
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1725

Comparative Survey of Object Serialization
Techniques and the Programming Supports

Kazuaki Maeda

Abstract—This paper compares six approaches of object serial-
ization from qualitative and quantitative aspects. Those are object
serialization in Java, IDL, XStream, Protocol Buffers, Apache Avro,
and MessagePack. Using each approach, a common example is
serialized to a file and the size of the file is measured. The qualitative
comparison works are investigated in the way of checking whether
schema definition is required or not, whether schema compiler is
required or not, whether serialization is based on ascii or binary, and
which programming languages are supported. It is clear that there
is no best solution. Each solution makes good in the context it was
developed.

Keywords—structured data, serialization, programming

I. INTRODUCTION

Technology has been changing and continues changing day
by day. In software research area, a compiler is one of the
oldest and maturing technologies. If new technology can be
embed in the compiler, we can have a chance to change it to
a more convenient tool.

The compiler reads source code and generates object code.
In the front-end of the compiler, it reads the plain text, analyzes
it, and builds a tree to represent the structure in source code.
To represent the structured data, the compiler front-end builds
the AST which stands for an abstract syntax tree. The AST
contains syntactic and semantic information of source code.
The compiler back-end receives the AST from the front-end
and generates object code.

Most of the compiler does not export the AST out of the
compiler. The author had an experience to develop a compiler
front-end for Java version 5.0 from scratch to analyze source
code to use in commercial products. The task was complicated
because approximately two hundreds of classes, containing
more than one thousands of methods and fields, were required
to build an AST. If we develop some software tools, for
example, a reverse engineering tool or a source code search
engine, we need to build a compiler front-end from scratch. It
is not easy task to develop it.

XML has gained the popularity in a short time, as can be
seen in the following [1]:

XML is a buzzword you will see everywhere on the
Internet, but it’s also a rapidly maturing technology
with powerful real-world applications, particularly
for the management, display, and organization of
data.

XML is currently used as a standard language for data
representation in wide application area.

Kazuaki Maeda is with the Department of Business Administration and
Information Science, Chubu University, Kasugai, Aichi, 487-8501 Japan
(e-mail: kaz@acm.org).

One of the XML applications to the compiler is JavaML
[2]. It is a typical representation providing syntactic and
semantic information after analyzing Java source code. The
JavaML compiler reads the source code, and create AST,
and writes the AST as a XML document. Once software
tools are implemented using the JavaML representation, we
do not need to develop a compiler front-end. The software
tools can easily obtain information using XML utilities about
Java source code which contains class declarations, method
declarations, method invocations. We do not need to reinvent
the wheel.

In contrast of XML advantages, there are some disad-
vantages of XML. One of the disadvantages is that XML
documents are composed of many redundant tags, those are
start tags and end tags. They are written in human readable
text format, but it is difficult to read and understand them. To
overcome the disadvantages, JSON is currently becoming a
popular representation for structured data [3], [4]. Structured
data in JSON is represented by object notation of JavaScript
to simplify the representation. When data is encoded in JSON,
the result is typically smaller in size than an equivalent
encoding in XML because of XML’s end tags.

Object serialization [5] is included in standard Java pack-
ages, and it supports the translation of objects (and objects
reachable from them) into a byte stream. It is called serializa-
tion. Moreover Java also supports the reconstruction of objects
from the byte stream. It is called deserialization.

The object serialization in Java is useful for saving objects
to persistent storage media such as hard disks. The value
of each field in the objects is saved in a binary format so
that we usually believe that the size of serialized bytes is
small. However, the size is not small in contrast with other
serialization formats under the author’s experiences. This is
the fact that even if the object is serialized in binary-based
format, the size is not always small. Therefore, the author
thinks we need some experiments to investigate the size of
serialized data. Moreover, there is another disadvantage. It is
that the serialized data cannot be used in other programming
languages due to the lack of libraries for such languages that
can read this type of data. The author believes that multiple
programming language support is desired in heterogeneous
Internet environments.

