
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

149

�
Abstract—Through inward perceptions, we intuitively expect

distributed software development to increase the risks associated with
achieving cost, schedule, and quality goals. To compound this
problem, agile software development (ASD) insists one of the main
ingredients of its success is cohesive communication attributed to
collocation of the development team. The following study identified
the degree of communication richness needed to achieve comparable
software quality (reduce pre-release defects) between distributed and
collocated teams. This paper explores the relevancy of
communication richness in various development phases and its
impact on quality. Through examination of a large distributed agile
development project, this investigation seeks to understand the levels
of communication required within each ASD phase to produce
comparable quality results achieved by collocated teams. Obviously,
a multitude of factors affects the outcome of software projects.
However, within distributed agile software development teams, the
mode of communication is one of the critical components required to
achieve team cohesiveness and effectiveness. As such, this study
constructs a distributed agile communication model (DAC-M) for
potential application to similar distributed agile development efforts
using the measurement of the suitable level of communication. The
results of the study show that less rich communication methods, in
the appropriate phase, might be satisfactory to achieve equivalent
quality in distributed ASD efforts.

Keywords—agile software development (ASD), distributed
software teams, media richness theory, software development.

I. INTRODUCTION

CCORDING to research done by the Standish Group Inc. in
2009, "44% of all projects were challenged (late and

overbudget), and/or with less than the required features and
functions and 24% failed which are cancelled prior to
completion or delivered and never used” [13]. These statistics
reflect the state of many software development projects. The
Standish Group identified project failure as the measurement
of unfavorably meeting three elements: cost, schedule, and
performance (quality). Performance (quality) is especially
important. In general, performance (quality) is calculated
using the following formula (Equation 1):

R. Green is a System Engineering doctoral student at The George Washington

University, Washington, DC, 20052 USA (e-mail: ronzelle@gwu.edu).
This paper is summarized from a dissertation in progress.

T. Mazzuchi is the Chair of the Department of Engineering Management and
Systems Engineering at The George Washington University,
Washington, DC, 20052 USA (e-mail: mazzu@gwu.edu).

S. Sarkani is a Professor of Engineering Management and Systems
Engineering at The George Washington University, Washington, DC,
20052 USA (e-mail: sarkani@gwu.edu).

/
Errors

Performance Quality
KSLOC

� (1)

The ability of a development team to produce quality

applications requires an understanding of the requirements.
Known requirements produce a somewhat consistent and
expected baseline cost. Historically, unpredictable and
changing user requirements and lack of development
cohesiveness yield higher costs and defects in software. On
the other hand, the ultimate goal of agile software
development (ASD) is reducing the cost of change (user
requirements or other influences) that may engulf a project
[7]. Within software development, the strength of agile is the
ability to mitigate change. Highsmith and Cockburn note that
“teams can be more effective in responding to changes if it can
reduce the cost of moving information between people, and
reduce the elapsed time between making a decision and
understanding the consequences of that decision” [7].
Communication within agile development teams is critical to
meeting cost, schedule, and quality goals. To meet these goals,
agile development methods recommend collocation of the
entire development team. The Agile Manifesto (the
cornerstone of the ASD movement) clearly states that the
“most efficient and effective method of conveying information
to and within a development team is face-to-face
conversation” [19]. In addition, research has shown that
having development teams work in the same physical
environment improves communication and solidifies clarity.
Unambiguous, succinct, and direct communication is
important for an ASD team during all phases of development.
As corporate entities attempt to benefit from agile and
distributed development teams, they must understand the
significance of cost effective communication methods within
their teams.

