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Abstract—Combining classifiers is a useful method for solving 

complex problems in machine learning. The ECOC (Error Correcting 
Output Codes) method has been widely used for designing combining 
classifiers with an emphasis on the diversity of classifiers. In this 
paper, in contrast to the standard ECOC approach in which individual 
classifiers are chosen homogeneously, classifiers are selected 
according to the complexity of the corresponding binary problem. We 
use SATIMAGE database (containing 6 classes) for our experiments. 
The recognition error rate in our proposed method is %10.37 which 
indicates a considerable improvement in comparison with the 
conventional ECOC and stack generalization methods. 
 

Keywords—Error correcting output code, combining classifiers, 
neural networks. 

I. INTRODUCTION 
IVIDE and conquer is a common approach in solving 
complex machine learning problems and more 

specifically, sophisticated classification problems. In this 
principle, a complicated problem is divided into a number of 
simple problems each of which is solved by a simple classifier 
e.g. a binary classifier. The result is then achieved by 
combining the solutions to each simple problem yielding an 
increase in the efficiency, recognition rate and the reliability 
of the system [1].  

Obviously, one of the factors that necessitates divide and 
conquer approach is the existence of numerous classes in a 
problem resulting in an extensive complexity. The idea is to 
map the input into another space i.e. feature space where the 
classes are more likely to be separated. In such a space, 
classifiers will be able to provide decision boundaries to 
distinguish the regions for different classes. 

When dealing with a combining problem, it is necessary        
to have at hand a number of independent classifiers as        
well as a mathematical framework to combine the        
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solutions to these classifiers. The independence criteria         
for the classifiers are defined so that they yield the same 
results for correctly classified patterns and different results 
when a misclassification occurs. Thus, correlation reduction 
between classifiers seems inevitable. Note that those patterns 
that all the classifiers fail to classify them correctly are not 
classifiable using the combining system [2]. In fact, in        
such situations unclassified region(s) exist. To resolve the 
unclassified regions, some probabilistic or distance 
measurement mechanisms might be employed. 

Here, we aim to solve a 6-class classification problem by 
training 31 Multilayer perceptrons neural networks as binary 
classifiers with different learning parameters and structures. In 
contrast to the standard ECOC [3,4,5] approach in which 
individual classifiers are chosen homogeneously, classifiers 
are selected according to the complexity of the corresponding 
binary problem. These classifiers are then combined in the test 
phase to construct the decision functions using the minimum 
distance method.     

The remainder of this paper is organized as follows. In 
section II, we discuss the most common correlation reduction 
procedures. In section III, we outline the error correcting 
output code method. The classifier combining algorithm is 
described in section IV. The results of the proposed method 
performed on the SATIMAGE database are reported in 
Section V which is followed by the conclusions in section VI.   

II. CORRELATION REDUCTION TECHNIQUES 

There are a couple of practices to perform correlation 
reduction. These techniques either modify the structure of the 
learner or alter the input pattern representation or the 
corresponding training set visible to each binary classifier. 

The most common approaches are listed below. 
 

A.  Employing a Different Learning Machine 
In this method, the learning procedure is altered either by 

using different learning algorithms or by using certain 
algorithms with different complexities and different learning 
parameters [2]. 

 

B.  Different Representation of the Patterns 
This method utilizes different representations of input 
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feature set or feature set partitioning to divide the sub-features 
between classifiers so as to create independent classifiers [6].  

 
C.   Partitioning the Training Set 
Every learning machine contains a number of parameters 

whose values are set during the training period. For a given 
structure and an identical representation of patterns, different 
training sets will yield different recognition and generalization 
abilities for the learner. In fact, parameter selection or the so-
called model selection will vary from classifier to classifier 
since they have been exposed to different and independent 
training patterns. Consequently, partitioning the training 
patterns help reduce the correlation between binary classifiers 
[7].  

III. ERROR CORRECTING OUTPUT CODE (ECOC) 

ECOC is an information theoretic concept that seeks to 
distinguish among different signals corrupted as a result of 
noise in a transmission channel. The main idea is based on 
adding some redundant cases in possible output set which do 
not match with any of the acceptable labels. If one of these 
cases appears in the output, the system realizes occurrence of 
an error. 

Error detection procedure in ECOC method can be 
summarized as follows. Assume that we want to transmit a 
binary variable x through a transmission channel. The level of 
an electronic signal may be distorted because of noise. We 
may represent this signal with one bit, and then compare the 
received signal with a certain threshold and assign it to either 
class “a” or class “b”. When noise changes the level of signal 
in such a way that it exceeds the threshold, an assignment 
error will occur.  One should note that although representing 
the signal in more bits would increase the redundancy of 
system and lower the efficiency, it can provide us with the 
ability of error correction. 

 
A.  ECOC in Classification 
Assume that Z is a bk × code matrix with binary elements 

where k is the number of classes and b is the number of binary 
classifiers. Each row of Z is a code word that is used as a label 
for one of the classes and each column is a map to convert the 
multi-class problem to binary sub- problems. In training 
phase, binary classifiers are constructed over these sub-
problems. In the test phase, for a given pattern x, the set of 
experts provide an output vector ],...,,[ 21 bYYYY = . The 

distance of this vector from the class label i is defined as the 
following aggregation:                                          

jij
b

ji YZL −= ∑ =1
   .                             (1) 

In decision making, pattern x is assigned to the class with the 
minimum distance. 

 Moreover, increasing the Hamming distance between the 
rows contributes to better performance of the decision-making 
process. Likewise, increasing the Hamming distance between 
columns will affect the local error covariance. 