This paper describes comparison with six approaches of
object serialization from quantitative and qualitative aspects.
A common example is chosen, it is serialized to a file using
six approaches, and the file size is measured. From qualitative
aspect, the comparison works are investigated as the following
points;

• whether the schema definition is required or not,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1726

• whether the schema compiler is required or not,
• whether the serialization is based on ascii or binary, and
• which programming languages are supported.
Section II describes six approaches of object serialization

and APIs using small sample programs. Section III explains
the comparison and a new structured data representation
designed by the author. Section IV summarizes this paper.

II. APPROACHES OF OBJECT SERIALIZATION

To compare six approaches for object serialization, an Order
class and an Option class in Java to express a coffee order with
some options were chosen as shown in Fig. 1. It is used as
a common example for the comparison works. The values of
the example are assigned to all fields as shown in Fig. 2. It is
a XML document containing an order with some options.

public class Order {
String product;
CupSize size;
String date;
int price;
List<Option> options;

}
public class Option {

String name;
int price;

}

Fig. 1. Snippets of Order class and Option class in Java

A. Object Serialization in Java

A mechanism to represent structured data is included in
standard Java packages. It provides encoding of objects and
saving the current state to a byte stream (ObjectOutputStream).
The encoding is called serialization. It also provides recon-
struction of the equivalent objects from a byte stream (Ob-
jectInputStream). The reconstruction is called deserialization.
The writeObject method in the class ObjectOutputStream is
responsible for serialization, and the readObject method in the
class ObjectInputStream is used to restore it.

For example, we can write the state of the objects to an
ObjectOutputStream “os” as described in Fig. 3, and read
objects from an ObjectInputStream “is” in the program. We do
not need schema definitions for serialization and deserializa-
tion. All we have to do is to embed “implements Serializable”
in serialized classes and to use the writeObject method for
serialization and the readObject method for deserialization.

The serialized data using object serialization in Java is
written in a binary format. The detailed information of the
binary format is documented in Java Object Serialization
Specification [6]. But the specification is dependent on Java
so that it cannot be used in other programming languages.
Java is one of the popular programming languages for the
application development, but other programming languages
may have to be used in distributed computing. Moreover, there
are some cases with critical constraints including the lack
of the computing resource, the severe timing constraint, and

<starbucks.Order>
<product>Coffee Frappuccino</product>
<size>Grande</size>
<date>December 25,2011</date>
<price>460</price>
<options>

<starbucks.Option>
<name>Shot</name>
<price>50</price>

</starbucks.Option>
<starbucks.Option>
<name>Extra whip</name>
<price>50</price>

</starbucks.Option>
<starbucks.Option>
<name>Hazelnut</name>
<price>0</price>

</starbucks.Option>
<starbucks.Option>
<name>Caramel sauce</name>
<price>0</price>

</starbucks.Option>
<starbucks.Option>
<name>Chocolate sauce</name>
<price>50</price>

</starbucks.Option>
<starbucks.Option>
<name>Chocolate chip</name>
<price>50</price>

</starbucks.Option>
</options>

</starbucks.Order>

Fig. 2. XML document for an order with options

Order anOrder = new Order();
anOrder.setProduct("Coffee Frappuccino");
anOrder.setSize(CupSize.Grande);
anOrder.setDate("December 25,2011");
anOrder.setPrice(460);
List list = new ArrayList();
anOrder.setOptions(list);
Option thisOption = new Option();
thisOption.setName("Shot");
thisOption.setPrice(50);
list.add(thisOption);
// more five options are added to the list

FileOutputStream fos
= new FileOutputStream("order.dat");

ObjectOutputStream os
= new ObjectOutputStream(fos);

os.writeObject(theOrder);

FileInputStream fis
= new FileInputStream("order.dat");

ObjectInputStream ois
= new ObjectInputStream(fis);

Order theOrder = (Order)ois.readObject();

Fig. 3. Snippet of a program using writeObject and readObject

the connectivity to the legacy software. Therefore, multiple
programming languages should be supported for approaches
of object serialization.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1727

B. IDL

As a practical application, we can use an interface descrip-
tion language (IDL)1 compiler in Scorpion Toolkit [8]. The
IDL is a notation to define structured data. The definition for
the common example is shown in Fig. 4. It is called “schema
definition” in this paper.