This investigation used historical development data from
BMC Software’s distributed agile development release of
Performance Manager 2.3 [21]. The paper analyzed pre-
release defect rates, communication mediums, and
development phases within the project. The study empirically
evaluated the hypothesis that successful distributed ASD
teams that use less rich communications techniques (in the
appropriate phase) will achieve comparable quality (defect
rates) results for pre-release software than collocated agile
software teams. This study helps shed light on the degree of
communication needed to successfully meet performance

Communication and Quality in Distributed
Agile Development: An Empirical Case Study

R. Green, T. Mazzuchi, and S. Sarkani

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

150

(quality) objectives by distributed agile development teams.
Distributed software development consists of two or more
teams working to develop software from different
geographical locations [20]. These geographically dispersed
teams face time zone and cultural differences that may
include, but are not limited to, language, tradition, values, and
norms of behavior [20].

II. AGILE SOFTWARE DEVELOPMENT AND COLLOCATED

TEAMS

In the late 1990s, experts introduced the concept of agile
and iterative software development methods. This concept was
not completely new, but it readily transformed into a
mainstream methodology. Many in the software development
community positioned agile methods as the risk mitigation
tool to combat the effects of changing user requirements and
technology evolution throughout the software development
process. The notion of people over process reverberated with
users and developers alike. A critical element of agile
development is iterative software development. Craig Larman,
an expert in the field of agile, declared that the iterative
approach “allows the user to instantly incorporate feedback
into the process to improve functionality” [9]. A very
integrated, collocated development team quickly understands
and incorporates this feedback into the product. The use of
agile development also allows the software developer to adapt
to changing and evolving user requirements over the course of
the project. Within condensed iterative development efforts,
developers incorporate evolving user requirements. The
software developers use this feedback mechanism to build
optimal information technology (IT) solutions. The team is
able to receive, interpret, and execute the desired functionality.
This agility helps incorporate new and evolving requirements
throughout the process to improve and refine the software
product quickly. ASD is the software development
community’s response to counter unpredictable and changing
user requirements through close-knit, collocated teams.

 A popular form of ASD is Scrum. Scrum is a
“management, enhancement, and maintenance methodology
for an existing system or production prototype” [17]. Jeff
Sutherland and Ken Schwaber initially developed Scrum.
Scrum is an agile, lightweight process used to manage
software development processes through iterative and
incremental practices. In addition, Scrum provides empirical
management and control to manage complex projects using
inspection and adaptation to attain the project goals [17]. One
of Scrum’s guiding principles is to “keep everything visible”
and engage everyone in identifying obstacles [16]. Scrum
provides a framework that focuses development into “time
boxes” usually called sprints. The core practices of Scrum are
self-managed teams, sprint planning meetings, backlogs,
sprints, daily Scrum meetings, sprint review meetings, and the
Scrum-of-Scrums meetings [17].

 In general, ASD initiates the idea of collocated
development teams and iteration for combating changing and
unpredictable requirements. Collocation implies close
proximity, face-to-face communication, timely feedback, and

informal social interaction [8]. The notion of proximity refers
to “the physical distance between people…” [8]. Collocation
is one of the key tenants of ASD. Collocation allows teams to
react quickly to rapidly changing or ambiguous requirements.
Iterative development is the process of building a system
within a short period of time [9]. This process of
understanding requirements, developing software, and
incorporating feedback occurs multiple times until an
application meets users’ requirements. Usually, during this
process, synchronous communication occurs within the
development team. Larman also notes another benefit of ASD
is reducing the cost of change through precise communication
between developers [9].

Unfortunately, ASD has its perceived shortfalls. Opponents
of ASD state that it does not scale well in large projects or
distributed environments. As Boehm [2] describes, “agile
methods are difficult to scale up to large projects because of
the lack of sufficient architecture planning, over focusing on
early results and low test coverage.” Additional research has
shown that distributed agile teams face the same pitfalls as
many traditional distributed software development teams.
These pitfalls include communication shortfalls, culture, and
competing organizational norms that add to software project
failures.

