Comparing Hilditch, Rosenfeld, Zhang-Suen, and Nagendraprasad - Wang-Gupta Thinning

Anastasia Rita Widiarti

Abstract—This paper compares Hilditch, Rosenfeld, Zhang-Suen, dan Nagendraprasad Wang Gupta (NWG) thinning algorithms for Javanese character image recognition. Thinning is an effective process when the focus in not on the size of the pattern, but rather on the relative position of the strokes in the pattern. The research analyzes the thinning of 60 Javanese characters.

Time-wise, Zhang-Suen algorithm gives the best results with the average process time being 0.00455188 seconds. But if we look at the percentage of pixels that meet one-pixel thickness, Rosenfelt algorithm gives the best results, with a 99.98% success rate. From the number of pixels that are erased, NWG algorithm gives the best results with the average number of pixels erased being 84.12%. It can be concluded that the Hilditch algorithm performs least successfully compared to the other three algorithms.

Keywords—Hilditch algorithm, Nagendraprasad-Wang-Gupta algorithm, Rosenfeld algorithm, Thinning, Zhang-suen algorithm

I. INTRODUCTION

YOGYAKARTA city, as one of the centers for Javanese culture, holds a large collection of old Javanese manuscripts. The manuscripts are important for the study of Javanese culture. The general consensus agrees that preserving classical texts is an important task, as they are part of the cultural heritage. But the number of people who can read and study old Javanese texts, written in Javanese scripts, is rapidly decreasing. There is an urgent need for translation of Javanese texts into Romanized scripts so that the texts may have larger readership.

The development of document image analysis, which analyzes the visual representation of paper documents such as journals, facsimiles, office documents, spreadsheet, etc. [1], has provided valuable ways for preservation of old Javanese manuscripts in Yogyakarta. O'Gorman and Kasturi [2] delineate the stages in the process of document image analysis, which can be used and modified for the document image recognition of Javanese script. The first stage is the stage of data collection, namely obtaining data from the documents to be processed. The second stage is the pixel-level processing stage that aims to prepare the document image, and to make the features of an intermediary to help identify the

Anastasia Rita Widiarti is a faculty member at the Department of Informatics Engineering, Sanata Dharma University, in Yogyakarta, Indonesia (phone: +6281328341628; fax: 01-0274-886529; e-mail: rita_widiarti@yahoo.com). (This research was funded by Indonesia's Directorate General of Higher Education through competitive grants: Letter of Agreement No. 304/SP2H/PP/DP2M/IV/2010 ON 12 April 2010 and Higher Education Competitive Research Grant Multi Year and No. 060/SP2H / PP/DP2M/IV/2009 DATED 6 April 2009) image. The third phase is the phase that aims to translate a series of alphabet letters that have a variety of shapes and sizes. One of the processes that must be passed in the second stage is the process of thinning or skeletonizing.

Thinning is a process of reduction of the components of the image in order to obtain the most basic information about the image-forming or to obtain an image without destroying the framework of information from its original form [3]. With the framework of an image obtained, then the computer can process the data faster and more easily because the representation of the processed data becomes much simpler.

A variety of thinning algorithms is available, including Rosenfeld algorithm, Zhang Suen algorithm, Hilditch algorithm, and Nagendraprasad-Wang-Gupta (NWG) algorithm. Zhang Suen thinning algorithm [4] is known as a fast algorithm in the process of thinning when compared with Hilditch thinning algorithm [5], easy to implement [6] and can be used to attenuate various types of digital patterns. Rosenfeld algorithm [7][8] is proved to meet the requirement for eligible connectivity, and Nagendraprasad-Wang-Gupta thinning algorithms is cited to work best for Latin characters [9].

II. LITERATURE REVIEW

A. Thinning Algorithms

Thinning is a process of reduction of the components of the image in order to obtain the most basic information about the image-forming or to obtain an image without destroying the framework of information from its original form [3]. The result of the thinning process is called the skeleton.

The objective of thinning is to reduce the image components into an information that is essential / fundamental to further analysis and recognition can be facilitated. Such information may consist of structures of objects such as intersections (junctions), the end point (end points) and point circuit (connection points). Some of the benefits that would be obtained if the thinning process is managed properly:

- 1) Size becomes smaller because the data will generate important information only, and it also reduces memory usage [10][11].
- 2) Facilitate the structural analysis of an object [12].
- 3) The resulting skeleton can be used for classification in the process of pattern recognition (pattern recognition) [13].