Structure StarbucksOrder Root Order Is
Order => product : String,

size : CupSize,
date : String,
price : Integer,
options : Seq Of Option;

For CupSize Use Representation Enumerated;
CupSize ::= Small | Tall | Grande | Venti;
Small =>; Tall =>; Grande =>; Venti => ;

Option => name : String,
price : Integer;

End

Fig. 4. Schema definition in IDL

IDL was developed in 1980’s, but the software tools are still
available. One of the tools is an IDL compiler which reads
schema definitions in the IDL and generates useful functions
to manipulate an AST including code fragments to map the
definition to a specified programming language. The compiler
also generates functions for serialization to translate the AST
to a representation, and for deserialization to reconstruct the
AST from the representation. In this paper, the compiler which
reads schema definitions and generates code fragments is
called “schema compiler.”

The IDL user writes a program in terms of the target pro-
gramming language data declarations and utilities generated by
the schema compiler. The program writes the structured data to
a file using an ascii representation or a binary representation.

If we choose C programming language for the target, the
schema compiler generates C data type declarations, macro
declarations and function declarations. In Fig. 5, the generated
macros and functions are shown: NOrder, productOfOrder,
sizeOfOrder, dateOfOrder, priceOfOrder, order out(), and or-
der in().

Order anOrder = NOrder;
productOfOrder(anOrder) = “ Coffee Frappuccino”;
sizeOfOrder(anOrder) = GrandeToCupSize(NGrande);
dateOfOrder(anOrder) = “ December 25,2011”;
priceOfOrder(anOrder) = 460;

FILE *ofp = fopen("order-idl.txt","w");
order_out(ofp,theOrder);

FILE *ifp = fopen("order-idl.txt","r");
Order theOrder = order_in(ifp);

Fig. 5. Snippet of a program using IDL

1The IDL in this context is different from OMG IDL [7].

The Scorpion Toolkit is very useful in developing language-
oriented software tools. However, the representation of struc-
tured data for the toolkit is not designed for general purposes.

C. XStream

XStream [9] is a Java library to serialize objects in XML
and to deserialize the objects. We do not need to implement
the Serializable interface like object serialization in Java. It
uses a reflection mechanism at run time to investigate in the
object graph to be serialized.

In the case of XStream, we do not need any schema
definitions. Class names and field names become element
names in the XML document to be serialized. Fig. 2 shows a
XStream output to express a coffee order with some options.

To serialize objects using XStream, all we have to do
is to instantiate the XStream object and to call a toXML
method shown in Fig. 6. For deserialization, all we have
to do is to call a fromXML method and to cast the object.
In current version of XStream, JsonHierarchicalStreamDriver
class provides serialization in JSON.

Order anOrder = new Order();
anOrder.setProduct("Coffee Frappuccino");
anOrder.setSize(CupSize.Grande);
anOrder.setDate("December 25,2011");
anOrder.setPrice(460);

XStream xstream = new XStream();
FileOutputStream fos
= new FileOutputStream("order.xml");

xstream.toXML(anOrder, fos);

FileInputStream fis
= new FileInputStream("order.xml");

xstream = new XStream();
Order theOrder =(Order)xstream.fromXML(fis);

JsonHierarchicalStreamDriver json
= new JsonHierarchicalStreamDriver();

xstream = new XStream(json);
fos = new FileOutputStream("order.json");
xstream.toXML(theOrder, fos);

Fig. 6. Snippet of a program using XStream

D. Protocol Buffers

Protocol Buffers [10] is used in Google to encode structured
data in an efficient format. It is encoded to binary data for
implementing smaller and faster serialization. Before program-
ming, we have to prepare schema definitions for the structured
data shown in Fig. 7.

