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Abstract—Estimating the reliability of a computer network has 

been a subject of great interest. It is a well known fact that this 
problem is NP-hard. In this paper we present a very efficient 
combinatorial approach for Monte Carlo reliability estimation of a 
network with unreliable nodes and unreliable edges. Its core is the 
computation of some network combinatorial invariants. These 
invariants, once computed, directly provide pure and simple 
framework for computation of network reliability. As a specific case 
of this approach we obtain tight lower and upper bounds for 
distributed network reliability (the so called residual connectedness 
reliability). We also present some simulation results. 
 

Keywords—Combinatorial invariants, Monte Carlo simulation, 
reliability, unreliable nodes and unreliable edges.  

I. INTRODUCTION 
STIMATING network reliability has been drawing a lot 
of scientific attention in the field. In this short paper we 

skip a detailed survey of the previous work and only point out 
several main research directions: 

• algorithms for reliability computation [1]-[5] 
• reliability estimation by means of simulation [6]-[17] 
• constructing tractable lower and upper bounds on the 

network reliability [18]-[20]   
Network reliability estimation problems are usually NP-

hard [2] and this explains why Monte Carlo (MC) methods are 
so popular in solving reliability problems for large networks. 
The essence of most MC applications is a so called Crude 
Monte Carlo (CMC). The main drawback of CMC is that they 
are very inefficient in two extreme cases: highly reliable and 
highly unreliable networks (the so called rare event 
phenomenon). The inefficiency expresses itself in the 
unbounded growth of the relative error resulting from the 
reliability increase (or decrease). Note that the investigation of 
reliable networks most important in applications. We present a 
very promising approach, based on some new combinatorial 
ideas, which is especially effective for highly reliable 
networks.  This approach incorporates both simulation and 
analytic methods and eliminates in principle the rare event 
phenomenon. 
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 To the best of our knowledge, most of the existing 
algorithms for reliability computing address either unreliable 
nodes or unreliable edges, but not both. 

 In this paper, we present a Monte Carlo scheme for a more 
complicated and realistic case when both nodes and edges are 
unreliable and also address the problem of network's 
reliability estimation when only the nodes are unreliable. In 
section 1, we give some basic definitions and explain the 
nature of main difficulties arising in CMC and its 
modifications. In section 2, we propose our combinatorial 
approach, describe the appropriate simulation schemes and 
show how they can be applied to evaluate the reliability of a 
distributed network. In section 3, we present some numerical 
results.   

A. Basic Notions and Definitions 
All networks consist of vertices (nodes) and edges. There 

are many types of networks varying in their performance 
definitions and therefore with different concepts of reliability. 
For our purposes, we define a network in the following 
manner. By network ( , , )N V E T= we denote an undirected 
graph with a node-set , | | ,V V n= an edge-set , | | ,E E m= and a 
set T V⊆ of special nodes called terminals. Further, by node 
we mean a node, which is not a terminal. Nodes and edges 
could fail (become non-operational). If an element (either 
node or edge) fails, we say that it is down, otherwise we say it 
is up. Each node v V∈ is associated with a probability vp of 
being up and a probability 1v vq p= − of being down. For the 
edges the appropriate probabilities will be  and .e ep q We say 
that nodes are identical if they all have the same probability of 
being up, that is for each 1 2, ,v v V∈ we have 

1 2v v vp p p= = . 

Identical edges are defined in a similar way. Let us consider 
three important types of networks: 

a) Edges are reliable and nodes are not reliable, i.e. 
edges never fail and a node \v V T∈ can fail.  

b) Nodes are reliable and edges are not reliable, i.e. an 
edge e E∈ can fail.   

c) Both edges and nodes are not reliable.  
  
For convenience we suppose that terminals do not fail. In a 

given network ,N the state of ,N  by definition, is a network 
induced by all its elements (nodes and edges) which are in the 
up state. We say that the state is Good if the network is 
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operational according to some operational criterion and Bad 
otherwise. B denotes a class of Bad states while G denotes a 
class of Good states,     respectively. In this paper, we deal 
with two types of the network's operational criteria.  

• Terminal connectivity: the state is Good if 
any pair of terminals is connected by the 
elements in the up state. In the case of 

, ,T V T k⊂ =  we will use the term "k- 
connectivity" and in the case of ,T V= we 
will use the term "overall connectivity". 