In the last half of the 20th century, Fritz Bauer originally
defined software engineering as “the establishment and use of
sound engineering principles in order to obtain economical
software that is reliable and works efficiently on real
machines” [11]. Bauer further explains a detailed, systematic
process from requirements to delivery of software. Within the
last two decades, the perceptions about and expectations of
software development have evolved. Companies are expected
to increase efficiency while maintaining acceptable costs and
software quality. The information age has added the critical
element of speed to market to this equation [1]. Combined,
these factors present a compelling argument to ensure that the
development team clearly understands the requirements to
make certain that end users are satisfied and corporations
achieve cost effective quality software deliveries.
Unfortunately, some requirements are unplanned or change
during the developmental process. This situation introduces
vagueness for software developers. In many cases, software
developers face the challenge of managing efficiency with the
necessity of reworking to correct defects in software. Agile
development attempts to respond to this conundrum by
understanding, analyzing, and prioritizing new requirements
within the development team to produce high quality, defect
free software. Over the years, organizations have identified
unified processes to mitigate unpredictable and changing user
requirements; yet, this has been a struggle for the software
development discipline.

III. FOUR PHASES OF AGILE DEVELOPMENT

The agile development process is an integrated, adaptive
system that has an ultimate goal of producing working
software in an environment of changing requirements and
uncertainty. Below are the systematically segregated, four

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

151

distinct phases of the agile development cycle:

A. Phase I: Planning, Architecture, High Level Design

Phase I centers around overall product planning,
architecture, and high-level design. Phase I states all desired
product requirements at some level. User stories capture these
requirements.

B. Phase II: Analysis & Prioritization

Phase II focuses on the individual sprint backlog. The
product owner and development team analyze the sprint
backlog and prioritize desired features for the sprint/iteration.
Within the development team, members collaboratively
estimate the level of effort necessary to implement the desired
features.

C. Phase III: Design & Code

Phase III is a continual evolution of design and coding for
the development team. This phase also encompasses the daily
Scrum sessions for the entire team.

D. Phase IV: Integration, Test, Documentation, & Release

Phase IV is a continuation of the Phase III design and code
session. This portion of the cycle integrates testing. In
addition, documentation and software release/deployment,
sprint review, retrospective, and product demonstration occur
in this phase. The expected end of this phase produces
working software.

To successfully integrate and complete the entire process,
the development team must uniquely approach each phase.
Especially in distributed environments, varying degrees of
communication mediums ensure that the correct messages are
sent and received, thus resulting in higher quality and fewer
defects in software products. Since requirements, customer
demands, and expectations are constantly changing,
communication between the development team during each
phase is crucial.

Each stage is critical, and concatenated with the other
phases encompasses the complete agile development lifecycle.
As expected, each stage is linked and must be accomplished
sequentially for effective results

IV. COMMUNICATION METHODS AND MEDIA RICHNESS

THEORY

During the eighties, Daft and Lengel produced
groundbreaking research introducing media richness theory
(MRT). MRT provides a framework for understanding
communications requirements and matching those
requirements to the capabilities of a given medium [5]. MRT
categorizes media in a hierarchy of established richness based
on the “availability of instant feedback; the capacity of the
medium to transmit multiple cues such as body language,
voice tone, and inflection; the use of natural language; and the
personal focus of the medium” [4]. Daft and Lengel deem
communication rich if it can clear ambiguous and uncertain
issues in a timely manner. In addition, their theory proposed
various forms of communication media possessing different
capacities for solving uncertainty and ambiguity [4]. MRT
implies that “richer media are more effective for equivocal
tasks, and leaner media are better for unequivocal tasks” [6].
MRT presumes that people are motivated to overcome
equivocality and that various forms of communication media
each have optimal uses [6]. Daft and Lengel defined
communication ambiguity as the difference between the
amount of communication needed to perform tasks and the
amount of information possessed by the organization.
Equivocality is the ambiguity in tasks caused by varying,
perhaps conflicting interpretations of a situation by groups or
individuals [4]. For effective communication to occur, the
richness of the medium should match the level of message
ambiguity [5]. In this context, MRT helps evaluate
communication media choices. Because of the reduced
contextual cues and less rapid feedback mechanisms, media
other than face-to-face is considered less rich [5]. The theory
suggests that tasks requiring a considerable amount of
collaboration require richer media. Face-to-face
communication is a richer media than any type of computer-
mediated communication [22]. Face-to-face communication
has major advantages over other forms of communication. As
Vrasidas and McIsaac explain, “a major disadvantage of text-
based CMC is the lack of visual and auditory cues” [15].
These visual and auditory cues can be translated in body
language that may provide additional meaning [15]. The
overall goal is to help reduce ambiguity of communication
through the appropriate selection of communication media.
This theory was analyzed within the context of agile system
development within development teams.

