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Abstract—Cluster analysis divides data into groups that are 
meaningful, useful, or both. Analysis of biological data is creating a 
new generation of epidemiologic, prognostic, diagnostic and 
treatment modalities. Clustering of protein sequences is one of the 
current research topics in the field of computer science. Linear 
relation is valuable in rule discovery for a given data, such as if value 
X goes up 1, value Y will go down 3”, etc. The classical linear 
regression models the linear relation of two sequences perfectly. 
However, if we need to cluster a large repository of protein sequences 
into groups where sequences have strong linear relationship with 
each other, it is prohibitively expensive to compare sequences one by 
one. In this paper, we propose a new technique named General 
Regression Model Technique Clustering Algorithm (GRMTCA) to 
benignly handle the problem of linear sequences clustering. GRMT 
gives a measure, GR*, to tell the degree of linearity of multiple 
sequences without having to compare each pair of them.  

 
Keywords—Clustering, General Regression Model, Protein 

Sequences, Similarity Measure.  

I. INTRODUCTION 
LUSTER analysis provides an abstraction from individual 
data objects to the clusters in which those data objects 

reside. Some clustering techniques characterize each cluster in 
terms of a cluster prototype which is a data object that is 
representative of other objects in the cluster. Cluster analysis 
is sometimes referred to as unsupervised classification. The 
main objective of this unsupervised classification is to find a 
natural grouping or meaningful partition by using distance or 
similarity function. Clustering is mainly used for 
dimensionality reduction, prototype selection, or abstraction 
for pattern classification, data reorganization and indexing and 
for detecting outliers and noisy patterns. Clustering techniques  
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are applied in pattern classification schemes, bioinformatics, 
data mining, web mining, biometrics, document processing, 
remote sensed data analysis, biomedical data analysis etc., in 
which data size is very large. There are many types of 
clustering techniques namely hierarchical clustering, 
partitional clustering, exclusive clustering, non-exclusive 
clustering, and fuzzy clustering[29,30].Clustering is an active 
research topic in pattern reorganization, data mining, statistics 
and machine learning with diverse prominence. 

Protein sequences have a remarkable ability to reproducibly 
fold into a three dimensional shape and this shape confers 
them to the ability to form a variety of critical for life: 
enzymatic catalysis, structural support, generation of motion, 
reception of signals between cells, and transduction of forces 
into chemical signals, to name a few [31]. Molecular biology 
has undergone an incredibly rapid development, currently 
yielding huge amounts of raw data that efficient computer 
algorithms are mandatory for data analysis. The number of 
unique entries in all protein sequence databases together 
exceeds now more than half a million. However biological 
evolution lets proteins fall into so called families, thus 
imposing a natural grouping. A protein family contains 
sequences that are evolutionarily related and or share a 
common three dimensional fold. Similar protein sequences 
probably have similar biochemical function and three 
dimensional structure. Protein sequence clustering helps in 
classifying a new sequence, retrieve a set of similar sequences 
for a given query sequence, predicting the protein structure of 
unknown sequence and finding the family and subfamily 
relationships of protein sequences. 

Sequence analysis has attracted a lot of research interests 
with a wide range of applications. While matching, sub-
matching, indexing, clustering, rule discovery, etc. are the 
basic research problems in this field [1] - [8], [23, 24], the core 
problem is how to define and measure similarity. Currently, 
there are several popular models used to define and measure 
(dis)similarity of two sequences. 

The methods can be classified into four main categories: 
#Lp norms [1, 2] 

Given two sequences X =[x1, x2,.., xN]and Y = [y1, y2,..... , 

yN], Lp norm is defined as Lp(X, Y) = (
1

N

i=
∑ |xi − yi|1/p When 

p=2,it is the most commonly used Euclidean distance. Lp 
norms are straightforward and easy to calculate. But in many 
cases, the distance of two sequences cannot reflect the real 
(dis)similarity between them. A typical case is shifting. For 
example, suppose sequence X1 =[1, 22,...,30]and X2 = 
[301,302,…,330]. X2 is the result of shifting X1 by 300, i.e., 
adding 300 to each element of X1. The Lp distance between X1 
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and X2
 is large, but actually they should be considered to be 

similar in many applications [10, 16, 17]. Another case is 
scaling. For example, let X2 = βX1, where β is a scaling factor. 
In some applications, we also need to consider X2 to be similar 
to X1. Obviously, Lp norms cannot capture these types of 
similarity. Furthermore, Lp distance only has relative meaning 
when used to measure (dis)similarity. By ”relative”, we mean 
that a distance alone between two sequences X1 and X2,e.g., 
Distance(X1,X2) = 95.5, cannot give us any information about 
how (dis)similar X1 and X2 are. Only when we have another 
distance to compare, e.g., Distance(X1,X3) = 100.5 > 95.5, we 
can tell that X1 is more similar to X2 than to X3. In conclusion, 
Lp norms as measure of (dis)similarity have two drawbacks: 

• Cannot capture similarity in the case of shifting and 
scaling. 