There are several requirements that must be met so that the thinning process is generally considered good, namely:

1) Able to reduce the size of the data [10].

2) Produces a thin line image of an object, where the line is

composed of the pixels that are connected [6].

- 3) Able to maintain connectivity between the pixels of an object (connectivity), or in other words do not cause the shape of an object to be disconnected [14].
- 4) Able to maintain the important characteristics of an object [10].
- 5) Produces a form that resembles its original form by not introducing another new feature of an original form, nor does it eliminate the characteristics of the object [6].

There is a variety of thinning algorithms, including Zhang Suen algorithms, Rosenfeld algorithm, Hilditch algorithm, and NWG algorithm. Hilditch algorithm is relatively easy to implement; the standard procedure in the process of thinning is to do several iterations of erosion on an object, where at every iteration we check on all points in the image. A point object is then converted into a background object when these requirements are met: the number of points between the neighboring points is 2 (two) to 6 (six); there is only one (1)pattern of change from background to object; there is a background to the edge point neighbor above, or on the adjacent left side or right side; and there is a background to the neighbor above, or on the left or below it. Zhang Suen algorithm, created by Zhang and Suen [4], is included into parallel thinning algorithm, in which a new value given to a point on the current iteration depends on the value generated in the previous iteration, and the whole point representing the image are processed simultaneously, with the assumption that uses 3x3 window and each point connects with 8 point neighbors. This algorithm removes the boundary points identified from the image pattern, except the points included in the image frame. Rosenfeld algorithm is a parallel algorithm that works by successively removing a subset of the boundary/boundaries of the object or region which is also called contour pixel or contour points (pixels outside / edge) [15]. NGW algorithm is a new algorithm of serial and parallel thinning previously developed by Wang and Zhang, which then experienced improvement in processing speed [9][16].

B. The Concept of One-pixel Thickness

Thinning result or skeleton is said to have a one-pixels thickness if it does not contain the template $A = \{A1, A2, A3, A4\}$ as shown in Fig. 1. A template structure is the arrangement of the pattern found in the connected components that is not a skeleton. If one or more templates A are contained in the skeleton of the thinning, there are two possibilities: either the skeleton does meet 1-pixel thickness, or the skeleton meets 1-pixel thickness when the pixels in the skeleton are critical points. Pixels in the skeleton is said to be critical points when they contain at least the structure of the template B or C as shown in Fig. 1. Pixels outside the template structure A, B, and C are pixels 0 (zero). Pixels that are circled in each template are the center of the template. Pixel "x" on each pixel of the template structure is ignored [13].

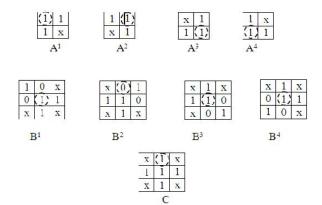
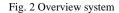
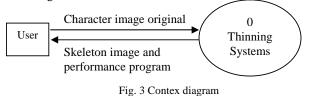


Fig. 1 The templates in the set A, B, C are patterns found in connected components that are not skeleton. Those in sets B and C are all possible configurations of critical points of a skeleton that contain one of the patterns in A [13]

III. RESEARCH METHODOLOGY


A. Preliminary Study and Analysis of Data

Before testing the algorithms, some library research, deepening of MATLAB, and selection of materials to analyze were conducted. Among different types of Javanese script, only the nglegeno Javanese letters were selected for this research. For each script, 3 data were to be made, so the total number of data used is 60 data of nglegeno Javanese characters. The Javanese characters used in this research were collected by scanning several Javanese manuscripts, both printed and handwriting manuscripts.


B. The Design of System Process

To facilitate the testing process, a computer-based thinning system was created, which will implement the four algorithms tested. See an illustration of the overview system below (Fig. 2):

Based on the overview system, a context diagram for the system as shown in Fig. 3 was created. Input for the system is an image that has not been subjected to thinning process, and output of the system is an image that has been thinned. The research then collected information related to the performance of the algorithms.

C. The Design of System Testing

The results of image thinning process must fulfill some requirements. The requirements used in the analysis and in the

International Journal of Information, Control and Computer Sciences ISSN: 2517-9942 Vol:5, No:6, 2011

testing of the results include:
1) The size of the image before and after thinning
2) The number of pixels removed
3) The average time spent for each algorithm
4) The number of pixels that meet one-pixel thickness.