V. DISTRIBUTED ASD AT BMC SOFTWARE

With its headquarters in Austin, TX, BMC Software
primary business focus area is system management. The
software BMC creates monitors applications, networks, and
infrastructure for data centers and other facilities. BMC’s
customer base includes many of the Fortune 1000 global
companies. In 2004, BMC strategically decided to quickly
enhance and consolidate their flagship products into
Performance Release Manger in an attempt to increase future
revenues and decrease time to market. BMC’s first expected

Fig. 1 Four Stages of Agile Development

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

152

delivery of the product was within one year of this decision.
BMC decided to use ASD methods to meet its goals.
Moreover, BMC was determined to use a non-traditional agile
best practice to accomplish this feat. BMC used a large (92
people) distributed agile development in three countries, six
locations, over eleven time zones:

TABLE 1
DISTRIBUTED LOCATION & TIME ZONES

11pm 1am 8am 11:30am
Austin, TX Tel Aviv, Israel

Houston, TX Tel Haifa, Israel
Pune, IndiaSilicon Valley, CA

BMC would face potential communication and quality

challenges using a collaborative software development
technique to rapidly enhance their product with a highly
distributed development workforce. Historical data and best
practices insist collocation of the development team produces
concise communication, which results in higher productivity
and quality.

VI. PROBLEM STATEMENT, RESEARCH QUESTIONS (RQ), AND

HYPOTHESES

A. Problem Statement

ASD uses techniques of dividing projects into smaller
manageable deliveries, while utilizing cross-functional teams
that collaboratively plan, analyze, design, develop, test, and
integrate [18]. Successful agile development teams rely on
cohesive and interactive environments to produce quality
software while absorbing continuously changing user
requirements. Historically, to achieve this goal, agile teams
were usually collocated. Nevertheless, as corporations strive to
decrease time to market and lower development costs (utilize
people resources throughout the world and continuous
development efforts), agile has become a prime software
development candidate for implementation globally.
Organizations increasingly disperse due to cost-cutting
measures, acquisition of global talent, and a general belief that
this type of organizational structure may result in heightened
productivity surpassing that of face-to-face teams [14].
Regardless, the key principles of ASD are consistent, synergic
communication with users and within the development team.
Precise communication is important during the four agile
development phases. This project determined the level of
communication necessary for agile distributed development
teams to achieve similar quality achieved by a collocated agile
development project. At the conclusion of the study, the
author will recommend the level of communication necessary
to mimic the success of collocated agile development teams in
distributed environments. Once accomplished, projects may be
able to reduce overall development costs, increase speed-to-
market, and maintain quality while achieving successful
deliveries.

B. Research Questions

Previously, IT professionals have strived to deliver cost
efficient, relevant, and defect free software to their users. In

most cases, these solutions are in direct response to user needs
and requirements. Overall, many software projects do not
succeed because “vague problem statements and imprecise
scope definition lead to unstable user requirements that result
in an unstable application development environment” [12].
Also, problems with quality arise. Along with user
requirements, scope definition is a very important ingredient.
If scope definition is uncertain, user requirements may also be
unclear. Within this paradigm, it is difficult to achieve
derived, stable user requirements. Unfortunately, adding to
this complexity is communication effectiveness of the
development team, technology maturity, and environmental
factors that directly affect usability, functionality, and
effectiveness of systems. This paper examines the feasibility
of distributed ASD methods and its ability to produce quality
software.

