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Abstract—Both the minimum energy consumption and 

smoothness, which is quantified as a function of jerk, are generally 
needed in many dynamic systems such as the automobile and the 
pick-and-place robot manipulator that handles fragile equipments.  
Nevertheless, many researchers come up with either solely 
concerning on the minimum energy consumption or minimum jerk 
trajectory. This research paper proposes a simple yet very interesting 
relationship between the minimum direct and indirect jerks 
approaches in designing the time-dependent system yielding an 
alternative optimal solution.  Extremal solutions for the cost functions 
of direct and indirect jerks are found using the dynamic optimization 
methods together with the numerical approximation.  This is to allow 
us to simulate and compare visually and statistically the time history 
of control inputs employed by minimum direct and indirect jerk 
designs.  By considering minimum indirect jerk problem, the 
numerical solution becomes much easier and yields to the similar 
results as minimum direct jerk problem. 
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I.  INTRODUCTION 
OST of the robots and advanced mobile machines 
nowadays are designed so that they are either optimized 

on their energy consumption or on their greatest smoothness 
of motion, [3].  Consequently, the trajectory planning and 
designs of these robots are done exclusively through many 
approaches such as the minimum energy and minimum jerk, 
[4].  Nevertheless, in some applications, the robot is needed to 
work very smoothly in order to avoid damaging the specimen 
that the robot is handling while consuming least amount of 
energy at the same time.  In other words, we may want to 
minimize the jerk of the movement of the robot as to give it 
the smoothest motion as well as optimize that robot in the 
energy consumption issue.   

The general format of the dynamic problems is consisting 
of the equation of motion, the initial conditions, and the 
boundary conditions.  The area of interest in this paper will 
involve the problems with two-point-boundary-value 
conditions.  Each of the problems may contain many possible 
solutions depending on the objective of application.  
Obviously, the robot that aims to run at lowest cost of energy  
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will be designed to have the lowest actuator inputs during the 
motion.  This is basically the optimization problem of the 
dynamic systems.  Research shows that many of the 
researchers pay a lot of their attention on the minimization of 
energy while many tend to seek for the smoothness of the 
system.  According to the second law of Newton’s laws, there 
is a relationship between acceleration and summation of all 
forces including the control inputs of any linear dynamic 
system.  By taking derivative with respect to time, there is a 
relationship between derivative of the acceleration called Jerk 
and derivative of all forces including the derivative of the 
control inputs of the dynamic system.  In this paper, the 
derivative of the control inputs with respect to time are called 
indirect jerks. 

Therefore, this research paper aims to search for the 
relationship between the minimum direct jerk and indirect jerk 
by using the optimization method so that this new alternative 
can be put into applications. 

 

II.  PROBLEM STATEMENT 

Dynamic systems can be described as the first order 
derivative function of state as 

 

nituuxxfx mnii ,...,1     );,,...,,...,( 11 == ,          (1) 
 

where nRx∈ , mRu∈ and t  are state, control input, and 
time respectively, [5].  The problem of interest is to find the 
states x(t) and control inputs u(t) that make our system 
operates according to the desired objective of minimum 
energy or minimum jerk.  Note that this paper is focusing on 
the system with fixed end time and fixed end points.  
Therefore, states and control inputs that serve the necessary 
condition must also be able to bring the system from initial 
conditions x(t0) at initial time t0 to the end point x(tf) at time tf. 

The optimization problem of minimum energy will take the 
form of:  

dtuJ
ft

t

m

i
i∫∑

=

=
0
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2 ,                                (2) 

 
where ui is the control input, which can be force or torque 
applied to the system, and mi ,...,1= .  J is the cost function 
of the energy consumed by the system from initial time t0 to 
end time tf.   