IV. EXPERIMENTAL RESULT AND ANALYSIS

A. Result of Experiment

Table I presents all original images and skeleton images after the implementation of Hilditch algorithm, Zhang-Suen algorithm, Rosenfeld algorithm, and NWG algorithm.

after the implementation of Hilditch algorithm, Zhang-Suen algorithm, Rosenfeld algorithm, and NWG algorithm.											
TABLE I THE ORIGINAL IMAGES AND THE SKELETON IMAGE FROM THE FOUR											
	ALGORITHMS										
No	File name (JPG)	Original image	Hildith	Skeleton ima Zhang-Suen		NWG					
1	HA_1	M	<u>indini</u>			<u>E</u>					
2	HA_2	1M	ί, Γ	00		ΠĤ					
3	HA_3	M	(j)	,		<u>).[[</u>]					
4	NA_1	ы	h0	$\{f_i\}$	$\{r_{i}\}$	$\{i,j\}$					
5	NA_2	ារ	R9	(Fiji		[-6]					
6	NA_3	អា	36	$\left(\frac{1}{2}\right)$	i s	$]{\mathcal{G}}$					
7	CA_1	ควา	(D)	(3.2)	$ \mathcal{G}_{i}\rangle$	8)) 					
8	CA_2	ม		î. jî	î di						
9	CA_12	ណ	Ц.С	$\bigcap_{N \in \mathbb{N}} C$	$[\mathbb{N}]$	60					
10	RA_1	n	7)	72	γ_{i}	$\langle f_{ij} \rangle$					
11	RA_2	Ĩ	11	1		11					
12	RA_3	TT -		14.7	1						
13	KA_1	ikn)	#0}	$\langle 0 \rangle$	<u>{</u> -{]}}	(Hi)					
14	KA_2	ы	2 (C)	88) 181	061	191					
15	KA_3	Ш	361 l	ĨŪĨ	<u> 10</u>	191î					
16	DA_1	M	AQ	f-()	(14)	14					
17	DA_2	เเ	0.2	i de la	iek.	i.					
18	DA_3	เล	Ĵ.Ă	<u>î</u> ,£î	î.,61	$\{\mathcal{A}\}$					
19	TA_1	ហា	(S))	67	199 1	£51					
20	TA_2	ព	191	091	191						
21	TA_3	ហ	191	1911) 1911	UT -	157					
22	SA_1	A)	$\langle A, i \rangle$	<u>[87]</u>	$\langle \mathcal{A} \rangle$	<u>84</u>					

6.1

8.9

(1) (1

Ĩ.

Ĩ.

Ł£

6.

<u>d</u>i

62

<u>[]]</u>

1

罰方

ĥĹ

 $\left[\cdot \right]$

Łβ

ิเม

เม

Ŋ

U

Uł

M

11A

M

М

23 SA_2

24 SA_3

25 WA_1

26 WA_2

27 WA_3

28 LA_1

29 LA_2

30 LA_3

31 PA_1

Ì.J.

Ē.

仍

[]]

 $\left[\left[\right]
ight]$

 $\langle i \rangle \langle i \rangle$

10

ĽĽ,

ŁД

le.

ĝ.j

h.

[.]

(i))