• Residual connectivity: the state is Good if all 
the nodes which are up are connected by the 
edges in the up state. 

 
The terminal connectivity criterion is quite traditional. It 

has the property of being monotone: each subset of a Bad state 
is a Bad state and each superset of a Good state is a Good 
state. The residual connectivity criterion is highly applicable 
for the distributed computer network performance, but this 
criterion does not satisfy the monotony property. 

We define the network reliability ( )R N as the probability 
that the network is in the Good state. Let us illustrate some 
defined notions. In Fig. 1.a we see a network N. Fig. 1.b 
shows a state {a,b,c,e,1,2,6}of network N. Suppose that the 
operational criterion is terminal connectivity and nodes a and 
e are the terminals. Then we see that the state in Fig. 1.b is a 
Good state. Now let us suppose that the criterion is the 
residual connectedness. We see that the node c is disconnected 
from other nodes in the up-state. So, for the residual 
connectedness criterion, the same state in Fig. 1.b is a Bad 
state.       

 
 
 
 
 
 
 
 

Fig. 1 (a) The Network N;   (b) The possible state of N 
 

B. Reliability and Monte Carlo 
To explain the advantages of the combinatorial approach, 

let us look at the Crude Monte Carlo (CMC) from a more 
general point of view. Consider an urn U with a large number 
of balls b in it. Suppose that each ball b is marked with some 
value ( )z b and we want to calculate the sum of ( )z b over b in 
U: 

                        ( )
b U

Z z b
∈

= ∑                                   (1) 

 
This completely matches the computation of network 

reliability. In this case, the balls b are the states, and ( )z b are 
defined as 0 for any Bad state and as the probability of the 
state if it is good. Therefore, Z becomes the reliability of the 
network. Since the number of balls in U is large, the whole 

sum cannot be computed precisely, so we are forced to 
estimate Z. To convert the above expression into an MC 
scheme, we introduce the probability distribution ( )p b on U. 
Ball b will be drawn with probability ( )p b . Then one may 
express the sum Z in the following form: 

                    ( )( ) [ ( )],
( )b U

z bZ p b E Y b
p b∈

= ⋅ =∑                  (2)                   

where ( )( ) .
( )

z bY b
p b

=  (Note that values of ( )Y b are 0 or 1 for 

the Bad and Good states, respectively). The main idea of this 
representation is that the sum Z is expressed as an expectation 
of some random variable. Now the CMC scheme for 
evaluating Z can be stated as follows: 

• draw ball b M times from the urn U, with probability 
( );ip b  

• calculate 
1

1ˆ ( ),
M

i
i

Y Y b
M =

= ⋅∑ which is an unbiased 

estimator of Z. 
It is clear from the CMC simulation scheme that when the 

network is highly reliable, we will almost never observe the 
Bad states. This means that the estimated value of reliability 
might be 1. In Reliability theory such effect is called "the rare 
event phenomenon". It is easy to get the general expression for 

the relative error: 1 .
1CMC

R
RM

δ = ⋅
−

 We see the 

unbounded growth of the relative error for highly reliable 
networks (i.e. for 1).R →  We would like to emphasize once 
again that it is the main deficiency of the CMC and various 
versions of it, reducing this unbounded growth but not 
eliminating it. The reason for this lies in the above urn 
scheme. Namely, each ball, which represents the state, is 
drawn from the urn with the probability of this state. 
Therefore the growth of the relative error is caused by a bad 
definition of the probability measure ( )p b on network states. 

As it was mentioned earlier, a very promising approach for 
evaluating reliability of network with unreliable edges, was 
suggested and developed in the papers [8], [9], [12], [14]-[17]. 
What is essential for this approach is that the simulation 
schemes are homogeneous. In plain words, a MC scheme is 
homogeneous, if the balls are drawn from the urn with 
probability which does not depend on the probabilities of the 
states. (More on homogeneous schemes see in [9]). One 
important feature of the homogeneous schemes is that the 
relative error is bounded. (A basic example of a non-
homogeneous scheme is CMC).In this paper, we suggest a 
homogeneous Monte Carlo scheme for reliability problems of 
a network with unreliable nodes and unreliable edges.  

