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Classification of the Bachet Elliptic Curves
y* =1z +a’ in F),
where p = 1 (mod6) is Prime

Nazli Yildiz Ikikardes, Gokhan Soydan, Musa Demirci, Ismail Naci Cangul

Abstract—In this work, we first give in what fields F,,, the cubic
root of unity liesin F;, in @, and in K; where Q,, and K, denote
the sets of quadratic and non-zero cubic residues modulo p. Then we
use these to obtain some results on the classification of the Bachet
dliptic curves y? = 3 4 a® modulo p, for p = 1 (mod 6) is prime.
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|I. INTRODUCTION

Let w#1 be the cubic root of unity. w appears in many
calculations regarding elliptic curves, e.g.[2], [3]. The authors
used it to find rational points on Bachet eliptic curves % =
23+ a® in F,, where F,, is a field of characteristic > 3.

In [9], starting with a conjecture from 1952 of Dénes
which is a variant of Fermat-Wiles theorem, Merel illustrates
the way in which Frey eliptic curves have been used by
Taylor, Ribet, Wiles and the others in the proof of Fermat-
Wiles theorem. Serre, in [10], gave a lower bound for the
Galois representations on elliptic curves over the field @ of
rational points. In the case of a Frey curve, the conductor
N of the curve is given by the help of the constants in the
abc conjecture. In [8], Ono recalls a result of Euler, known
as Euler’s concordant forms problem, about the classification
of those pairs of distinct non-zero integers M and N for
which there are integer solutions (z,y,t, z) with zy # 0 to
22 + My? = t? and 22 + Ny? = z2. When M = —N, this
becomes the congruent number problem, and when M = 2N,
by replacing = by = — N in E(2N,N), a specia form of
the Frey elliptic curves is obtained as 3> = 2% — N2z,
Using Tunnell’s conditional solution to the congruent number
problem using eliptic curves and modular forms, Ono studied
the eliptic curve y? = 23 + (M + N)z? + M Nz denoted
by Eq(M,N) over Q. He classified all the cases and hence
reduced Euler’s problem to a question of ranks. In [6], Parshin
obtaines an inequality to give an effective bound for the
height of rational points on a curve. In [7], the problem of
boundedness of torsion for elliptic curves over quadratic fields
is settled.
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If F is a field, then an elliptic curve over F' has, after a
change of variables, a form

=2+ Az + B

where A and B € F with 443 + 27B2 # 0 in F. Here D =
—16 (44° +27B?) is called the discriminant of the curve.
Elliptic curves are studied over finite and infinite fields. Here
we take F' to be a finite prime field F}, with characteristic
p > 3. Then A, B € F, and the set of points (z,y) € F, x F),
together with a point o at infinity is celled the set of F,—
rational points of £ on F, and is denoted by E (F,). N,
denotes the number of rational points on this curve. It must
be finite.

In fact one expects to have at most 2p + 1 points (together
with o)(for every z, there exist a maximum of 2 y's). But
not al elements of ), have square roots. In fact only half of
the elements of F), have a square root. Therefore the expected
number is about p + 1.

Here we shall deal with Bachet elliptic curves y? = 23 +a?
modulo p. Some results on these curves have been given in
[2], and [3].

A historical problem leading to Bachet elliptic curvesis that
how one can write an integer as a difference of a square and a
cube. In another words, for a given fixed integer ¢, search for
the solutions of the Diophantine equation y? — z3 = ¢. This
equation is widely called as Bachet or Mordell equation. This
is because L. J. Mordell, in twentieth century, made a lot of
advances regarding this and some other similar equations. The
existance of duplication formula makes this curve interesting.
This formula was found in 1621 by Bachet. When (z,y)
is a solution to this equation where z, y € @, it is easy
to show that Ii{y%“, ‘16‘?;{5*862 is aso a solution for
the same equation. Furthermore, if (z,y) is a solution such
that zy # 0 and ¢ # 1, — 432, then this leads to infinitely
many solutions, which could not proven by Bachet. Hence if an
integer can be stated as the difference of a cube and a square,
this could be done in infinitely many ways. For example if
we start by a solution (3,5) to y? — 2® = —2, by applying

duplication formula, we get a series of rationa solutions
(3 5) (@ 7383) (2340922881 113259286337292)
’ 1020 103 ) 76602 ) 76603 ot

Here we give a classification of Bachet elliptic curves for
al values of a between 1 and p — 1. In doing these, we often
need to know when w is a quadratic or cubic residue.

Let @, and K, denote the set of quadratic and cubic
residues, respectively.
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Il. THE CuBIC ROOT OF UNITY MobuLOP=1
(mod 6) 1S PRIME

When a prime p is congruent to 1 modulo 6, we have a lot
of nice number theoretical results concerning cubic root w of
unity. First, we can say when w is an integer modulo p.

Lemma 2.1: The cubic root of unity w = _1%‘/?3 liesin
F, if and only if p =1 (mod 6) is prime.