ĥ. I

Ľ

ħΛ

32 PA_2	M	[_]	0.1		
33 PA_4	М	d_{i}	Bf	ŝĄ	$d f_{i}$
34 DHA_1	W)	6 (2) (C(2)	$\{ j_i \}$	2.2	3.5
35 DHA_2	บา	$\{l_{\mu}\}$	<u>_</u>	[[L]
36 DHA_15	ΜJ	J.:		1.1	69
37 JA_1	<i>I</i> R	2 <u>%</u>	£R	ξÂ.	K.
38 JA_2	18	11	6.8	1.8	'nξ
39 JA_4	ır	23	63	62,	8
40 YA_1	M	1.1	ί.j.β	12.8	111
41 YA_2	M	<u>f</u> î fi	ee≙ +1,	88 Å 1.	ÌÌÌ
42 YA_3	M	<u>(U)</u>	19	19.1	20.1
43 NYA_1	1m	2011 (211	$\mathcal{L}\mathcal{R}$	200	200
44 NYA_2	ĩm	101	11	11	11
45 NYA_15	M	ñж Г.Ц	(m)	en a	Ċφ
46 MA_2	เป	Ĩ.	T)	Ũ	Ϋ́,
47 MA_3	Æ	Ð	È	Ĩ	ą.
48 MA_4	(E)	(E4)	(ER	(8)	(E)
49 GA_1	m	$\langle T_{ij}^{*} \rangle$	(31)	<u>93</u>]	$\langle j \rangle \tilde{j}$
50 GA_2	πi	2771	é-spé	ŤΓ	i di
51 GA_3	m	Ϋ́	Ϋ́Υ.	Ϋ́Υ.	in the second
52 BA_1	cn.	(T)	0	20	(7)
53 BA_2	171	0.00			<u>í</u>
54 BA_3	ហា		12-5	1.05	i
55 THA_1	27	27	271	ු	
56 THA_2	น่า		ດ່າ	ų, m	i si i
57 THA_14	ແ້ງ		\mathbb{Q}^{2}	191	(le ⁿ
58 NGA_1	Ľ	/ <u>^</u> ^	\overline{C}	\overline{C}	C
59 NGA_2	้ถ้า	11		T ^{ec}	ñ,°
60 NGA_3	ហ៊	51	101	E.	í.
· · ·		100	3 -		

Based on the system testing design that has been set for this experiment, for each algorithm applied in the thinning process, we measured image size, the number of pixels removed, time spent, and the number of pixels that meet one-pixel thinness. Table II below presents a sample of the result of thinning using Hilditch algorithm, to show what is observed during the testing process. The same process was applied to the three other algorithms.

TABLE II RESUME OF IMPLEMENTATION RESULT FOR HILDITCH ALGORITHM									
Image size	Sum & % for Examination for c pixels deleted pixel thicknes								
Name file of original Original Re- image Original sult	Sum %	Sum Sum Time of Sum of of process of not one- (seconds) temp critic pixel -late al thick A point -ness s							
HA_1 1990 356	1634 82.11	0.00518 64 63 272 81.19							
HA_2 1909 372	1537 80.51	0.00521 48 47 218 82.26							
HA_3 1758 318	1440 81.91	0.00731 54 52 251 82.84							

International Journal of Information, Control and Computer Sciences ISSN: 2517-9942 Vol:5, No:6, 2011