Inherently, agile offers a quick response to implicit or
explicit change. A provisional element of agile is the ability to
provide feedback to the software development team early and
often. Research has shown that “projects that performed best
were those in which a low-functionality version of the product
was distributed to customers at an early stage” [10]. This
process limits the cost impact of changing requirements during
the software coding and integration phases. This is a
progressive approach; yet, developers must coherently
understand the new direction and code the software
accordingly. The goal of the research is to determine the
optimal richness of communication needed within the
development team to produce quality software. The paper will
address the four Research Questions below:
1) Identify communication factors that affect the success or

failure of ASD projects in distributed environments.
2) Within the agile development lifecycle, identify the level

of communications necessary to enable successful agile
projects in distributed agile development teams.

3) Determine the effect of distributed ASD on pre-release
software defect rates.

4) Determine media instruments and communication
frequency needed to improve defect rates and software
quality in distributed agile projects.

C. Hypotheses

The current study will examine the following major, minor,
and null hypotheses. It will use empirical data from BMC
software to evaluate each of the hypotheses below. The goal of
the investigation is to support the major and minor hypotheses.
The study will attempt to reject the null hypothesis. The
hypotheses are as follows:

Major Hypothesis: Successful distributed ASD teams that
use less rich communications techniques (in the appropriate
phase) will achieve quality (defect rates) results for pre-release
software comparable to those of collocated agile software
teams.

 Minor Hypothesis: Distributed ASD teams that use richer
communication techniques within Phase I & II will achieve
quality (defect rates) results for pre-release software
comparable to those of ASD teams that are collocated.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

153

 Null Hypothesis: Distributed ASD teams that use less rich
communications techniques (in the appropriate phase) will not
achieve quality (defect rates) results for pre-release software
comparable to those of collocated agile software teams.

VII. METHODOLOGY AND DATA COLLECTION

The research methodology used an empirical case study
approach of BMC Software. The investigation consists of
historical quantitative and qualitative data. The quantitative
data leverages data and research received through Cutter
Consortium and QSM Associates (Michael Mah) [21]. QSM
develops and maintains a database with 7,500 completed
projects. This database has productivity statistics and trends
for cost, schedule, and quality for worldwide software
projects. This data assists with identifying baseline defect rate
for collocated agile projects, and vital statistical information
for BMC’s distributed agile project. The case study analyzed
BMC’s Performance Manager Release (PMR) 2.3. BMC
developed PMR using Scrum methods across six distributed
locations with time differences as much as 11 hours. The
project yielded over 837,375 lines of new and modified code

[21]. The majority of the code was modified Java. A small
portion of the code was XML.

Other historical data show the number of people on the
team, time to complete the project, iteration lengths, number
of iterations, distributed teams, and user stories (requirements)
completed. See Table II below for vital statistics of BMC’s
Performance Manager Release 2.3 [21]:

 TABLE II

BMC PERFORMANCE MANAGER RELEASE 2.3

Distributed Agile Teams 6
Persons on development team 92

Months to Complete 5.5 months
Number of Iterations 11

Iteration Length 2 weeks
User stories (requirements) 918

Communication Mediums

Face-to-Face (H), Video Teleconference
(HM), Teleconference/Phone/Skype/Instant

Messenger (M), Podcast/Recorded
Webcast/Web-based Tracking Tool (ML),

Email/Documentation/Wikis (L)

This project collected additional data through structured
interviews with members of the project team and various
consultants. The result of this investigation measured the
levels of successful communication modes during the agile
development process in a distributed environment. It is
expected that this model could be mimicked in other
distributed environments with similar factors. Industry
averages for defects for agile projects in collocated
environments are as follows:

TABLE III

DEFECT RATES & KSLOC

Performance Manager Rel 2.3 837 635 0.76

*Other Projects - QSM Agile
Industry Average (Collocated)

