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Abstract—To maximise furnace production it’s necessary to 

optimise furnace control, with the objectives of achieving maximum 
power input into the melting process, minimum network distortion 
and power-off time, without compromise on quality and safety. This 
can be achieved with on the one hand by an appropriate electrode 
control and on the other hand by a minimum of AC transformer 
switching. 

Electrical arc is a stochastic process; witch is the principal cause 
of power quality problems, including voltages dips, harmonic 
distortion, unbalance loads and flicker. So it is difficult to make an 
appropriate model for an Electrical Arc Furnace (EAF). The factors 
that effect EAF operation are the melting or refining materials, 
melting stage, electrode position (arc length), electrode arm control 
and short circuit power of the feeder. So arc voltages, current and 
power are defined as a nonlinear function of the arc length. In this 
article we propose our own empirical function of the EAF and model, 
for the mean stages of the melting process, thanks to the 
measurements in the steel factory.  
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I. INTRODUCTION 
ONLINEAR loads are the principal cause of power 
quality problems including voltage dips, harmonic 

distortion and flicker [2],[11],[12]. Electric arc furnace is the 
worst nonlinear loads type, and its nonlinearity is due to the 
chaotic nature of arc impedance [6], where its conductivity is 
determined from its temperature and pressure [10]  

The increasing in iron demand, such as in vehicle 
industries, encourage the steel-works to invest more and more 
in the recovery of metals, thanks to electrical or chemical 
furnaces  

The electric arc furnace is used to provide high quality 
steels from a raw material of steel scrap. 

Typical furnace is shown in Fig. 1. It consists of a 
refractory lined shell and removable roof. 
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Three graphite electrodes, held in clamps on the end of a 
supporting mast arm, pass through holes in the furnace roof. 
 

 
Fig. 1 Typical electrical arc furnace 

 
Electrical power is supplied to the electrodes by an 

adjustable voltage tap transformer, and the heat generated by 
electric arcs striking between the electrodes and the scrap 
melts the steel Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Heat conversion by electric arc 
 

The maximum electrical power to heat conversion occurs 
for a particular length of electric arc [7], and any deviation 
from this optimum length impairs the power utilisation 
efficiency. The steel scrap surface is irregular by nature of the 
scrap, and, as parts of the scrap melt, it moves about, changing 
the contours of the surface. Thus, random disturbances in the 
arc length occur continuously. It is the function of the position 
control system to respond to such disturbances by moving the 
electrode to maintain the arc length at its preset value [8].  
 

Closely Parametrical Model for an Electrical 
Arc Furnace 
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Typical EAF Process 
First we charge the furnace with scrap, after that the 

electrodes could be lowered, each of which has its own 
regulator and mechanical drive. The electrodes are connected 
to the furnace transformer’s, which may be rated from 90 to 
265 volts, thanks to 9 taps.     

To achieve meltdown as quickly as possible one must 
follow the following stages [1],[3]   
 
Stage-1: The current is initiated by lowering the electrodes, 

above the material. 
Stage-2: Electrodes bore through the scrap to form a pool of 

liquid metal. 
Stage-3: Electrical arc will be lengthened by increasing the 

voltage to maximum power. 
Stage-4:  Arc length is changed so that the shorter arc will 

deliver a higher portion of its heat to the metal 
below the electrode 

Stage-5: Chemical treatments to improve steel    quality is 
done under low power to maintain steel liquid  

Stage-6:   Stop of melting     

II. MODEL DESCRIPTION 
Our EAF melt steel, by applying an AC current to a steel 

scrap charge by means of graphite electrodes. It requires about 
520 kwh/ton, and produce 700t/year approximately Fig. 3,a. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Studied model 
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Fig. 4 EAF process  

 
All the processes of electrical arc furnace (Annex) can be 

summarized in figure 4 [9]. we have record  32 measurements 

of each measured parameter for 9 transformer taps Fig. 3.b 
normal operation must make the compromise between the 
limitations according to maximum power and acceptable 
current respectively [An,1  An,2 ] and [Bn,1  Bn,2 ], where n is tap 
index. Then conferring itself to this constraint the adjustment 
law of electrodes position will be done according to Smax. 