Users define protocol buffer message types. Each protocol
buffer message contains a series of name-value pairs. It has
uniquely numbered fields, and each field has a name and
a value type. The value type can be integer, floating-point,
boolean, string, enumeration, or other protocol buffer message
type.

In Protocol Buffers, the schema compiler reads the schema
definition and generates data access classes including ac-
cessors for each field (like getProduct() and setProduct()),

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1728

option java_package = "org.example";

message Order {
enum CupSize {
Small = 1; Tall = 2;
Grande = 3; Venti = 4;

}
required string product = 1;
required CupSize size = 2;
required string date = 3;
required int32 price = 4;

message Option {
required string name = 1;
required int32 price = 2;

}

repeated Option options = 5;
}

Fig. 7. Schema definition for Protocol Buffers

methods to serialize/deserialize the structured data and special
builder classes to encapsulate internal data structure. Fig. 8
shows the accessors, serialization and deserialization in Java.
In current version of Protocol Buffers, three programming
languages, Java, C++ and Python, are supported.

Order.Builder anOrder = Order.newBuilder();

anOrder.setProduct("Coffee Frappuccino");
anOrder.setSize(Order.CupSize.Grande);
anOrder.setDate("December 25,2011");
anOrder.setPrice(460);

FileOutputStream fos
= new FileOutputStream("order.dat");

anOrder.build().writeTo(fos);

FileInputStream fis
= new FileInputStream("order.dat");

Order theOrder = Order.parseFrom(fis);

Fig. 8. Snippet of a program using Protocol Buffers

E. Apache Avro

Apache Avro [11] is serialization framework developed as
a Hadoop subproject. It provides serialization formats for
persistent data and communication between Hadoop nodes.

To integrate with dynamic programming languages, code
generation is not required to serialize and deserialize structured
data, but schema definitions for Apache Avro are required.
Avro uses JSON for schema definitions shown in Fig. 9. When
Avro data is read, the schema is read at run time before reading
the data.

One of features for Avro is that it enables direct serialization
from schema definitions without code generation. Fig. 10
shows snippets of a program to serialize and deserialize an
order object using Apache Avro. In the program, first encoder
serializes the object in a binary format to a file, and a decoder

{
"namespace": "org.example",
"name": "Order",
"type": "record",
"fields": [
{"name": "product", "type": "string"},
{"name": "size", "type": "enum",

"symbols" : ["Small","Tall","Grande","Venti"]
},
{"name": "date", "type": "string"},
{"name": "price", "type": "int"},
{"name": "options","type": {

"type" : "array",
"items": org.example.Option

} }] }

Fig. 9. Schema definition for Apache Avro

File file = new File("schema-order.avro");
Schema schema = AvroUtils.parseSchema(file);

GenericRecord r = new GenericData.Record(schema);
r.put("product", "Coffee Frappuccino");
r.put("size", "Grande");
r.put("date", "December 25,2011");
r.put("price", 460);

FileOutputStream fos
= new FileOutputStream("order.dat");

EncoderFactory ef = EncoderFactory.get();
Encoder enc = ef.binaryEncoder(fos,null);
GenericDatumWriter<GenericRecord> writer
= new GenericDatumWriter<GenericRecord>(schema);

writer.write(r,enc);

FileInputStream fis
= new FileInputStream("order.dat");

DecoderFactory df = DecoderFactory.get();
Decoder dec = df.binaryDecoder(fis,null);
GenericDatumReader<GenericRecord> reader
= new GenericDatumReader<GenericRecord>(schema);

GenericRecord theOrder
= reader.read(null,dec);

fos = new FileOutputStream("order.json");
enc = ef.jsonEncoder(schema,fos);
w = new GenericDatumWriter<GenericRecord>(schema);
writer.write(r,enc);

Fig. 10. Snippet of a program using Apache Avro

deserializes the object from the file. EncoderFactory class
provides two kinds of encoders, binary-based and JSON-based.
If we need to serialize it in JSON, we can simply change the
Encoder implementation from

Encoder enc = ef.binaryEncoder(fos,null);

to

Encoder enc = ef.jsonEncoder(s, fos);

After changing the Encoder to JsonEncoder, JSON data shown
in Fig. 11 is serialized.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1729

{"product":"Coffee Frappuccino","size":"Grande","date":"December 25,2011","price":460,"options":[]}

Fig. 11. Representation of an order in JSON data using Avro

F. MessagePack

MessagePack [12] is an efficient object serialization library
using a binary format. The schema definition is not always
required. If Java is chosen as a programming language, an
annotation @Message enables us to serialize public fields in
objects as shown in Fig. 12.