 

II. DESCRIPTION OF THE METHOD 

A. Combinatorial Approach to Reliability Evaluation  
In this section we deal with the k-connectivity criterion.  

We start by introducing some very useful network 
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combinatorial notions. Let VΠ be a set of all node 
permutations of nodes in V and let EΠ be a set of all edge 
permutations in E. Define the following  Cartesian  Product: 

\ .V T EΠ = Π × Π  As a result every permutation π ∈ Π is a 
pair \( , ),V T Eπ π where \ , .V V T E Eπ π∈ Π ∈ Π By sub-permutation 

( , )i jπ of π we mean a sequence constructed of i first nodes 
from Vπ and j first edges from .Eπ For each sub-permutation 

( , )i jπ define a network state ( ( , ))N i jπ  where all the nodes 
and edges in ( , )i jπ are up and all other nodes and edges are 
down. For our further exposition, the following definition of 
so called anchor is very important. 
 
Definition. Associate with each permutation π ∈ Π a pair of 
indexes ( : ( ), : ( ))r r s sπ π= = so that the state ( ( , ))N r sπ is 
Good, but for all  and  ,i r j m< ≤ ( ( , ))N i jπ  is Bad (remind 
that | |m E= ). We call this state ( ( , ))N r sπ an anchor of the 
permutation .π  
Note that for all  and ,i r j s> > the states ( ( , ))N i jπ are Good 
due to the monotony of the k-connectivity criterion. Let us 
illustrate this definition by an example. 
 
Example.  Suppose we have a network with unreliable nodes 
and edges shown in Fig. 1.a. The nodes a and e are terminals 
and therefore they are reliable. Then for the 
permutation (( , , ), (5,1, 2,6,7, 4,3))c b dπ = we have 

2, 4r s= = since ( (2, 4))N π is a Good state, while for all 
2 and 7i j< ≤  the states ( ( , ))N i jπ are Bad. Clearly, for all 
2 and 4,i j> >  the appropriate states are Good states. An 

anchor is not necessarily the minimal path set. For example, 
consider some other state for the same network:{b,1,4,6}. 
Clearly, it is not a minimal path set, but it is an anchor of the 
permutation ((b),(1,4,6)).  

Now we prove the following simple claims which provide 
the Monte Carlo schemes for the network types in question. 

 
Claim 1. Let N be a network with identical nodes and 
identical edges and with the k-connectivity criterion. Then its 
reliability may be expressed in the following form:                                             
                            ( ) ( ),R N f

π
π

∈Π
= ∑                                (3)                                                              

where
( ) ( )

1 1( ) ,
! ( )! ! ( )!

n m
i n i j m j
v v e e

i r j s

f p q p q
i n i j m jπ π

π − −

= =

= ⋅
⋅ − ⋅ −∑ ∑  

(4)                           
where vp  and ep are node and edge up probabilities, 
correspondingly. 

 
Proof.  Network reliability ( )R N equals the sum of all Good 
states probabilities. Consider a Good state where i nodes and j 
edges are up, and the rest of the nodes and edges are down. It 
is easy to see that this state is ( ( , ))N i jπ for some permutation 

,π and it will remain the same as ( ( , ))N i jπ for exactly 
! ( )! ! ( )!i n i j m j⋅ − ⋅ ⋅ −  permutations. This is because while we 

have the partition to i and n-i nodes and also j and m-j edges, 
the state remains the unchanged and it stays that way for all 
possible permutations within the partition. As a result, we get 
the denominators in (4). The criterion monotony results in the 
following. For all ,k i l j> > corresponding states 

( ( , ))N k lπ are Good, and from this the assertion can be made. 
The monotony property is essential for claim 1. As a result, 

we cannot use formula (4) for the residual connectedness 
criterion. Nevertheless, for this case we can compute lower 
and upper bounds for reliability, based on the formula (4). We 
have made some calculations of these bounds for a network 
with both unreliable nodes and edges. However in this brief 
paper we present the results for the "one-dimensional" 
network type (a network with unreliable nodes and reliable 
edges). This type is a special case of the "two-dimensional" 
type (a network with both unreliable nodes and edges). It is 
very useful in applications.  
 
