is 
then shown in Fig.3. First the results of the transformed 
graphs for EE and OO phases are plotted (in case of this 
example only) as nodes. 

In the next step, the results of the transformed graph for the 

EO and OE phases multiplied by 2
1

−
− z  or 2

1
−

z  are then drawn 
between these nodes as branches, i.e. the branch with the 

transfer ).( 1
2
1

Cz −−
−

 between the nodes 1E.=2E. , and 

3O.=4O., and the branches with the transfers )( 2
2
1

Cz −
−

 
between the nodes 3E.=4E., and 3O.=4O. 

By evaluating this summary graph, which is done by 

substitution into the Mason’s formula
∑
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we get the following final results this way. 
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Fig.3 the summary MC-graph of the SC circuit from Fig.1 

 
From the graph it is obvious that the entry node is 1E or the 

first node in the even phase, therefore there will only be 
transfers from the even phase of the first node. It is further 
evident from the graph that the exit (i.e. fifth) node exists here 
both in the even phase as: 5E.(4E.=3E.=5E.) and in the odd 
phase as: 5O.(2O.=3O.=4O.=5O.). It is thus possible to 

express in numbers the two following transfers: 
O
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and for the second one 
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B. Solving Based on a Two-Graph 
A solution of a circuit by the two-graph method of a 

summary MC-graph constructed on the basis of two-graphs 
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will be shown in Fig.6. First we draw a partial diagram for the 
even phase and the odd phases separately by the algorithm 
described in [5]. These diagrams are in Fig.4, where the node 
numbers in the squares are the numbers of the nodes of the 
charge Q-graph and the node numbers in the triangles are the 

numbers of the nodes of voltage V-graph after re-numbering 
the nodes, caused according to the rules stated in [3] by the 
operational amplifier. 
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Fig.4 diagrams of circuits for even and odd phases 
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Fig.5 graphs for even and odd phases 

 
To the diagrams for individual phases, we can assign 

directed graphs drawn in Fig.5. For orientation there are the 

original numbers of nodes from the diagram in Fig.5 in the 
circles. An ideal operational amplifier then causes merging of 
the nodes 3 and 0 in the voltage V-graph and merging of the 
nodes 5 and 0 in the charge Q-graph. For both even and odd 
phases it is necessary to draw a special voltage and charge 
graphs. These graphs are in Fig.6. 
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Fig.6 two-graphs for even and odd phases 

 
 

Summary graph is now constructed by first finding the 
incomplete common skeletons of the V-graph and the Q-graph 
in the even phase and in the odd one: in the even phase there 
is one incomplete common skeleton formed by the C1 element 
connected to the node 1 of both graphs, another incomplete 

skeleton is formed by the C2 element connected to the node 2 
of both graphs. But as the arrows in the Q-graph and the V-
graph aim in the opposite directions, the C2 element has a 
negative sign, i.e. there will be -C2. In the odd phase there is 
an incomplete skeleton formed by C2 connected to the 1st 
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node, the arrows in the Q-graph and the V-graph aim in the 
opposite directions, so C2 has a negative sign -C2. Thus 
obtained loops of summary Mason-Coates graph are in Fig.7.  

The common skeleton of the V-graph in the E phase and of 
the Q-graph in the O phase is formed by the C1 element, 
whose graph goes from the node 1 in the even phase and from 
the node 1 in the odd phase, and by the C2 element, but as the 
arrows at C2 in the Q-graph and V-graph go against each 
other, the C2 element has got a negative sign, i.e. there is -C2. 
Thus the graph for the OE phase is given. In the EO phase we 
look for common incomplete skeletons from the Q-graph in 
the E phase and from the V-graph for the O phase. There are 
two branches going parallel with transfers C2 and C3, while 
the arrows at C2 go in opposite directions so in the sum of 
these parallel branches C2 will have a negative sign: C3-C2. 
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Fig.7 resulting summary MC-graph 

 
The voltage transfers (3) and (4) will now be obtained from 

a shortened graph, i.e. a graph in which there will not be the 
entry node’s own loop, by means of the Mason’s rule [1]: 
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and for the second one 
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By comparing relations (1), (2) and (3), (4) it is obvious 
that the results are identical. 

III. SOLUTION OF SWITCHED CURRENT CIRCUITS 
A circuit with a switched current has got the schematic 

wiring diagram shown in Fig.1. 
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Fig.8 schematic diagram from the example SI circuits 

A. Solving Based on Two-Graph 
A solution of a switched current circuit [3], [4] by the two-

graph method of a summary MC-graph constructed on the 
basis of two-graphs will be shown in Fig.10. First we draw a 
partial diagram for the even phase and the odd phases 
separately by the algorithm described in [3]. These diagrams 
are in Fig.9, where the node numbers in the squares are the 
numbers of the nodes of the current I-graph and the node 
numbers in the triangles are the numbers of the nodes of 
voltage V-graph. 
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Fig.9. diagrams of circuits for even and odd phases 

 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:5, 2011

687

 

 

To the diagrams for individual phases, we can assign 
directed graphs. For both even and odd phases it is necessary 
to draw a special voltage and current graphs. These graphs are 
in Fig.10. 
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Fig.10. two-graphs for even and odd phases 

 
A summary graph is now constructed by first finding the 

incomplete common skeletons of the V-graph and the I-graph 
in the even phase and in the odd one: in the even phase there 
is one incomplete common skeleton formed by the .)2(

21y  
element connected to the node 1 of both graphs, and the 
element .)3(

21y  connected to the node 2 in I-graph and to the 

node 1 in the V-graph. Thus obtained loop with the transfer 
.)2(

21y  of the summary Mason-Coates graph is in Fig.11 and the 
branch with the transfer .)3(

21y− , because the sign of all 
branches is -1. Thus obtained summary Mason-Coates graph 
is in Fig.11. 
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Fig.11 resulting summary MC-graph 
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Fig.12 extended summary MC-graph for calculating 
 
 The current transfers (5) and (6) will now be obtained from 
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an extended graph, i.e. a graph must be extended to two 
branches as it is shown in Fig.12: the first branch from the 
input node IINP to the node 1E with transfer 1 and the second 
branch from the node 2E to the node IOUT. The transfer is 
equal to the transmission of its own loop at the output node. 
The summary graph is then evaluated by means of the 

Mason’s rule [1], for example transfer 
E
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The remaining transfers are following: 
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IV. CONCLUSION 
 
Let us now briefly compare the two above described 

graphical methods of solving switched circuits.  
All methods were presented in an equally detailed steps to 

be able to compare. 
The method of transformation graphs requires only plotting 

graphs for all the four switching phases, from which a 
summary MC graph is plotted and then evaluated by the 
Mason’s rule. 

The method of two-graphs further requires drawing 
schematic diagrams for both the phases and re-numbering 
nodes in these diagrams. For these two diagrams, it is then 
necessary to plot directed graphs and to search for common 
skeletons in them. Only from these the summary MC graph is 
made up and evaluated by the Mason’s rule.   

The two-graph method can also be used for circuits with 
switched currents; again, it is necessary to draw the diagrams 
for both the phases like in the case of switched capacitor 
circuits. 

While both the graph methods can considerably contribute 
to switched circuits parameters analysis due to their visual 
clarity and illustrative nature, the use of transformation graphs 
seems generally less complicated and easier to use than the 
two-graph method of switched circuits solution.  
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