@MessagePackMessage
public class Order {

public String product;
public String size;
public String date;
public int price;
public List<Option> options;

}

Fig. 12. Order class using MessagePack without IDL

A schema definition is provided shown in Fig. 13 and the
syntax is similar as one of Protocol Buffers. Current imple-
mentation supports only Java, but in specification multiple
programming languages will be supported.

namespace com.example
enum Size {

0: Small
1: Tall
2: Grande
3: Venti

}
message Option {

1: string name
2: int price

}
message Order {

1: string name
2: Size size
3: string date
4: int prince
5: list<Option> options

}

Fig. 13. Schema definition for MessagePack

If a program need to serialize objects, all we have to do is
to call a pack method in MessagePack class shown in Fig .14.
To deserialize objects from bytes, all we have to do is to call
a unpack method in MessagePack class.

In current implementation, seventeen programming lan-
guages are supported. Those are C, C++, C#, Java, D, Go,
Node.JS, JavaScript, Perl, Python, Ruby, Scala, Lua, PHP,
Erlang, Haskell and OCaml.

Order anOrder = new Order();

anOrder.setProduct("Coffee Frappuccino");
anOrder.setSize("Grande");
anOrder.setDate("October 6,2011");
anOrder.setPrice(460);
anOrder.setOptions(new ArrayList<Option>());

byte[] raw = MessagePack.pack(anOrder);
FileOutputStream output
= new FileOutputStream("order.dat");

output.write(raw);

FileInputStream fis
= new FileInputStream("order.dat");

byte[] allbytes = // read all bytes from fis
Order theOrder
= MessagePack.unpack(allbytes,Order.class);

Fig. 14. Snippet of a program using MessagePack

III. DISCUSSION

A. Comparison in Six Approaches of Object Serialization

In the previous section, six approaches of serialization are
explained. From quantitative aspects, the size of serialized data
is measured and the results are shown in TABLE I. Binary-
based serialization using IDL, Protocol Buffers, Apache Avro,
and Message Pack are small in size. Object serialization in
Java is binary-based representation, but the size of serialized
data is not small. Because the serialized data contains much
type information for Java. The case of XStream shows the
size of JSON-based serialization is about 36% decreased in
contrast with the size of XML-based serialization. Binary-
based serialization using Apache Avro is the smallest in this
case. XML-based serialization using XStream is the largest in
size.

TABLE I
SIZE OF THE SERIALIZED DATA FOR THE COFFEE ORDER

Approach Binary or Ascii Size (bytes)
Serialization in Java Binary 502

IDL Ascii 339
Binary 135

XStream Ascii in XML 782
Ascii in JSON 497

Protocol Buffers Binary 141
Apache Avro Binary 121

Ascii in JSON 296
Message Pack Binary 128

TABLE II shows some qualitative aspects as the following;
• whether schema definition is required or not,
• whether schema compiler is required or not,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1730

TABLE II
COMPARISON OF OBJECT SERIALIZATION

Is schema required ? Is compiler provided ? Binary or ascii Supported programming languages
Java serialization No No Binary Java

IDL Yes Yes Binary, Ascii C, Pascal
XStream No No XML, JSON Java

Protocol Buffers Yes Yes Binary Java, C++, Python
Apache Avro Yes No Binary, JSON C, C++, C#, Java, PHP, Python
Message Pack Optional Yes Binary 17 languages including C, Java, Ruby

• whether serialization is based on binary or ascii, and
• which programming languages are supported.

