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Abstract—An effective approach for realizing the binary tree 

structure, representing a combinational logic functionality with 
enhanced throughput, is discussed in this paper. The optimization in 
maximum operating frequency was achieved through delay 
minimization, which in turn was possible by means of reducing the 
depth of the binary network. The proposed synthesis methodology 
has been validated by experimentation with FPGA as the target 
technology. Though our proposal is technology independent, yet the 
heuristic enables better optimization in throughput even after 
technology mapping for such Boolean functionality; whose reduced 
CNF form is associated with a lesser literal cost than its reduced 
DNF form at the Boolean equation level. For cases otherwise, our 
method converges to similar results as that of [12]. The practical 
results obtained for a variety of case studies demonstrate an 
improvement in the maximum throughput rate for Spartan IIE 
(XC2S50E-7FT256) and Spartan 3 (XC3S50-4PQ144) FPGA logic 
families by 10.49% and 13.68% respectively. With respect to the 
LUTs and IOBUFs required for physical implementation of the 
requisite non-regenerative logic functionality, the proposed method 
enabled savings to the tune of 44.35% and 44.67% respectively, over 
the existing efficient method available in literature [12].   
 

Keywords—Binary logic tree, FPGA based design, Boolean 
function, Throughput rate, CNF, DNF. 

I. INTRODUCTION 
HE issue of performance enhancement has been a subject 
matter of much research [1] [2] [3] [4] [5]. Also the 

relevance of FPGAs based on LUTs in the last decade has 
fostered numerous efforts in finding effective methods to 
minimize and decompose functions. This paper deals with a 
novel technology-independent synthesis methodology to 
realize compact and throughput enhanced binary tree 
structures for combinational logic circuits, by way of reducing 
the logic depth.  A number of techniques mentioned in [7] [8] 
[9] are technology-independent and aim at reducing the logic 
depth of the binary tree representing a Boolean network by 
restructuring. Directed acyclic directed graphs (DAG) are 
generally used to effectively represent single output 
combinational logic circuit functionality. A rooted DAG may 
be unfolded to a tree in such a way that no multiple-fanout 
nodes exist, except for the primary circuit inputs. Each 
internal node is labeled with a logical operator, AND and/or 
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OR, although other operators are also used depending upon 
the functionality. In this work, we are primarily concerned 
with function representations employing just these two types 
of Boolean operations. A labeled edge (dot appearing on an 
edge) in a DAG or a binary tree would correspond to a logical 
inversion or negation operation. Let us have a reasonable and 
valid assumption that all DAGs are reduced and that 
isomorphism is not exhibited in the sub-DAGs. 

Tree-height reduction was indeed proposed [6] in the scope 
of compiler optimization, for code generation in 
multiprocessor systems. Given the underlying inherent 
complexity of the problem, timing optimization is sought 
after, after the size of the Boolean network representing the 
circuit has been reduced. Even extraction of kernels, that can 
be shared, may lead to an increase in the depth of the network 
as an associated effect. This makes it clear that sharing logic is 
not always deemed to be a good approach, when considering 
the issue of timing optimization. A technique that performs 
logic decomposition during technology mapping has been 
proposed in [10] [11]. However, the accuracy of this approach 
is traded off for a higher computational cost. A recent activity 
[12] addresses the issue of delay improvement through 
functional decomposition. It actually builds on logic bi-
decomposition of Boolean functions [13] [14] and also uses 
weak algebraic factorization operations. It implicitly relies 
upon OR disjunction for functional bi-decomposition. Then it 
combines this strategy with tree-height reduction of resulting 
Boolean expressions. Though it leads to enhancement in 
performance, vis-à-vis achieving logic depth reduction, the 
quasi-algebraic decomposition was normally performed on the 
minimized disjunctive normal form (DNF) [15], by iteratively 
applying a combination of associative, distributive and 
commutative (ACD) laws. 