III. TREATMENT OF MEASURED PARAMETERS 
The EAF is modelled together with the neighbouring 

network [4]. The circuit equation of the furnace transformer to 
the end of electrodes can be writhen as follow:  

1 13tr eE Z I U= +   , 
Where U1, Ie & Z1 are respectively electrode voltage, current 
and impedance of EAF transformer with flexible cable   

Then, 
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Where   EAFP   is total active power of EAF. And arcP    is the 
active power of arc. 

So, from equations (1,2,3) we can deduct  
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b/ Distribution of X1 

Fig. 5 Calculation of Z1 form the 9x32 measurements 
 

On Figs. 5 a & b we show the variation of resistance R1and 
inductance X1of the transformer with the flexible cable which 
supplies the electrodes.  

R1=Rtr+R flexible cable 

Indeed for the various tests carried out: 
- R1 has a Gaussian distribution; this is due to the 

combined effect of the current and the time of its 
application. Dispersion has a more important in 
low voltage, because metal takes more time to 
melt; from where it overheating the transformer 
winding and flexible cable. 

- As inductance X1 is the consequence of 
electromagnetic fields, which weakened with the 
increase of temperature, gives it a deadened 
exponential variation. 

 
In order to reduce this parametric dispersion we propose a 

reinforcement in cooling by forced ventilation of transformer 
windings and increase water flow which crosses the flexible 
cables 
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Where   EAFQ   is total reactive power of EAF 

    And arcQ    is the reactive power of arc 
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Following to this treatment an empirical model is proposed  
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d - is the distance between  electrode and scrap 
 

In the operating zone the arc impedance decreases with the 
increase of voltage and increases with the distance between 
electrodes and metal. The analysis shows that for high 
voltages and short distance of arc, the electrostatic field 
created between the electrode and metal is more important as 
the electromagnetic fields, thus gives to the arc a capacitive 
character defined by the negative values of Xarc. For this 
purpose we give a model of electric arc shown in Fig. 6.   
   
 
 
 
 
 
 
 
 
 

Fig. 6 Electric arc model 
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Fig. 7 Calculation of Zarc form the 9x32 measurements 

 
 

After numerical treatment of measured parameters we 
propose a model for the principal stages of melting process 
summarised in Fig. 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8 The proposed model of EAF for each melting stage 
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Fig. 9 Temporal and [IV] representation of electric arc current & 

voltage 
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The major part of power quality problems occurs in the     
stage 1 & 2, because of the physical movement and settling of 
the scrap. 

Irregularity in the voltage wave forms is caused by abrupt 
initiation [5] and interruption of current witch provides a 
source of harmonic currents. Fig. 9 a &b Thus voltage and 
current waves deviate considerably from symmetrical 
sinusoidal form    

So we propose to substitute the electrical energy by a 
chemical one, like natural Gas, and the EAF will be 
electrically supplied only in stage 3 & 4. 

IV. CONCLUSION 
This analysis leads to the conclusion that the arc behaves in 

such a way that all the arc characteristics are controlled by the 
expansion of the arc, which is the main feature used to 
physically describe the arc behaviour. The arc expansion is 
evident from the arc shape, which is defined as the region 
where conduction of electricity takes place. The arc shape 
depends on: current density, magnetic flux density, electric 
conductivity, electric potential, and temperature fields 

The proposed model reveals a new parameter of the 
electrical arc furnace which is the capacitances. 

Because of The continuous adjustment of electrode 
position, the integration of this model in the regulation loop, 
reduce the operator action; thus reduction of human errors due 
to the visual estimate, then this automation enables us to make 
a better management of energy from where the reduction of 
the consumption (kWh/tone). 

The empirical relations of the condenser and the inductance 
of the furnace, enable us to avoid some very dangerous 
oscillations of the current and the voltage which disturb the 
nearness loads. Our recommendation to steel makers, is to 
substitute electrical energy for stage 1 & 2 by a chemical one, 
because of power quality constraint     
 

 
ANNEX 

 
EAF Features 
 
EAF type                              : 80LHF12,5 
Transformer rating               : 12,5 [MVA] 
Short circuit reactance         : 2,9 [mΩ] 
Maximum electrode current: 30,84 [kA] 
Number of voltage taps       : 9 
Voltage range                      : [ 90 V ÷ 265 V] 
Primary voltage                   : 63  [kV] 
Weight capacity                   : 80 t 
Temperature gradient          :  3 ÷ 4 [°C/mn]  
Furnace diameter                 : 2,47  [m]   
Electrode diameter               : 0,35 [m] 
Distance electrode to wall   : 0,71 [m]   
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