• Distance only has relative meaning of 
(dis)similarity. 
It is known that the mean-deviation normalization 

can discard the shifting and scaling factors. The mean-
deviation 

normalization is defined as Normal(X) = 
(X −mean(X))/std(X). However, it can not tell what 

the shifting and scaling factors are. Those factors are exactly 
what we need to mine the linearity of sequences. 

#Transforms [3, 21, 22] 
Popularly used transforms in sequences are the Fourier 

Transform and Wavelet Transform. Both transforms can 
concentrate most of the energy to a small region in the 
frequency domain. With energy concentrated to some a small 
region, processes can be carried out in this small region 
involving only few coefficients, thus dimension is reduced and 
time is saved. From this point of view, the transforms are used 
actually for feature extraction. However, after features are 
extracted, some type of measure is unavoidable. If Lp norm 
distance is used, it inherits the disadvantages stated above. 

#Time Warping [18, 19, 20] 
It defines the distance between sequences Xi = [x1, x2, … , 

xi]and Y j = [y1, y2, … , yj]as D(i, j) = |xi − yi| + min{D(i − 1, 
j),D(i, j − 1),D(i − 1, j − 1)}. This distance can be solved 
using dynamic programming. It has a great advantage that it 
can tolerate some local non-alignment of time phrase so that 
the two sequences do not have to be of the same length. It is 
more robust and flexible than Lp norms. But it is also sensitive 
to shifting and scaling. And the warping distance only has 
relative meaning, just like the Lp norms. 

#Linear relation [10, 16, 17] 
Linear transform is Y = β0 + β1X. Sequence X is defined to 

be similar to Y if we can determine such β0 and β1 so that 
Distance(Y, β0 + β1X) is minimized and this distance is below 
a given threshold. Paper [16] solved scaling factor β1 and 
shifting offset β0 from a geometrical point of view. Although 
Distance(Y, β0+β1X) is invariant to shifting and scaling, the 
distance still only has relative meaning.[8] 

In this paper, we propose a new model, named GRMT 
(General Regression Model Technique) to measure the degree 
of the linear relation of multiple sequences at one time. In 
addition, based on GRMT, we develop techniques to cluster 
massive linear sequences accurately and efficiently. 

The organization of this paper is as follows: Section1 is 
introduction; Section 2 provides a basic background of the 

classical regression model. Section 3 describes GRMT in 
detail and section 4 shows applications and examples of how 
to apply GRMT clustering algorithm to linearity measure and 
clustering of multiple sequences. Finally section 5 will draw 
conclusions. 

II. BACKGROUND OF REGRESSION MODEL  
Linear regression analysis originated from statistics and has 

been widely used in econometrics [27, 28]. For an instance, to 
test the linear relation between consumption Y and incoming 
X, we can establish the linear model as: 

Y = β0 + β1X + u                                 (1) 
 

The variable u is called the error term. The regression as (1) 
is termed as”the regression of Y on X”. Given a set of sample 
data, X = [x1, x2,….,xN]and Y=[y1, y2,...,yN], β0 and β1 can be 
estimated in the sense of minimum-sum-of-squared-error. That 
is, we seek to find a line, called regression line, in the Y –X 
space, to fit the points (x1, y1), (x2, y2),…, (xN, yN) as well as 
possible. We need to determine β0 and β1 such that  

2

1

N

i
i

u
=
∑ =

1

N

i=
∑ (yi-β0-β1xi ) is minimized. 