The remaining portion of this paper is organized as follows. 
In section 2, we introduce a novel terminology, namely the 
description set of a Boolean term and give its definition. 
Section 3 elucidates the proposed method by means of an 
illustrative example and compares it with the solution 
obtained using the ACD based algorithm [12] at both the 
technology-independent and technology-dependent phases. 
Section 4 depicts the simulation results obtained for several 
Boolean functions. A comparison of the methods in terms of 
the maximum operating frequency achievable for the designs 
is given in this section. The resource utilization summary is 
also listed in this section. Finally, we make the concluding 
remarks in the next section. 

Compact Binary Tree Representation of Logic 
Function with Enhanced Throughput 

Padmanabhan Balasubramanian, Cemal Ardil 

T 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

957

 

 

II. DESCRIPTION SET OF A BOOLEAN TERM 
A new terminology is proposed, namely the description set 

of a Boolean term (sum term or product term). The description 
set of a sum term [product term], shall be represented by the 
notation D(Si) [D(Pi)].  

D(Si) specifies the set of all literals in their actual form, that 
the particular sum term Si is dependent upon for its evaluation 
to a logic value of ‘0’ and D(Pi) indicates the set of all literals 
in their respective form, that a product term Pi depends upon 
for its evaluation to a logic value of ‘1’.                       

For e.g. let a sum-of-disjoint products (SoDP) function be, 
Z = AC’DE + B’FG’, where there are two disjoint product 
terms; P1 = AC’DE and P2 = B’FG’. Hence D(P1) = {A, 
C’,D,E} and D(P2) = {B’,F,G’}.  

The description set for a Boolean function would then be 
the union of the description sets of all its individual terms. For 
the above example, it is given by, D(Z) = D(P1) ∪ D(P2). 

III. ILLUSTRATION OF PROPOSED HEURISTIC 
Let us take an arbitrary logic function, F to describe the 

effectiveness of our proposal. Let F(Q,R,S,T,U,V,W) be 
described by the following minimized expression, 

 
F = TRU+TRV+ST’W+SU+SV+QT’W+QU+QV               (1) 
 

Using the ACD based heuristic as described in [12], two 
logically equivalent and irredundant reduced expressions are 
obtained as follows,  

 
F = (TR)·(U+V)+(Q+S)·(T’W+U+V)                                   (2) 

 

F = (TR+Q+S)·(U+V)+(T’W)·(Q+S)                                    (3)  

 
Both the above Boolean equations (2) and (3) have the 

same input literal cost. The reduced conjunctive normal form 
(CNF) equivalent for (1) is given by, 

 
F = (T+S+Q)·(R+S+Q)·(T’+U+V)·(W+U+V)                      (4) 
 

For (4), we could write D(S1) = {T,S,Q}, D(S2) = {R,S,Q}, 
D(S3) = {T’,U,V} and D(S4) = {W,U,V}. We perform the 
union of the description set of a sum term with all other sum 
terms of (4) and we get the following: D(S1) ∪ D{S2}= {S,Q}, 
D(S1) ∪ D(S3) = { }, D(S1) ∪ D(S4) = { }, D(S2) ∪ D(S3) =    
{ }, D(S2) ∪ D(S4) = { } and D(S3) ∪ D(S4) = {U,V}. We 
now enumerate the cardinality of the above union and thereby 
obtain | D(S1) ∪ D(S2) | = 2, | D(S1) ∪ D(S3) | = 0, | D(S1) ∪ 
D(S4) | = 0, | D(S2) ∪ D(S3) | = 0, | D(S2) ∪ D(S4) | = 0 and      
| D(S3) ∪ D(S4) | = 2.  

In general, for a function whose minimized two-level CNF 
expression contains ‘k’ product terms, the first product term, 
say, P1 could be combined with (k-1) different product terms, 
the second product term, P2 could be combined with (k-2) 
distinct product terms till the (k-1)th product term, which could 

be combined with just one another different product term at 
the end.  