If we need multiple programming language support, schema
definitions are required like IDL and Protocol Buffers. The
schema definitions are used to map them to a target program-
ming language. Message Pack supports many programming
languages because there are many contributed developers. It
shows that world-wide open source development is important
to increase activity of software projects.

B. Comparison with RugsOn

The author designed RugsOn, a new representation writ-
ten in a text-based data format for multiple programming
languages [13]. RugsOn was designed to reach good read-
ability and simplicity of structured data representation shown
in Fig. 15. The representation of structured data should be
simple and easy to read. Moreover, structured data should be
represented using a simple language and it should be available
for multiple programming languages. A common subset of
Ruby, Groovy and Scala was carefully chosen for RugsOn
design so that one representation in RugsOn is available for
multiple programming languages.

Order{
"Grande".size
"October 6,2011".date
660.price
"Coffee Frappuccino".product

}

Fig. 15. Serialized data using RugsOn

The size of serialized data for the common coffee order
program is 385 bytes. RugsOn is not binary-based format, but
the size is smaller than object serialization in Java.

A schema definition language was designed using a subset
of Ruby syntax. A program generator was developed to create
Ruby, Groovy, Scala and Java programs from the schema
definitions. It means that four programming languages are
supported in current version.

IV. CONCLUSION

This paper compares six approaches of object serialization
from qualitative and quantitative aspects. It is clear that there
is no best solution. Each solution makes good in the context
it was developed.

If we need multiple programming language support, schema
definitions are required using a schema definition language

and a schema compiler generates some code fragments from
the schema definitions. From quantitative aspects, the size of
binary-based serialized data is better than XML-based and
JSON-based serialization. If we need easy interoperability
with dynamic languages, Apache Avro is the best in the six
serialization approaches.

The author believes good readability and simplicity of struc-
tured data representation so that ascii-based representation is
desirable. Research about survey of object serialization and
development of RugsOn will continue. The results will be
published in a future paper.

REFERENCES

[1] D. Hunter, J. Rafter and others, Beginning XML, 4th edition, Wiley, 2007.
[2] Greg Badros, JavaML: A Markup Language for Java Source Code, 9th

International World Wide Web Conference,
http://www9.org/w9cdrom/index.html, 2000.

[3] JSON, http://www.json.org/ (accessed at Oct. 20, 2011).
[4] The application/json Media Type for JavaScript Object Notation (JSON),

RFC 4627, http://www.ietf.org/rfc/rfc4627.txt (accessed at Oct. 20, 2011).
[5] Java SE 7 Serialization-related APIs and Developer Guides,

http://download.oracle.com/javase/7/docs/technotes/guides/serialization/
(accessed at Oct. 20, 2011).

[6] Java Object Serialization Specification: Contents,
http://download.oracle.com/javase/7/docs/platform/serialization/spec/
serialTOC.html (accessed at Oct. 20, 2011).

[7] OMG, Common Object Request Broker Architecture (CORBA), OMG
Released Versions Of CORBA, http://www.omg.org/spec/CORBA/3.1/.

[8] Richard Snodgrass, The Interface Description Language: Definition and
Use. Computer Science Press, 1989.

[9] XStream – About XStream, http://xstream.codehaus.org/ (accessed at Oct.
20, 2011).

[10] protobuf – Protocol Buffers, http://code.google.com/p/protobuf/ (ac-
cessed at Oct. 20, 2011).

[11] Welcome to Apache Avro, http://avro.apache.org/ (accessed at Oct. 20,
2011).

[12] The MessagePack Project, http://msgpack.org/ (accessed at Oct. 20,
2011).

[13] Kazuaki Maeda, Executable Representation for Structured Data Using
Ruby and Scala, 10th International Symposium on Communications and
Information Technologies, pp.127–132, 2010.

Kazuaki Maeda He is a professor of Department of
Business Administration and Information Science at
Chubu University in Japan. He is a member of ACM,
IEEE, IPSJ and IEICE. His research interests are
Compiler Construction, Domain Specific Languages,
Object-Oriented Programming, Software Engineer-
ing and Open Source Software.