Using first order conditions [27, 28], we can solve β0 and β1 
as follows: 

    β0 = 
1

N

i=
∑ y  − β1 x                                (2) 

β1 =  
( )

1
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∑
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where x = 
1

1 N
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x
N =
∑  and 

1

1 N
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N =
∑ , the average of sequence 

Y and X respectively. 
After obtaining β0 and β1, we have to measure how well the 

regression line fits these data. To answer this, the R* is 
defined as: 

R* = 1- 

( )

2

1
2

1

N

i
i

N

i
i

u

y y

=

=

−

∑

∑
                             (4) 

 
The value of R* is always between 0 and 1. The closer the 

value is to 1, the better the regression line fits the data points. 
R* is the measure for the Goodness-of-Fit in the traditional 
regression. The regression model as (1) is called Simple 
Regression Model, since it involves only one independent 
variable X and one dependent variable Y . We can add more 
independent variables to the model as follows: 

Y = β0 + β1X1 + β2X2 +…. + βKXK + u                  (5)      

This is called Multiple Regression Model. β0, β1,……. , βK can 
be estimated similarly using first order conditions. 
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III. CLASSICAL REGRESSION MODEL 
We observed that the Classical Regression Model is 

excellent in testing the linear relation of two sequences. R* is a 
good measure for linear relation. For an instance, R*(X1,X2) = 
0.95 is statistically strong evidence that the two sequences are 
highly linear related to each other, thus they are very similar 
(if we think similarity should be invariant to shifting and 
scaling). We do not have to compare R*(X1,X2) > R*(X1,X3) 
and say X1 is similar to X2 rather than X3. Therefore, the 
meaning of R* for similarity is not relative, unlike distance-
based measures. 

When we need to test only two sequences, the Simple 
Regression Model is suitable. However, when more than two 
sequences are involved in some applications such as 
clustering, the Classical Regression Model has to run 
regression between each pair of sequences. The performance 
cannot be efficient. One might be tempted to think that we can 
use the Multiple Regression Model. Unfortunately, there exists 
a critical problem in the Multiple Regression Model. We 
cannot use R* in the multiple regression model to test whether 
multiple sequences are similar to each other or not, because it 
only means the linear relation between Y and the linear 
combination of X1,X2,…,XK. Moreover, R* in the multiple 
regression is sensitive to the order of sequences. If we 
randomly choose Xi to substitute Y as dependent variable and 
let Y be independent variable, then the regression becomes 

Xi = β0 +β1X1 +…..+βiY +…..+βKXK +u. The R* here will be 
different from that of (5), because they have different 
meanings. 

From a geometrical point of view, equation (5) describes a 
hyper-plane instead of a line in (K +1)-dimensional space. To 
test the similarity among multiple sequences, we need a line in 
the space instead of a hyper-plane. [11, 12, 13, 14, 15] 

Generalizing the idea of Classical Regression Model to 
multiple sequences, we propose the General Regression Model 
Technique (GRMT). 

GRMT: Generalized Regression Model Technique 
Given K(K ≥ 2) sequences X1,X2,…..,XK and 

1

2

K

X
X

X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  =  

111 12

221 22

1 2

N

N

K K KN

x x x

xx x

x x x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

We first organize them into N points in the K dimensional 
space.In the traditional regression, the error term is defined as: 

ui = yi − (β0 + β1x1i +……+ βKxKi)                    (6) 

It is the distance between yi and the regression hyper-plane 
in direction of axis Y. This makes sequence Y unique from any 
Xi (i = 1, 2, … , K). In GRMT, we define the error term ui as 
the vertical distance from point (x1i, x2i,…. , xKi) to the 
regression line. Please note that there is no Y here anymore, 
because no sequence is special among its community. To 
guarantee the regression line exists uniquely, we need 
following two assumptions: 

 

# No sequence is constant. It guarantees the scatter 
matrix has eigenvector. 

#N points determine a line uniquely.In real 
applications, it is highly unlikely that a random sequence is 
constant or all K sequences are exactly the same. Therefore, 
the assumptions will not limit the applications of GRMT. 
Similar to the traditional regression, after determining the 
regression line, we need a measure for Goodness-of-Fit. We 
define: 

GR* = 1- 

( )

2

1
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1 1
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K N
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=
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−

∑

∑∑
                     (7) 

IV. APPLICATIONS OF GRMT  
The procedure of applying GRMT to measure the linear 

relation of multiple sequences is described by algorithm 
GRMT1. 

GRMT1: Testing linearity of multiple sequences 
• Organize the given K sequences with length N into 

N points p1, p2, …, pK in K-dimensional space as shown in 
section3.2. 