As a further generalization, it can be intuitively observed 
that if the total number of distinct product terms in the reduced 
two-level representation of a logic function is ‘n’; whether ‘n’ 
is ‘odd’ or ‘even’; the total number of set union operations 
required to be performed would be O[n(n-1)/2].  

Now we make a decision with regard to grouping those 
terms, whose degree of literal matching is the highest, as 
determined by the cardinality of the union of the description 
set of all possible combinations of two unique Boolean terms. 
Therefore for (4), we find that S1 and S2 can be combined 
using the distributive law; similarly S3 and S4 are candidates to 
be combined using the same axiom. After applying the D rule 
for the appropriate terms of (4), which could be grouped, we 
get the following reduced expression, 

 
F = (TR+S+Q)·(T’W+U+V)                                                  (5) 
 

Comparing (2) [also (3)] and (5), we find that there is a 
savings of 20% in terms of literal count. After representing the 
tree structures for (2) and (5) in accordance with the DAG 
specification and with sharing of nodes permitted, we observe 
that there is a reduction in the number of operators and logic 
depth by 12.5% and 25%, for the latter in comparison with the 
former. Without node sharing, and for the worst case 
realization, the respective savings for the proposed method 
would be 22.22% and 40% respectively.  

The binary tree representation with node sharing for (1), 
given by (2), is shown in fig. 1. The symbols  and  
denote Boolean AND and Boolean OR operators respectively 
and these are referred to as atomic operators (AO) [16]. 
 

 
 

Fig. 1 Binary tree representation for (1) based on ACD heuristic 
 

Theoretically speaking, the maximum operating frequency 
for fig. 1, given as a reciprocal of the longest path delay or 
critical path delay is given by, 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

958

 

 

m a x
1 1

3 2 2A N D O R A N D O R

f
t t t t

= =
+ +

            (6) 

For representation without duplication of nodes and with no 
node sharing, the upper bound on the maximum frequency is, 
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                    (7) 

 
Fig. 1 is characterized by a maximum logic depth of 4 

(specified by the number of nodes in the longest path from 
any of the primary inputs to a primary output for a MISO 
function) and maximum operating frequencies of 89.847 MHz 
and 101.626 MHz for technology mapping with Spartan IIE 
(XC2S50E-7FT256) and Spartan 3 (XC3S50-4PQ144) FPGA 
logic families as targets. The binary tree structure consumed 5 
basic logic elements (LUTs of FPGA) and 16 input-output 
buffers for physical realization. 

The binary logic tree representation corresponding to (5) is 
depicted by fig. 2. 
 

 
 

Fig. 2 Binary tree representation for (1) based on proposed method 
 

As seen above, this tree representation requires less number 
of nodes than fig. 1 and the theoretical upper bound on the 
maximum throughput rate is given by the expression, 
 

m a x
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f
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             (8) 

 
The maximum logic depth of the tree structure is 3 and the 

highest operating frequency for Spartan IIE and Spartan 3 
FPGA logic families is found to be 99.009 MHz and 118.203 
MHz respectively. Also the structural representation required 
3 basic logic elements and 9 input-output buffers for 
implementation with the above technology targets. 

For this particular case study, we find that the throughput 
rate is increased by 10.19% and 16.31% for the FPGA target 
families in the above order. With respect to the basic logic 
elements and input-output buffers needed for technology 

mapping, corresponding savings of 40% and 43.75% has 
resulted for the proposed procedure over that of [12].  

IV. SIMULATION MECHANISM AND PRACTICAL RESULTS 
Various combinational logic functions in canonical form of 

various types were considered to substantiate the theoretical 
claims by validating with experimental results. The 
functionalities in PLA format were first minimized using a 
commercial industry standard two-level logic minimizer, such 
as ESPRESSO [17] and they are listed in Table 5 (made 
available as an appendix).  