700 713 1.02

* Data from 2005 - 21 projects
(average)

Defect Rate
(Defect/KLOC)

Projects
Code Size

(KLOC Java &
XML)

Pre-release
Defects

Table III describes lines of code for Performance Manager

Release 2.3, pre-release defects, and defect rates for final full
integration and regression testing. In addition, the table shows
the industry average lines of code, pre-release defects, and
defect rates for collocated agile projects as of 2005 in QSM’s
database [21]. The defect rates account for the final integration
and complete regression testing after software coding ended.

Fig. 3 Defect by Iterations

This study collected data by phone interview,

documentation, and historical research. The interviewees
consisted of consultants, the BMC Performance Manger 2.3
program manager, and the former Director of Engineering for
BMC.

The information collected reflects the communication
media used during each phase of the development process and
resulting defects. BMC used a variety of communication
methods. Each method proved to have pros and cons. A scale
developed for the assortment of communication tools BMC
used in the development of Performance Manager 2.3 reflects
standard 1-5 categorization. The scale ranges from high (face-
to-face: 5) rich communication to low (email: 1) less rich
communication medium. This study applied this scale to
evaluate the communication methods per iterations.

Fig. 2 New vs. Modified Software

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000 Software
Lines of Code

New

Modified

New 208635 708.75

Modified 625905 2126.25

Java XML

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

154

Phase I Phase II Phase III Phase IV

Iteration 0 5 5 N/A N/A

Iteration 1 5,2,1,1 5,3,3,2,2 5,5,3,3,3,3,1,1,1 5,5,3,3,3,2,1,1

Iteration 2 5,2,1,1 5,3,3,2,2 5,5,3,3,3,3,1,1,1 3,3,3,2,1,1

Iteration 3 5,2,1,1 3,3,2,2 5,5,3,3,3,3,1,1,1 3,3,3,2,1,1

Iteration 4 5,2,1,1 3,3,2,2 5,5,3,3,3,3,1,1,1 3,3,3,2,1,1

Iteration 5 5,2,1,1 3,3,2,2 5,5,3,3,3,3,1,1,1 5,3,3,3,2,1,1

Iteration 6 5,2,1,1 3,3,2,2 5,5,3,3,3,3,1,1,1 3,3,3,2,1,1

Iteration 7 5,2,1,1 3,3,2,2 5,5,3,3,3,3,1,1,1 3,3,3,2,1,1

Iteration 8 5,2,1,1 3,3,2,2 5,5,3,3,3,3,1,1,1 3,3,3,2,1,1

Iteration 9 5,2,1,1 3,3,2,2 5,5,3,3,3,3,1,1,1 3,3,3,2,1,1

Iteration 10 5,2,1,1 3,3,2,2 5,5,3,3,3,3,1,1,1 3,3,3,2,1,1

Iteration 11 5,2,1,1 3,3,2,2 5,5,3,3,3,3,1,1,1 3,3,3,2,1,1
Average 2.86 2.85 2.78 2.30

Face-to-Face (H), Video Teleconference (HM), Teleconference/Phone/Skype/Instant Messenger (M),
Podcast/Recorded Webcast/Web-based Tracking Tool (ML), Email/Documentation/Wikis (L)

H(5), HM(4), M(3). ML(2), L(1)

Fig. 4 Communication Mediums by Phase

To explore the uses and effects of communication mediums

within agile development teams distributed around the world,
the case study uses quantitative and qualitative data collection
and analysis techniques.

VIII. CONCLUSION

The conclusion reflects the significant role of
communication mediums within the agile development
process. One of the key tenants of agile is frequent and
continuous communication between developers and users.
Agile anticipates change, and developers must be poised to
accept it and adeptly take action. Within the agile
development process, it is of certainty that best practices in
many successful distributed projects involve richer
synchronous communication mediums. The research shows
that this communication is particularly indispensable during
the beginning of the development project (Figure 5). Despite
the considerable power of today’s asynchronous technologies
for dispersed work, there are still powerful reasons for
synchronous communication [3]. Regardless, as organizations
desire to reduce development timelines, deliver their products
to market faster, and leverage cheaper software development
resources across the world, each organization must utilize a
combination of communication mediums for successful agile
implementations.