• Determine the regression line. First, calculate the 

average m = 
1

1 N

i
i

p
N =
∑   calculate the scatter matrix S =  

1

N

i=
∑ (pi − m)(pi − m)t. 

Then, determine the maximum eigen value λ and 
corresponding eigenvector e of S. 

• Calculate GR* according to property 1 of GR*. 
• Draw conclusion. Suppose we only accept linearity 

with confidence no less than C (say, C = 85%). If GR* ≥ C, we 
can conclude that the K sequences are linear to each other with 
confidence GR*. 

Suppose we want to test two sequences X1 and X2 and X1 = 
[5, 1, 8, 17, 27, 10]; X2 = [17, 10, 25, 34, 12, 31], 

First, organize the two sequences into 6 points: (5, 
17), (1, 10), (8, 25), (17, 34), (27,12), (10,31). 

Second, determine the regression line. Average m = 

1

1 N

i
i

p
N =
∑ = [11.33, 21.50]t. Maximum eigen value λ = 1942.3 

and corresponding eigenvector e = [0.4657, 0.8849]t. 
Third, calculate GR*. We can conclude that X1 is related 

toX2. Also we find their relation as X1 11.33 X2 21.50
0.4657 0.8849
− −

=  

GRMT1 is intended to test whether multiple sequences are 
linear to each other or not. Consider an example for testing 3 
sequences at a time. Suppose we have three sequences:X1 = [6, 
9, 13, 16, 12, 11, 16, 20, 19, 23]; X2 = [8, 13, 13, 17, 13, 18, 
16, 13, 17, 19]; X3 = [5, 9, 12, 14, 17, 18, 17, 15, 13, 13]. 

Following the same procedure, we can calculate GR* 
=0.7301. This confidence is not much high, thus we can 
conclude that some sequences are not very linear to others. 
This example demonstrates that GR* is a good measure again. 
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We have tested many sequences and found GR* as linearity 
measure agrees with our observation. 

Proteins are strings of combination of the twenty amino 
acids. Each of the amino acid is given a significant weight. 
Also all the N sequences that are to be clustered may not have 
the same length. The sequence that has maximum length Xm is 
considered and all other (N-1) sequences are to be padded 
with a neutral value. Truncating the sequences to a fixed 
length may lead to loss of useful information. The procedure 
followed above prevents us from loosing such information.  

When hundreds or thousands of random sequences are 
tested by algorithm GRMT1, one can foresee that GR* cannot 
be close to 1 before really calculating it, because hundreds or 
thousands of random sequences are highly unlikely to be 
linear to each other. But we can make use of algorithm GRMT 
to obtain heuristic information for clustering sequences. 

Given a set of sequences S = {Xi | i = 1, 2,…,K},algorithm 
GRMTCA ( General Regression Model Technique Clustering 
Algorithm)  works as follows. 
               GRMTCA: Clustering of massive sequences 

• Apply Algorithm GRMT1 to test whether the given 
sequences are linear to each other or not. If yes, all the 
sequences can go into one cluster and we can stop, otherwise, 
go to next step. 

• After GRMT1, we have eigenvector [e1, e2,…. , 
eK]t. Create a feature value sequence F =( σ(X1)/e1, σ(X2)/e2,…. 
, σ(XK)/eK) and sort it in increasing order. After sorting, 
suppose F = (f1, f2,…..,fK). 

• Start from the first feature value f1 in F. Suppose 
the corresponding sequence is Xi. We only check the linearity 
of Xi with the sequences whose feature values in F are close to 
f1. Here” close” means fj/f1 ≤ ξ (According to our experience, 
ξ =0.95 is enough).We collect those sequences which have 
linearity with Xi with confidence ≥ C into cluster CM1. Delete 
all the sequences in this cluster from set S, then repeat the 
similar procedure to obtain next cluster until S becomes 
empty. The most time-consuming part in GRMT1 and 
GRMTCA is to calculate the maximum eigen value and 
corresponding eigen vector of scatter matrix S. Fast algorithm 
[25, 26] can do so with high efficiency. 

V. CONCLUSION  
We propose GRMT1 by generalizing the Classical 

Regression Model. GRMT1 gives a measure GR*, which is a 
new measure for linearity of multiple sequences. The meaning 
of GR* for linearity is not relative. Based on GR*, algorithm 
GRMT1can test the linearity of multiple sequences at a time 
and GRMTCA can cluster massive sequences with high 
accuracy as well as high efficiency.  
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