The binary tree structures highlighting the BDAG 
representation for the combinational circuits were realized 
using the ACD rules based methodology described in [12]. 
VHDL coding was done for all the functions using structural 
modeling style with gate-level primitives strictly conforming 
to the binary DAG specification. The detailed design summary 
and timing reports were obtained after post place and route 
stage. The maximum operating frequency of the different 
designs was then determined as a reciprocal of the maximum 
combinational logic path delay.  

The reduced conjunctive normal forms for the functions can 
be obtained by two methods; either by running a direct sum-
of-products to product-of-sums subroutine or by considering 
the complementary phase of the function and a 
straightforward conversion to reduced product-of-sums 
expression could be done. Infact, a high level language 
implementation of the modified Quine-McCluskey’s method 
for two-level logic minimization [18] can also be used in this 
regard. Next, the description set for the different product 
terms corresponding to each and every function was obtained 
as per the definition given in section 2. Set union operations 
were then performed on the different sets and the candidates 
suitable for grouping were found according to the method 
explained in section 3. Distributive axiom was applied, so that 
the function now tends to comprise reduced, compact and 
read-once functionality for the sub-functions, though not in 
the original function. Then the tree representation was created 
using the basic atomic operators and VHDL coding was done 
using a similar modeling style. The design summary and 
timing reports were obtained after the placement and routing 
phase.  

The simulations were all performed with Xilinx project 
navigator suite targeting Spartan IIE and Spartan 3 FPGA 
boards. The Spartan FPGA logic families are ideally suited for 
gate-level designs [19].  

Table 1 gives a description of the comparison between the 
two schemes in terms of the logical operators required and 
literal count. Table 2 shows the maximum throughput rate for 
the synthesized tree representations corresponding to the 
desired Boolean functionality, based on the two different 
methods. Table 3 gives the amount of basic logic elements 
utilized (BEL) for the different techniques and Table 4 gives 
an account of the input-output buffers (IOBUF) utilized for 
the two schemes.  
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TABLE I 
LOGICAL OPERATORS AND LITERAL COST COMPARISON 

ACD_BDAG P_BDAG  
Function ID 

NAO NIL NAO NIL 

Z15 3 8 3 6 
Z27 5 12 3 8 
Z39 6 18 4 10 
Z411 6 24 4 12 
Z58 6 17 4 9 
Z69 5 14 4 10 
Z77 5 10 4 10 
Z88 5 15 4 9 
Z96 4 10 3 7 

Z108 5 17 4 9 
Z115 4 7 3 6 
Z127 5 15 3 8 
Z136 3 8 3 7 
Z149 5 16 4 10 
Z158 5 18 4 9 
Z166 5 8 4 7 
Z1710 7 26 4 11 
Z189 6 13 4 10 
Z199 5 20 4 10 
Z208 4 7 3 6 
Z2110 5 15 3 8 
Z2210 3 8 3 7 
Z2311 5 16 4 10 
Z2412 5 8 4 7 
Z2516 7 26 4 11 
Z2612 6 13 4 10 
Z2710 5 20 4 10 
Z288 3 8 3 6 
Z2911 5 12 3 8 
Z3010 6 18 4 10 
Z3110 6 17 4 9 
Z3215 5 14 4 10 
Z3311 5 10 4 10 
Z3411 5 15 4 9 
Z3514 5 17 4 9 
Total 175 500 129 308 

ACD_BDAG – ACD rules based BDAG and P_BDAG – Proposed BDAG;          
LFMn: LF – Logic Function, M – Function ID, n – number of inputs 

 
TABLE II 

MAXIMUM OPERATING FREQUENCY (MHZ) FOR DIFFERENT FPGA TARGETS 
Spartan IIE 

(XC2S50E-7FT256) 
Spartan 3 

(XC3S50-4PQ144) 
 