2.85
2.78

2.30

2.86

Fig. 5 Communication Method by Phase

1) Phase I and II of a distributed agile software development

project tend to require richer communication and less
communication channels. The data supports the notion
that the initial stages of a distributed agile development
project need richer communication. As expected, these
phases are most turbulent initially, and lend themselves to
increased uncertainty. Thus, development teams must
understand emerging and changing requirements to
produce software that meets user needs and quality goals.
The figure above shows that ASD requires richer
communication at the start of the project.

2) The product demonstration at the end of each iteration is
a key method to ensure communication within the
development teams is synchronized. As user requirements
transform, distributed development teams do not always
have the luxury of understanding the complexity of the
new direction. In any event, the demonstration at the end
of the iteration is a key communication instrument for the
development teams to resynchronize their vision and
direction. This product demonstration at the end of each
sprint level sets the development teams in all locations.

3) Focused face-to-face communication in the beginning of a
distributed agile project may suffice for face-to-face
collaboration throughout the iterations. Even with a large
team, BMC was able to effectively communicate within
their development team to accomplish admirable results.
In part, their “iteration 0” builds a vision, team
cohesiveness, and foundational artifacts for their
distributed teams. Of note, BMC had a large portion of
their development team centrally located (design and
code). Regardless, BMC realized the benefits of iteration
“0” throughout the 11 iterations and teams.

4) The use of other synchronous techniques may supplement
continuous face-to-face and proximity shortfalls. The
observations of this study show that other less rich
communication methods may substitute for face-to-face
communication. As explained, visual cues in
communication may not be necessary for a successful
agile development project. In any case, the study shows
that synchronous communication techniques are critical
during high uncertainty periods. With the lack of
abundant documentation, clear, concise communication is
necessary.

5) Quality requires a combination of richer and less rich
communication mediums during the entire agile
development process. Within a distributed agile
development project, face-to-face communication is
costly and most likely not feasible. Thus, mechanisms
must be in place to support communication requirements
during the optimal periods to mimic quality results of
collocated teams. Apply a blend of synchronous and
asynchronous methods for use throughout the
development. Given the correct mixture, distributed agile
development teams may be as effective as collocated agile
teams.

BMC’s overall approach yields a potential model for agile

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

155

professionals to apply within distributed development
processes that may produce similar software quality results
with projects of comparable parameters.

By isolating communication mediums, the study shows

Phase 1Phase 2
Phase 3

Phase 4

Collocated

Distributed

0

1

2

3

4

5

Communication Mediums
Collocated vs Distributed Collocated

Distributed

Method Phase 1 Phase 2 Phase 3 Phase 4 Defects SLOC
Collocated 5 5 5 5 713 700,000
Distributed 2.86 2.85 2.78 2.30 635 837,375

Fig. 6 Collocated vs Distributed

distributed agile development projects with similar constraints
may produce equivalent quality results in terms of pre-release
defects.

The author believes one can measure the proper amount of
communication contact needed between distributed agile
development teams within phases to construct a reasonable
initial model. The study shows a pattern between
communication methods (richness), and the degree of software
quality measured in pre-release defects. Confidently, the
author believes other factors do play a role in successful
distributed ASD projects. Moreover, many agile professionals
demand the prerequisite of collocation for successful agile
projects. Nevertheless, BMC Software’s method proves that
distributed ASD can be effective if the proper communication
methods and tools are in place for the development teams.
These tools can be tempered according to necessity clear and
concise communication within the development project. ASD
is no longer a niche development process, but a bona fide
method to produce quality software. The author believes the
bounds of proximity no longer restrict ASD. Agile can be truly
successful in a distributed environment if credence is given to
the communication needs of the development team during the
optimal phase of the software lifecycle.