Claim 2. Let N be a network with identical and unreliable 
nodes and with reliable edges. Suppose that the criterion is the 
residual connectedness. Then we have the following bounds 
for network reliability: 

                     ( ) ( ) ( ),
V V

low upf R N f
π π

π π
∈Π ∈Π

≤ ≤∑ ∑                 (5)                   

where                                                                                           

                ( ) ( )1( )
( )!( ( ))!

r n r
lowf p q

r n r
π ππ

π π
−= ⋅ ⋅

−
              (6)                  

and                                                                 

                         
( )

1( ) .
!( )!

n
i n i

up
i r

f p q
i n iπ

π −

=

= ⋅ ⋅
−∑                  (7)                  

Proof. As it was mentioned above, the residual connectedness 
criterion does not provide monotony property. Therefore, for 

( ),i r π>  all states ( ( ))N iπ will be Bad in the worst case, and 
Good in the best case. 
Remark. It is easy to see that 

1
lim( ( ) ( )) 0.up lowp

f fπ π
→

− =  

 

B. Monte Carlo Scheme for Evaluating Network 
Reliability Number 

To get the expression (4) in a more appropriate form for 
Monte Carlo computations, let us introduce some 
combinatorial invariant of a network for any reliability 
criterion. 
Definition. Denote by ,i jx the number of Good states where i 
nodes and j edges are up and such that ( ( , ))N i jπ  is the 
anchor of some permutation ,π i.e., ( ), ( ).i r j sπ π= = We say 
that the set ,{{ },1 ,1 }i jx i n j m≤ ≤ ≤ ≤ is a combinatorial 
spectrum of the network.   
Remark. Notion of spectrum in another form and for the 
network with unreliable edges was also introduced in [17].   
Now, changing the order for summation in (4), and 
multiplying and dividing by the same expression ! !n m⋅ , we 
get: 
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                ,
1 1

1( ) ( , ) ! !,
! !

n m

r s
r s

R N x f r s n m
n m = =

= ⋅ ⋅ ⋅∑ ∑
⋅

          (8)                             

where      
                                   

1 1( , ) .
! ( )! ! ( )!

n mi n i j m j
v v e e

i r j s
f r s p q p q

i n i j m j
− −

= =
= ⋅ ⋅ ⋅∑ ∑

⋅ − ⋅ −
  (9)                              

The difference between ( )f π in (4) and ( , )f r s in (9) is the 
following. The formula for ( )f π expresses the probability of 
all Good states "growing up" from the state 

( ( , )),N r sπ defined by a certain permutation π . In 
contrast ( , )f r s is similar probability, but for all permutations 
having the same associated values r and s. Note that the 
values jix ,  are topological invariants of the network in the 
sense that they don't depend on the nodes and edges 
probabilities. This means that, once computed, they may be 
used for reliability calculation for any probabilities of nodes 
and edges. We would like to emphasize that the expression (8) 
provides the homogeneous MC scheme, as we simulate the 

permutations with the probabilities 1
! !n m⋅

.  The latter don't 

depend on the network states probabilities.  
The following Monte Carlo Scheme is based on the formula 

(8).    

Simulation Scheme 

Step1. Initiate all ,i jx to be 0.  
Step2. Simulate the permutation π ∈ Π . 
Step3. Find ( )r r π= - the minimal index of node in π  so that 
the state ( ( , ))N r mπ is Good.  
Step4. Find ( )s s π= - the minimal index of edge in π  so that 
the state ( ( , ))N r sπ is Good. 
Step5. , ,: 1.r s r sx x= +  
Step6. Repeat steps 2-5 M times.  
Step7. For each , 0 (1 ,1 )i jx i n j m≠ ≤ ≤ ≤ ≤ compute the value 
of ( , )f i j by (9). 

Step8.  Compute the average 
,

1 1
( , )

.

n m

i j
i j

x f i j

M
= =
∑ ∑

  It is an 

unbiased estimator for ( )R N . 
Note that the computation scheme is very simple. After 

steps from 1 to 6 we get the estimates of , .i jx The 
computations of all ( , )f i j are straightforward and not  time-
consuming, since the most values of ,i jx are zeros.  
Example. In this example we show one run of the above 
scheme for the network in Fig. 1. Suppose that the simulated 
permutation π is ((d,b,c),(2,5,4,1,7,6,3)). We see that r=2 is 
the minimal index for the state ( ( ,7))N rπ  to be Good. We 
can also see that the minimal j for the state ( (2, ))N jπ to be 
good is j=5. Now we let , ,: 1r s r sx x= + and proceed to the next 
run. 