Function ID 
ACD_BDAG P_BDAG ACD_BDAG P_BDAG 

Z15 98.717 120.482 118.203 136.054 
Z27 94.877 98.717 104.384 118.203 
Z39 81.103 90.579 93.545 105.597 
Z411 78.989 88.183 87.951 109.051 
Z58 94.697 91.912 104.603 117.096 
Z69 90.827 90.171 98.328 116.822 
Z77 92.937 99.009 116.959 118.203 
Z88 86.58 96.154 98.328 103.842 
Z96 92.937 120.482 116.959 123.001 

Z108 82.034 100.402 98.232 109.409 
Z115 120.919 124.069 142.045 145.772 
Z127 89.847 99.009 101.626 118.203 

Z136 91.912 120.919 111.483 142.045 
Z149 90.253 90.579 100.705 105.597 
Z158 72.833 91.912 82.508 116.959 
Z166 86.505 120.482 104.167 123.001 
Z1710 81.699 91.075 86.356 108.932 
Z189 88.183 92.937 108.578 116.959 
Z199 79.177 93.197 91.241 118.483 
Z208 84.317 98.717 101.729 118.203 
Z2110 83.822 86.505 86.281 109.051 
Z2210 87.413 90.579 100.2 105.597 
Z2311 72.992 87.336 87.413 111.111 
Z2412 84.531 89.445 98.039 108.578 
Z2516 82.988 86.73 96.618 97.371 
Z2612 84.531 91.912 98.039 108.225 
Z2710 87.413 92.937 100.2 103.842 
Z288 86.059 98.717 98.328 118.203 
Z2911 72.993 87.336 87.413 111.111 
Z3010 83.822 86.505 86.281 109.051 
Z3110 87.413 90.579 100.2 105.597 
Z3215 80.064 86.73 96.618 92.851 
Z3311 91.324 89.445 103.95 109.051 
Z3411 83.963 82.85 98.039 108.932 
Z3514 83.682 84.034 88.261 101.729 
Total 3032.353 3350.627 3493.810 3971.732 

 
TABLE III 

BASIC LOGIC ELEMENTS (LUTS OF FPGA) FOR SPARTAN IIE AND SPARTAN 3 
Spartan IIE 

(XC2S50E-7FT256) 
Spartan 3 

(XC3S50-4PQ144) 
 

Function ID 
ACD_BDAG P_BDAG ACD_BDAG P_BDAG 

Z15 3 2 3 2 
Z27 6 3 6 3 
Z39 7 5 7 5 
Z411 10 4 10 4 
Z58 6 3 6 3 
Z69 5 4 5 4 
Z77 3 3 3 3 
Z88 5 6 5 6 
Z96 3 2 3 2 

Z108 7 3 7 3 
Z115 2 2 2 2 
Z127 5 3 5 3 
Z136 3 2 3 2 
Z149 6 5 6 5 
Z158 7 3 7 3 
Z166 3 2 3 2 
Z1710 10 4 10 4 
Z189 4 3 4 3 
Z199 7 3 7 3 
Z208 5 3 5 3 
Z2110 8 4 8 4 
Z2210 7 5 7 5 
Z2311 7 4 7 4 
Z2412 11 4 11 4 
Z2516 13 6 13 6 
Z2612 11 5 11 5 
Z2710 7 5 7 5 
Z288 5 3 5 3 
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Z2911 7 4 7 4 
Z3010 8 4 8 4 
Z3110 7 5 7 5 
Z3215 13 6 13 6 
Z3311 8 4 8 4 
Z3411 11 4 11 4 
Z3514 9 5 9 5 
Total 239 133 239 133 

 
TABLE IV 

INPUT-OUTPUT BUFFERS REQUIRED FOR THE TWO SCHEMES 
Spartan IIE 

(XC2S50E-7FT256) 
Spartan 3 

(XC3S50-4PQ144) 
 

Function ID 
ACD_BDAG P_BDAG ACD_BDAG P_BDAG 

Z15 9 7 9 7 
Z27 15 9 15 9 
Z39 19 11 19 11 
Z411 25 13 25 13 
Z58 18 10 18 10 
Z69 15 11 15 11 
Z77 11 9 11 9 
Z88 16 10 16 10 
Z96 11 8 11 8 