The same kind of concept is used to the minimum jerk 
problem.  It is well known that jerk is the change of input 
force with respect to time.  It is, thus, the third derivative with 
respect to time of x, or first order derivative of control input u.  
Therefore, 

M 
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uxJerk ∝=  .                                  (3) 
 

Defining 
 

uu ~= ,                                         (4) 
 
so that (1) becomes 
 

mnituuxxfx mmnii +== + ,...,1   );,~,...~,,...,( 11 .      (5) 
 
From now on, u~  is treated as a variable and as the control 
input of our dynamic system.  Consequently, (2) can be 
rewritten for the objective function of the minimum indirect 
jerk problem as 
 

dtuJ
ft

t
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Similarly, (2) also can be rewritten for the objective function 
of the minimum direct jerk problem as 
 

dtxJ
ft

t
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2 .                              (7) 

 
This time, J is the cost function of the jerks. 

 

III.  NECESSARY CONDITIONS 

In this paper, we use the calculus of variations in solving for 
the extremal solutions of the dynamic system, [1].  
Representing the control input with u, the principle of calculus 
of variations helps us solve the optimization problem by 
finding the time history of the control input that would 
minimize the cost function of the form 
 

=J
ftnxxt ),...,,( 1φ + dtuuxxtL

ft

t
mn∫

0

),...,,,...,,( 11 ,    (8) 

where  
 

ftnxxt ),...,,( 1φ ,                                     (9) 

 
is the cost based on the final time and the final states of the 
system, and  
 

dtuuxxtL
f

i

t

t
mn∫ ),...,,,...,,( 11 ,                    (10) 

 
is an integral cost dependent on the time history of the state 
and control variables.  Since the cost of the final states would 
be equal in all feasible time histories of the control input; 
therefore, the first term of (8) is omitted. 

 To find the extremum of the function, the dynamic 
equations are augmented via Lagrange Multipliers to the cost 
functional as follow: 
 

),...,,,...,(' 11 mn uuxxJ = dtuuxxtL
f

i

t

t
mn∫ ),...,,,...,,(' 11 .        (11) 

where  

),...,,,...,,(' 11 mn uuxxtL  = )(
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∑
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and )(tiλ  are Lagrange multipliers.  Consequently, (11) 
becomes: 

),...,,,...,(' 11 mn uuxxJ = ∫
ft
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Since the problem with fixed end time and end points are 

considered, initial time t0, end time tf, initial state x(t0), and 
final state x(tf) must be set prior to solving the problem.  The 
differentiable functions are dependent on the boundary 
condition of x(t0)= x0, x(tf)= xf , u(t0)= u0 and u(tf)= uf  where 
time used falls in the interval fi ttt ≤≤ .  

Let function ( )nmn xxuuxxtL ,...,,,...,,,...,, 111
 be represented as 

a functional 
 

                     [ ]=mn uuxxJ ,...,,,..., 11  
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Let )( 0tx  be incremented by )( 0thxj , u(t0) be incremented 

by )( 0thuk
, and still satisfy the boundary conditions, then 

)( 0thxj  )( fxj th=  )( 0thuk=  )( fuk th=  0= .  So, the 
change in functional JΔ  will be  
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Applying Taylor’s Series to (15), disregard the higher order 

terms, and apply it to the problem results in: 
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 Since 
itft jxhjxh |  | = = 0 and 

ku
L

∂
∂ ' = 0, the last two terms 

of (16) become zero.  In order that the cost functional of jerk 
in (13) can be solved for minimal solution, the condition that 
make 0' =Jδ  at arbitrary variation of jxh  and kuh  are 

needed.  From (16), obviously the mentioned conditions are as 
follow: 
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for j = 1, …, n and k = 1, …, m. 

Equations (17) and (18) are the necessary conditions that 
will lead to solve for Lagrange multipliers )(tjλ , and control 
inputs uk(t).  Alternatively, we can use the derived relationship 
below to solve for the unknowns necessary conditions: 
For 
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Necessary conditions are (19) and  
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As of above the necessary conditions are in the form of 
differential and algebraic equations which are known as two-
point boundary valued problem, [2]. 
 