NA_1	1884 304	1580	83.86	0.00598	67	67 220	76.66	NYA_1	342 407	935	69.67	0.00323	41	44 35	52 88.89	
NA_2	1817 367	1450	79.8	0.00522	56	56 292	83.91	5	942 407	155	07.07	0.00525	71	5.	2 00.07	
NA_3	2032 303	1729	85.09	0.00615	55	55 232	80.84	MA_2 19	973 308	1665	84.39	0.00477	62	61 23	30 79.04	
CA_1	1927 315	1612	83.65	0.00511	78	75 223	74.83	MA_3 19	964 289	1675	85.29	0.00481	64	63 20	00 76.05	
CA_2	1887 359	1528	80.98	0.00634	50	49 295	85.76	MA_4 12	290 291	999	77.44	0.00677	78	78 19	94 71.32	
CA_12	1747 350	1397	79.97	0.00475	60	59 273	82.23	GA_1 16	532 259	1373	84.13	0.00393	64	64 17	79 73.66	
RA_1	1983 166	1817	91.63	0.00832	58	58 98	62.82	GA_2 21	120 250	1870	88.21	0.00512	34	32 21	10 86.78	
RA_2	1725 191	1534	88.93	0.00576	22	22 152	87.36	GA_3 15	583 250	1333	84.21	0.00336	48	48 18	87 79.57	
RA_3	1585 183	1402	88.45	0.00353	39	39 131	77.06	BA_1 17	766 269	1497	84.77	0.00565	59	58 19	98 77.34	
KA_1	1525 308	1217	79.8	0.0048	88	88 196	69.01	BA_2 15	587 342	1245	78.45	0.00483	39	38 29	99 88.72	
KA_2	1940 404	1536	79.18	0.00515	57	56 330	85.49	BA_3 10	052 320	732	69.58	0.00478	50	50 20	52 83.97	
KA_3	1510 371	1139	75.43	0.00558	51	51 311	85.91	THA_1 20	048 236	1812	88.48	0.00569	62	60 10	54 73.21	
DA_1	1964 266	1698	86.46	0.00657	69	69 169	71.01	THA_2 19	928 291	1637	84.91	0.00417	48	48 23	36 83.1	
DA_2	2143 348	1795	83.76	0.00489	68	67 266	79.88	THA_14 13	349 300	1049	77.76	0.0024	52	51 15	55 75.24	
DA_3	2316 312	2004	86.53	0.00479	50	50 250	83.33	NGA_1 16	565 216	1449	87.03	0.00564	52	51 14	41 73.44	
TA_1	2027 290	1737	85.69	0.00423	80	77 195	71.69	_	121 269	1852	87.32	0.00442	21	19 24	42 92.72	
TA_2	1271 401	870	68.45	0.00563	63	62 319	83.73	_	396 261	1135	81.3	0.0036	56	55 13	37 71.35	
TA_3	1846 351	1495	80.99	0.00364	74	73 257	77.88									
SA_1	1720 287	1433	83.31	0.00662	71	71 191	72.9	B. Data Anal		140 alka		T-11- II				
SA_2	2096 365	1731	82.59	0.00602	68	67 280	80.69	Based on in the three t								
SA_3	2086 308	1778	85.23	0.00411	61	61 232	79.18	image sizes	before a	nd aft	er the t	thinning	proc	ess alo	ong with	
WA_1	1670 288	1382	82.75	0.00879	61	60 215	78.18	the percentag								
WA_2	1962 323	1639	83.54	0.0055	42	42 268	86.45	number of pi of pixels (T		-		-				
WA_3	1506 281	1225	81.34	0.00372	36	36 236	86.76	process of t	hinning	(Table	e V), a	and the	avera		-	
LA_1	1673 343	1330	79.5	0.00484	89	89 225	71.66	pixels that m	eet one-j		icknes: FABLE I		VI).			
LA_2	1781 362	1419	79.67	0.00486	32	32 324	91.01					F PIXELS RE	MOVE	D		
LA_3	2270 333	1937	85.33	0.00368	49	49 271	84.69	Algorithm	n T		ige size c mage	of the		Percenta ction in	-	
PA_1	1868 261	1607	86.03	0.00544	58	57 195	77.38			Input	0	utput		size		
PA_2	2083 308	1775	85.21	0.00544	41	41 248	85.81	Zhang-Sue NWG		14.44 14.44		.46 .47		89.83 89.83		
PA_4	2171 269	1902	87.61	0.00475	66	66 184	73.6	Rosenfeld Hildith		14.44 14.44		.48 .57		89.77 89.07		
DHA_1	1951 322	1629	83.5	0.00577	56	54 254	82.47	Indun			TABLE I			07.07		
DHA_2	1697 343	1354	79.79	0.00605	63	63 264	80.73	THE AVERAGE I Algorithm				INAL IMAG			ON IMAGE	
DHA_2 DHA_1								, ngonumi	Inj	put	Outpu	t Ren	noved	per	centage	
5	1293 345	948	73.32	0.00357	48	48 288	85.71		im	age	image	2			pixels pixed	
JA_1	1720 305	1415	82.27	0.00633	76	76 218	74.15	NWG Rosenfeld		0.92 0.92	280.50 280.52		20.42 20.4		84.12 84.11	
JA_2	1931 292	1639	84.88	0.00392	63	62 218	77.86	Zhang-Suen	180	0.92	291.58	8 150)9.33	8	83.38	
JA_4	1398 292	1106	79.11	0.00553	96	96 169	63.77	Hildith	180	0.92	310.6 FABLE V		90.32		82.27	
YA_1	1925 291	1634	84.88	0.0043	48	47 237	83.45	_		VERAGE		OF TIME S		F		
YA_2	1897 420	1477	77.86	0.00524	57	57 345	85.82	_	Algorithm		time s	<u>^</u>				
YA_3	1745 319	1426	81.72	0.00333	47	47 255	84.44		Zhang-Sue Hildith	en		0.004551				
NYA_1	2094 375	1719	82.09	0.00438	71	70 291	80.61]	NWG Rosenfeld			0.006784	18			
NYA_2	1916 411	1505	78.55	0.0048	33	33 372	91.85		1.05CIIICIU		-i	0.03/1233	.05			

International Journal of Information, Control and Computer Sciences ISSN: 2517-9942 Vol:5, No:6, 2011

AVERAGE FOR SUM OF ONE-PIXEL THICKNESS									
Algorithm	thm The average number of								
	Template	Non chritical meet the One-pixel thickness							
	А	point	Number	Percentage					
Rosenfeld	0.97	0.05	280.47	99.98					
NWG	2.05	1.02	279.48	99.64					
Zhang-Suen	28.42	27.55	264.03	90.20					
Hildith	56.88	56.32	235.27	79.99					

TABLE V I

V.CONCLUSION

Time-wise, Zhang-Suen algorithm gives the best results with the average process time being 0.00455188 seconds. But if we look at the percentage of pixels that meet one-pixel thickness, Rosenfelt algorithm gives the best results, with a 99.98% success rate. From the number of pixels that are erased, NWG algorithm gives the best results with the average number of pixels erased being 84.12%. It can be concluded that the Hilditch algorithm performs least successfully compared to the other three algorithms.