Z108 18 10 18 10 
Z115 8 7 8 7 
Z127 16 9 16 9 
Z136 9 8 9 8 
Z149 17 11 17 11 
Z158 19 10 19 10 
Z166 9 8 9 8 
Z1710 27 12 27 12 
Z189 14 11 14 11 
Z199 21 11 21 11 
Z208 16 9 16 9 
Z2110 24 11 24 11 
Z2210 18 11 18 11 
Z2311 22 12 22 12 
Z2412 34 13 34 13 
Z2516 38 17 38 17 
Z2612 34 13 34 13 
Z2710 18 11 18 11 
Z288 16 9 16 9 
Z2911 22 12 22 12 
Z3010 24 11 24 11 
Z3110 18 11 18 11 
Z3215 37 17 37 17 
Z3311 19 13 19 13 
Z3411 33 13 33 13 
Z3514 24 16 24 16 
Total 694 384 694 384 

V. CONCLUSION 
This paper deals with a technology-independent synthesis 

methodology for combinational logic functionality that 
typically precedes the technology-mapping phase. An 
effective technique to address the important issue of 
throughput enhancement via, timing optimization, made 

possible by way of reducing the logic depth in a binary logic 
tree representation is discussed in this paper. A fair degree of 
correlation is observed between the depth of the Boolean 
network at the technology-independent stage represented by a 
tree and the practical critical delay parameter obtained 
experimentally; however, it turns out to be contrary in some 
cases after the technology-mapping phase. The approach 
seems to yield optimization in the throughput rate for a wide 
variety of problems, which tend to have compact conjunctive 
normal forms in comparison with disjunctive normal forms, 
with the degree of compactness measured in terms of literal 
count at the Boolean equation level.  

The effectiveness of our contribution is evident from 
improved results of reachability along the computationally 
intensive path. Through extensive simulation studies, we infer 
that the proposed methodology is promising, as it enables 
higher operating frequency and less resource utilization 
(FPGA resources) in parallel for significant number of case 
studies. We have successfully addressed the issues of delay 
improvement and area reduction, highlighted in [12], by 
exploring the available design space and achieved 
enhancement in performance.  

Before technology mapping, with respect to the reduced 
expressions governing the actual logic description, we find 
that in terms of the atomic operators and input literal count, 
the proposed procedure enabled savings of 26.29% and 38.4% 
respectively. From the experimental results obtained, we find 
that the average improvement in performance (measured in 
terms of maximum operating frequency) has been 10.49% and 
13.68% for Spartan IIE and Spartan 3 FPGA logic family 
targets respectively. The corresponding average decrease in 
LUTs for the logic families stated in the above order has been 
the same and is around 44.35%. Based on the number of 
input-output buffers required for physical realization of the 
desired functionality, the proposed method effected mean 
savings to the tune of 44.67% for both the logic families.  

For functions with DNF forms more compact than its CNF 
forms, the proposed heuristic returns the same results as that 
of [12], while for the contrary, the approach enables decent 
enhancement in throughput rate, whilst ensuring minimum 
resource utilization. The approach is pragmatic and results in 
tree representations for non-regenerative logic functions, 
which promise improved performance, evident from several 
problem cases considered in this work.  
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APPENDIX 
 

TABLE V 
LOGIC FUNCTION SPECIFICATION 

Function ID Minimized two-level logic obtained using ESPRESSO [17] 
Z15  agb+agc+abf+fc 