ACKNOWLEDGMENT

R. Green thanks Michael Mah, Mike Lunt, and Walter
Bodwell for their support in gathering data and insights for
this paper.

REFERENCES
[1] R. Baskerville, R. Balasubramaniam, L. Levina, J. Pries-Heje, and S.

Slaughter, "Is internet-speed software development different?," IEEE
Software, vol. 20, no. 6, pp. 70-77, 2003.

[2] B. Boehm, "Get ready for agile methods, with care," Computer, vol. 35,
no. 1, pp. 64, Jan. 2002.

[3] E. Carmel and R. Agarwal, “Tactical approaches for alleviating distance
in global software development,” IEEE Software, vol. 18, no. 2, pp. 22-
29, Mar. 2001.

[4] R. L. Daft and R. H. Lengel, “Organizational information requirements,
media richness and structural design,” Management Science, vol. 32, no.
5, pp. 554-571, May 1986.

[5] R. L. Daft, R. H. Lengel, and L. K. Trevino, “Message equivocality,
media selection, and manager performance: Implications for information
systems,” MIS Quarterly, vol. 11, no. 3, pp. 355-366, Sept. 1987.

[6] J. Galbraith, Strategies of Organizational Design, Reading, MA:
Addison–Wesley, 1973.

[7] J. Highsmith and A. Cockburn, “Agile software development: the
business of innovation,” IEEE Computer, 2001.

[8] P. Hinds and S. Kiesler, Eds., Distributed Work. Cambridge, MA:
Massachusetts Institute of Technology, 2002.

[9] C. Larman, Agile & Iterative Development: A Manager’s Guide. Boston,
MA: Addison-Wesley, 2004.

[10] A. MacCormack, R. Verganti, and M. Iansiti, “Developing products on
internet time: the anatomy of a flexible development process,”
Management Science, Jan 2001.

[11] R. Pressman, Software Engineering: A Practioner’s Approach, 2nd ed.
New York: McGraw-Hill Book Company, 1987.

[12] R. Ram, "Is your IT project OA?," InformationWeek, pp. 162,
November 29, 1999.

[13] The Standish Group International, Inc. (2009). “Extreme chaos.”
[Online]. Available:
www.vertexlogic.com/processOnline/processData/documents/pdf/extre
me_chaos.pdf (accessed August 13, 2009).

[14] S. Townsend, "Over the waterfall," ITNow, vol. 49, no. 1, pp. 9, 2007.
[15] C. Vrasidas and M. S. McIsaac, “Principles of pedagogy and evaluation

for web-based learning,” Educational Media International, vol. 37, no.
2, pp. 105-111, 2000.

[16] K. Schwaber and M. Beedle, "Agile software development with Scrum,"
in Series in agile software development, Upper Saddle River, NJ:
Prentice Hall, 2002, pp. xvi-158.

[17] K. Schwaber, Agile project management with Scrum. Redmond, WA:
Microsoft Press, 2004.

[18] R. Holler (2006). “Mobile application development: a natural fit with
agile methodologies.” [Online]. Available:
www.versionone.com/pdf/MobileDevelopment.pdf. (accessed June
2009).

[19] “Manifesto for agile software development.” (2001) [Online]. Available:
www.agilemanifesto.org

[20] E. Carmel, Global Software Teams: Collaboration Across Borders and
Time Zones. Upper Saddle River, NJ: Prentice-Hall, 1999.

[21] M. Mah, How Agile Projects Measure Up, and What This Means to You.
Arlington, MA: Cutter Consortium, 2008.

[22] R. Barkhi, V. S. Jacob, and H. Pirkul, “An experimental analysis of face
to face versus computer mediated communication channels,” Group
Decision and Negotiation, vol. 8, pp. 325-347, 1999.