IV. THE PROCEDURE OF COMBINING CLASSIFIERS 

Various approaches have been introduced for classifier 
combining such as voting, maximum distance rule, minimum 
distance rule, averaging and Dempster-Shafer. The main 
purpose of combining classifiers is to minimize the 
reconstruction error.  

In ECOC, several methods have been proposed for 
reconstruction error minimization including least squares, 
centroid algorithm, linear combining and the minimum 
distance technique. 

Obviously, the higher the distance between the class labels, 
the less the error and the output of the classifiers (Y) will judge 
with less sensitivity toward classifiers’ error (i.e. the distance 
between Li and Lj). Suppose that the classifiers provide the 

posterior probability T
bYYYY ],...,,[ 21= of the main class 

members. Classes are constructed over the columns of Z. 
Hence, in the matrix equation form qzy T . =  where k is the 

number of classes and ],...,,[ 21 kqqqq =  is the initial 

probability of each class. Substituting the value of Yj in L we 
obtain: 

∑ ∑= =
−=

b

j jiji
L

k Li ZZqL
1    1

      .                (2) 

Hence, if we separate the cases with L= i and considering 
the fact that 
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where i is the number of classes and Li is the distance between 
vector Y and the class labels. In the test phase, test patterns are 
assigned to a class with minimum distance i.e. (MIN(Li)). 

V. EXPERIMENTAL RESULTS 

To inspect the ECOC method in this classification problem, 
we use 31 multi-layer perceptrons with a single hidden layer 
as in [3,4,5]. We employ the BP algorithm for training the 
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each classifier forms a new 214531×  matrix. This is 
followed by calculating the absolute difference between the 
new matrix and the real output from the 631×  ECOC matrix 
which is produced by exhaustive code generation: 

∑ ∑∑
= = =

−=
2145

1  

6

1  

31

1  
  _  

k j i
ijikkj ECOCoutrealL                (4) 

where jkL  is a 21456×  matrix and j represents labels of the 

class and k denotes the number of the corresponding pattern. 
We find the minimum element of each column. The row 
number represents the corresponding class to which each 
pattern belongs.  After assigning the patterns to classes, we 
compare the outputs with their matching target values and then 
determine the overall recognition rate. 

In Table I, the proposed ECOC is compared to the standard 
ECOC and a single MLP. We observe that the suggested 
ECOC demonstrates better average recognition rate. One 
should note that the number of training epochs was fixed to 
500 for all the models. 
 

TABLE I 
 THE RECOGNITION RATES OF THE DIFFERENT MODELS 

 
Model 

 
Modified 

ECOC 

 
Standard 

ECOC 

 
Standard  

ECOC 

 
Standard 

ECOC 

 
MLP 

Number of 
Hidden 
Layer 

Neurons 

 
10-24 

 
10 

 
17 

 
24 

 
15 

Ave. 
Recognition 

Rate (%) 

 
89.60 

 
88.34 

 
88.71 

 
88.90 

 
83.00 

 

VI. CONCLUSION 

Our survey showed that taking advantage of heterogeneous 
classifier combining increases both the efficiency and the 
recognition rate. Another benefit of the suggested model, as 
observed in Table II, is that the recognition error is more 
uniformly distributed over the classes as compared to the 
standard technique. In addition, the proposed ECOC method 
outperforms the other methods such as stack generalization 
with recognition rate of %88.41[8], homogeneous ECOC with 
recognition rate of %87.45[9] and MLP. It is also observed 
that classifier combining is advantageous only when the error 
rate of the classifiers is trivial. Moreover, each individual 
classifier should demonstrate different error patterns as 
compared to the other classifiers. Employing diverse types of 
binary classifiers in the proposed method, achieved from 
neural networks with different initial weights and different 

hidden layer structures, is believed to decrease the recognition 
error rate. 
 

TABLE II 
CONFUSION MATRICES FOR THE DIFFERENT MODELS 

A-Standard ECOC (n=10) 
 
                class 1   class 2   class 3   class 4  class 5  class 6  
Image 1    488          0            11           0           2           0 
Image 2      0          223           0            1           5           0 
Image 3      5            0           445          11         0           3 
Image 4      2            2             51         129        3          23                                                         
Image 5     18           4              1            1         187       27 
Image 6       0           0             10          57         16       420      
 
 
B-Standard ECOC (n=17) 
 
                class 1   class 2   class 3   class 4  class 5  class 6  
Image 1    486         0             13          0           2           0 
Image 2      0         223            0           1           5           0 
Image 3      2           0            449        11          1           1 
Image 4      1           2             49        132         3          23                                                  
Image 5     15          4               0          1         195        23 
Image 6      0           0              10        62         15        419 
 
 
C-Standard ECOC (n=24) 
 
                class 1   class 2   class 3   class 4  class 5  class 6  
Image 1    487          0           12          0           2             0 
Image 2      0          223          0           1           5             0 
Image 3      2            0          448        11          1             2 
Image 4      1            2           50        130         3            24 
Image 5     15           4            0           2         192          25                                                         
Image 6      0            0           10         60         14          419                                              
 
 
D-Modified ECOC  
  
                class 1   class 2   class 3   class 4  class 5  class 6  
Image 1    488         0             10          0           3           0 
Image 2      0         224            0           1           4           0 
Image 3      2           0            448        12          1           1 
Image 4      1           2             44        138         3          22                                                  
Image 5     15          4               0          1         204        14 
Image 6      0           0              13        55         13        422 
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