Z27  afe+afd+afg+aec+cd+cg+abe+bd+bg 
Z39  dbfcg+dbfgh+dbfi+dceg+eh+ei+adcg+ah+ai 
Z411 mnqst+mnqu+mnqv+mnqw+msto+uo+vo+wo+mstp+up+vp+wp+mstr+ur+vr+wr 
Z58  ijn+ijo+ijp+kin+ko+kp+inl+ol+pl+min+mo+mp 
Z69  pqrsuvw+pqrsx+puvwt+xt 
Z77  mnpq+mnpr+mnqo+ro 
Z88  qrwx+qru+qrv+qwxs+su+sv+qwxt+tu+tv 
Z96  bgc+bgd+bge+abc+ad+ae 
Z108  abe+abf+abg+abh+aec+fc+gc+hc+aed+fd+gd+hd 
Z115  stw+s’vu+uw 
Z127  tru+trv+t’ws+us+vs+t’wq+qu+qv (FOR ILLUSTRATION) 
Z136  pmr+p’qn+nr+p’qo+or 
Z149  abch+abci+a’fgh+dh+di+a’fge+eh+ei 
Z158  pmx+pmy+qp’v+qx+qy+p’vw+wx+wy+p’vu+ux+uy 
Z166  mnr+m’pqo+or 
Z1710 mnv+mnw+mnx+m’uq+vq+wq+xq+m’ur+vr+wr+xr+m’us+vs+ws+xs+m’ut+vt+wt+xt 
Z189  abci+a’ghd+di+a’ghe+ei+a’ghf+fi 
Z199  wxn+wxo+wxp+wxq+w’my+ny+oy+py+qy+w’mz+nz+oz+pz+qz 
Z208 pqrsm+pqrsn+pqrso+pqrsp+p’xyzt+mt+nt+ot+pt+p’xyzu+mu+nu+ou+pu+ 

p’xyzv+ mv+nv+ov+pv+p’xyzw+mw+nw+ow+pw 
Z2110 defgl+defgk+d’onmh+lh+kh+d’onmi+li+ki 
Z2210 ijp+ijq+ijr+ijs+i’ok+pk+qk+rk+sk+i’ol+pl+ql+rl+sl+i’om+pm+qm+rm+sm+ 

i’on+pn+qn+rn+sn 
Z2311 cdefgn+cdefgo+c’jklmh+nh+oh+c’jklmi+ni+oi 
Z2412 a’be’f+a’bg+a’bh+ce’f+cg+ch+de’f+dg+dh 
Z2516 i’jkn’op+i’jkq+i’jkr+n’opl+ql+rl+n’opm+ qm+rm 
Z2612 p’qrv’wx+p’qry+p’qrz+v’wxs+sy+sz+v’wxt+ty+tz+uv’wx+uy+uz 
Z2710 a’bcdg’hij+a’bcdk+a’bcdl+g’hije+ke+le+g’hijf+kf+lf 
Z288 r’sx’y+r’sz+r’sm+r’sn+r’so+x’yt+zt+mt+nt+ot+x’yu+zu+mu+nu+ou+x’yv+ 

zv+mv+nv+ov+x’yw+zw+mw+nw+ow 
Z2911 c’defgjklmn+c’defgo+c’defgp+j’klmnh+ho+hp+j’klmni+io+ip 
Z3010 p’qrsx’yzm+p’qrsn+p’qrso+p’qrsk+p’qrsl+x’yzmt+nt+ot+kt+lt+x’yzmu+nu+ 

ou+ku+lu+x’yzmv+nv+ov+kv+lv+x’yzmw+nw+ow+kw+lw 
Z3110 a’bcf’gh+a’bci+a’bcj+f’ghd+id+jd+f’ghe+ie+je 
Z3215 g’hk’l+g’hm+g’hn+k’li+mi+ni+k’lj+mj+nj 
Z3311 o’pqu’vw+o’pqx+o’pqy+u’vwr+rx+ry+u’vws+xs+ys+u’wvt+xt+yt 
Z3411 e’fj’k+e’fl+e’fm+e’fn+j’kg+lg+mg+ng+j’kh+lh+mh+nh+j’ki+li+mi+ni 
Z3514 q’rsv’wx+q’rsy+q’rsz+v’wxt+yt+zt+v’wxu+uy+uz 

ZXn; X – Function ID, n – Number of primary inputs 