ACKNOWLEDGMENT

I would like to thank my students who provided me with the Javanese image characters data and helped refine the thinning system. Special thanks go to Sasongko Hadi, Kristi Krisnawati, and Margaretha Kurnianita. This research was funded by Indonesia's Directorate General of Higher Education (DIKTI) through competitive grants.

REFERENCES

- [1] Srihari, S.N., Lam, S.W., Govindaraju, V., Srihari, R.K., and Hull, J.J. Document Image Understanding. New York: CEDAR, 1986.
- O'Gorman, L., and Kasturi, R. Executive briefing: documen image analysis. USA: IEEE Computer Society Press, 1997.
- M. Shimizu, H. Fukuda, and G. Nakamura. "Thinning Algorithm for [3] Digital Figures of Characters", Proceeding 4th IEEE Southwest Symposium on Image Analysis and Interpretation, 2000. Pp: 83-87.
- [4] Zhang, T. Y. and Suen, Ching Y., "A Fast Parallel Algorithms For Thinning Digital Patterns", Communication of the ACM, Vol 27, No. 3, Maret 1984, pp.236-239.
- [5] Lam, L. and Suen, Ching Y., "An Evaluation Of Parallel Thinning Algorithms For Character Recognition", IEEE Transaction On Pattern Analysis And Machine Intelligence, Vol 17, No. 9, September 1995, pp.914-919.
- [6] E. Adeline, Enhancement of Parallel Thinning Algorithm for Handwritten Characters Using Neural Network, Master Thesis, Department of Computer Science, Faculty of Computer Science and Information Technology, Universiti Technologi Malaysia, 2005. http://eprints.utm.my/3796/1/AdelineEngkamatMCD205ttt.pdf.
- [7] Klette, Gisela. Skeletons in Digital Image Processing. 2002
- K.H. Lee, K.B. Eom, and R.L. Kashyap "Character Recognition Based [8] on Attribute-Dependent Programmed Grammar", IEEE Transaction On Pattern Analysis And Machine Intelligence, VoL. 14, No. 11, November 1992, pp.1122-1128.
- [9] Nagendraprasad, MV., Wang, PSP., and Gupta, A., "Algorithms for Thinning and Rethickening Binary Digital Pattern", Digital Signal Processing, Vol. 3, 1993, pp. 97-102. http://dspace.mit.edu/ bitstream/handle/1721.1/46843/algorithmsforthi00nage.pdf?sequence=1
- [10] Zhang, T. Y. dan Wang, P. S. P., "Analysis of Thinning Algorithms", College of Computer Science Northeastern University Boston, MA 02115. 1992, pp.763-766.
- [11] L. Lam, SW Lee, and CY. Suen, "Thinning Methodologies A Comprehensive Survey", IEEE Transaction on Pattern Analysis and Machine Intelligence. Vol. 14, No. 9, September 1992, pp. 869-885.

- [12] Dawoud, Amer dan Kamel, Mohamed, "New Approach for the Skeletonization of Handwritten Characters in Gray-Level Images", Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR 2003), IEEE.
- [13] Jang, BK., and Chin, RT., 'Analysis of Thinning Algorithms Using Mathematical Morphology", IEEE Transactions on Pattern Analysis and Machine Intellegence. Vol. 12, No. 6, 1990, pp. 541-551.
- [14] Rinaldi, Munir. Pengolahan Citra Digital dengan Pendekatan Algoritmik. Bandung: Penerbit Informatika, 2004.
- [15] Taussaint, Godfried. Skeletons. http://www.citr.auckland.ac.nz/
- and Zhang, YY. "A Fast and Flexsible Thinning Wang, PSP., [16] Algorithm", IEEE Transactions on Computer. Vol. 38, No. 5, 1989, pp. 741-745.