The simulation scheme for bounds computation is based on 
the claim 2. The scheme is similar to the above scheme for 
reliability evaluation , and similarly makes use of the 
combinatorial spectrum (analogous to the spectrum in the 
"two-dimensional" case). We omit the description of the 
scheme in this paper and only present the computational 
results in Table III. 
Remark. The results we described are valid for networks with 
unreliable and identical nodes and unreliable and identical 
edges. It is possible to use our method for different (non-
identical) nodes and edges if the difference between the 
maximal and minimal probabilities is small enough (as is the 
case of many applications). By using the same ideas we can 
compute the lower and upper bounds for the reliability. 

III. NUMERICAL EXAMPLES 
In this section, we present simulation results obtained by 

the MC schemes described in section 2. For these simulations 
we choose two different networks. One is a hypercube 

6H with 62 64= nodes and 52 6 192⋅ = edges.  The hypercube 
is very helpful for distributed systems, since it is very reliable, 
has a symmetric and clear topology and allows effective 
implementation of  different algorithms. The other network is 
grid with 100 nodes and 176 edges. Tables I and II present the 
estimates of reliability for these networks with two-terminal 
criterion. Table III presents the estimates of lower and upper 
bounds for reliability. These estimates are carried out for 
hypercube with unreliable nodes and for residual 
connectedness criterion. All simulation results are based on 

510M = replications.  
Remark. By the relative error δ of estimating probability 
Φ we mean the absolute error of Φ divided by 
min{ ,1 }.Φ − Φ    Thus, when R is estimated to be 0.9605 with 
the 1.03% relative error (Table I), this percentage is to be 
taken from the complementary 0.0395.    
 

TABLE I 

SIMULATION RESULTS FOR HYPERCUBE 6Η   

(2-TERMINAL CONNECTIVITY) 

vp  0.7 0.8 0.9 0.95 

ep  0.7 0.8 0.9 0.95 

R
)

 0.2061 0.3871 0.6482 0.8136 

δ  0.0053 0.0036 0.0039 0.0059 

vp  0.95 0.95 0.95 0.99 

ep  0.96 0.97 0.98 0.99 

R
)

 0.8494 0.8818 0.9227 0.9605 

δ  0.0060 0.0076 0.0101 0.0103 
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TABLE II 
SIMULATION RESULTS FOR GRID 
(2-TERMINAL CONNECTIVITY) 

vp  0.7 0.8 0.9 0.95 

ep  0.7 0.8 0.9 0.95 

R
)

 0.0155 0.1395 0.4796 0.7159 

δ  0.0194 0.0057 0.0029 0.0042 

vp  0.95 0.95 0.95 0.99 

ep  0.96 0.97 0.98 0.99 

R
)

 0.7664 0.8193 0.8749 0.9384 

δ  0.0051 0.0055 0.0064 0.0097 

 
 

TABLE III 

SIMULATION RESULTS FOR HYPERCUBE 6Η  
(RESIDUAL CONNECTEDNESS)           

p 0.5 0.6 0.7 0.8 0.9 

lowR
)

 
0.7150

3 
0.8511

2 
0.9678

3 
0.9965

0 
0.9999

2 

upR
)

 0.9494
6 

0.9729
1 

0.9921
8 

0.9988
5 

0.9999
6 

 

IV. CONCLUSION 
1) The suggested MC scheme is very efficient and can easily 
be implemented for evaluating reliability for the network with 
unreliable and identical nodes and unreliable and identical 
edges, for the case of k-terminal connectivity criterion.  
2) For the residual connectedness criterion the same approach 
provides tight lower and upper bounds for reliability.  
3) One of the main advantages of the scheme is eliminating 
the rare event phenomenon. This fact results in bounding the 
relative error, so the method it is especially efficient for highly 
reliable networks.  
4) One of the substantial advantages of the scheme is that, 
once computed, combinatorial spectrum serves for as many 
values of nodes and edges probabilities as needed.  
5) For the more complicated case of non-identical nodes and 
non-identical edges, when the probabilities are close enough, 
the tight lower and upper bounds for the reliability may be 
computed.     
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