IV.  EXAMPLE PROBLEMS 

 
Fig. 1 Two degree of-freedom of spring mass and damper system 

The procedure outlined in this paper for dynamic 
optimization is illustrated with the following example of a two 
degree-of-freedom spring-mass-damper system sketched in 
equation as:  
 

BuxA =                                       (22) 
 
The matrices A  and B  for this system is as follows: 
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where the matricesM ,C  and K  are: 
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The equation (22) can also be rewritten in the second order 
differential equation according to the second law of Newton.  
The parameters used in the model in MKS units are: 

0.121 == mm , 0.131 == cc , 0.22 =c , 

0.3321 === kkk .  The boundary conditions are 

( )Ttx 0021)( 0 =  and )( ftx  ( )T0000= , where 

00 =t  and 0.1=ft . 
 

A.  Minimum Direct Jerk Problem 
 The cost function of minimum direct jerk is defined as 
 

dtxxJ ∫ +=
1

0

2
2

2
1 .                            (27) 

 In order for the cost function in (27) to be minimized, the 
Calculus of Variations as stated in previous section has been 
used. 

B.  Minimum Indirect Jerk Problem 
 The cost function of minimum indirect jerk is also defined 
as: 
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 Similarly for (28) to be minimized, the Calculus of 
Variations must be applied here. 

C.  Numerical Results 
 The minimum jerk problem has the exact same format as the 
minimum energy problem in (2).  However, since the time 
derivative of control inputs are considered, the (22) must be 
rewritten as to include the consideration of jerk into the 
system: 
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Therefore, the extra boundary conditions can be applied at 

both ends that are ( )Ttu 00)( 0 =  and )( ftu  ( )T00= .  
These conditions can be applied in the numerical scheme 
through the original dynamic equations as follow: 
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By using software developed by Tawiwat Veeraklaew, [6], 

the problems of minimum direct and indirect jerks can be 
solved to obtain the optimal solutions.  The idea behind this 
software is to transform the necessary conditions of the 
dynamic optimization to static optimization.  Then one kind of 
the well known methods called nonlinear programming or 
linear programming has been used to solve for all parameters 
that are parameterized through collocation technique.  The 
comparison for each variable such as state and control 
variables of the dynamic systems in this example are shown in 
figure below as Fig. 2 to Fig. 7. 
 

 
Fig. 2 Solutions of the first state variables from minimum direct and 

indirect jerk 

 
Fig. 3 Solutions of the first derivative of the first state variables from 

minimum direct and indirect jerk 
 

 
Fig. 4 Solutions of the second state variables from minimum direct 

and indirect jerk 
 

 
Fig. 5 Solutions of the first derivative of the second state variables 

from minimum direct and indirect jerk 
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Fig. 6 Solutions of the first control variables from minimum direct 

and indirect jerk 
 

 
Fig. 7 Solutions of the second control variables from minimum direct 

and indirect jerk 
 

From the solutions above, )(1 tx , )(1 tx , )(2 tx , )(2 tx , 

)(1 tu  and )(2 tu  from both minimum direct and indirect 
jerks have exactly the same solutions which can be seen 
obviously. 

In conclusion, the numerical solution of minimum indirect 
jerk problem becomes much easier and yields to the same 
results as minimum direct jerk problem since the number of 
control inputs in dynamic systems must be less than or equal 
to the number of state variables.  Therefore, the variables used 
in the cost function of the minimum indirect jerk problem will 
be less than the minimum direct jerk problem when 
considering the under actuator dynamic or robotic systems. 

The results in this paper show that the minimum indirect 
jerk can be used instead of minimum direct jerk strongly for 
the linear dynamic systems.  However, the nonlinear dynamic 
problems could be used to compare for the future work which 
very high expectation that both problems will have the same 
results. 
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