Proof: Let w = ‘1+2\/j?’ = *”2\/57". We want to show
that w € F; = F,\{0}.

First, we will show that /=3 € F;. To do this, we will
show the existence of at € Z, so that —3 = t2(modp). In
other words, we need to show that (*73) = +1, where ()
denotes the Legendre symbol. Now

=2 = (e

p p p

p—1 3—1

= (-1 En (E )(=1)"= "= byGaussReciprocitylaw

p
— (1 L(£
= )
andasp =1 (mod 6), we have () = (3) =+1and p—1
even, implying (=) = +1.

Secondly, (2,p) = 1 and 2 has a multiplicative inverse u
in 2. Then 2.u = 1(modp) and = 5/=2 = u.(~1 + v/=3)
and as /—3 and hence —1 + /-3 liesin F,, w € F}. Going
backwards, we obtain the result. [ |

The following result gives us the values of p wherew € Q,,.

Lemma 2.2: w € Q, < p=1 (mod 6) is prime.

Proof:

w € Qpe 3teU, such that t* =w(modp)
& 3t €U, such that t® = w® = 1(modp).

Also by Fermat’s little theorem, we have P~ = 1(modp) for
t € Up. Then 6|(p — 1) and p = 1(mod6). ]

For example, w = 4,9,11,5,... for p = 7,13,19,31, ...,
respectively.

Now we give the following result to determine for what
prime values of p, w is a cubic residue modulo p. If w =
0(modp), then 71%‘/:3 = 0(modp) giving 4 = 0(modp), a
contradiction. So w € K.

Theorem 2.1: Let w be the cubic root of unity. Then

w € K <= p = 1(mod18).

Proof: w € K, <= 3b € U, such that w = b3 £ 1,
where U,, denotes the set of units modulo p.

<~ 3Jbel, such that w® =1° =1
<= 3 be U, such thate(b) = 9.

But as (b,p) = 1, we know by Fermat’s little theorem that
b*~1 = 1(modp). By the definition of order, 9|(p — 1) <=
p=1+9k, k€ Z. Aspisprime k must be even, and by
letting k = 2t, t € Z, we get p = 1 + 18t = 1(mod18). ®

In particular,

Corollary 2.2: Let p = 1(mod6) be prime. Then

a) If p = 1(modl18), then al three or none of a, aw and
aw? liein K.

b) If p # 1(mod18), then only one of a, aw and aw? lies
in K.

Proof: a) Let p = 1(mod 18) and let a € K. Then by
theorem 3, w € K. As K, is a multiplicative group, the
result follows.

If a ¢ K, the result similarly follows.

b) Let p = 1(mod 6) and p # 1(mod 18). Then by theorem
3 w¢ K,

Firstly, assume that « € K;. Then aw and aw® do not
belong to K.

Secondly, let a ¢ K. Now we first assume that aw € K.
That is, there exists a t € U, such that aw = t3(mod p).
Then aw? = t3.w(mod p). Again by theorem 3, aw?® ¢ K as
t* € Ky andw ¢ K. Now we finally assume that aw? € K,,.
Then similarly aw = aw?.w? = t*w? ¢ K ast® € K, and
w? ¢ K. [ |

Similarly,
" Corollary 2.3: Let p = 1(mod6) be prime and p #
1(mod18). Let a ¢ K. Then

aw® € K, <= aw* " ¢ K,

for k =1,2.

I11. BACHET ELLIPTIC CURVES MODULO PRIME
p = 1(mod6)
Now we are ready to use the results obtained in part 2 to
give some results regarding Bachet elliptic curves. First
Theorem 3.1: Let p = 1(mod 6) be prime. There are three
values of z, for y = 0, on the eliptic curve 32> = 23 +
a3(mod p), having sum equal to 0 modulo p.

Proof: For y = 0, 2 = —a®(modp) has solutions = =

—a, —aw and —aw?. The result then follows. ]

Theorem 3.2 Let p = 1(mod18) be prime. If a € K
then three values of = obtained for y = 0 on the élliptic curve
y? = 2® + a®(modp) liein K.

Ifa¢ K, then none of the three values of x obtained for
y = 0 on the elliptic curve y? = 2® + a®(modp) liein K.

Proof: For y = 0, 23 = —a®(mod p) has solutions = =

—a, —aw and —aw?. The result then follows. ]
Also we have,
Theorem 3.3: Let p = 1(mod6) be prime. For a € F%,
there are 2% elliptic curves y? = 2° + a®(mod p).

Proof: For a fixed value of a between 1 and p — 1, we
know that we obtain the same value of y for z = a, z = aw
and = = aw?. Therefore the p — 1 values of a can be grouped
into ”%1 groups each consisting of three values of a. u

Theorem 3.4: Let p = 1(mod18) be prime. If a € KZ,
then there are p;l eliptic curves y? = 2® + a®(mod p).

Proof: Let p = 1(mod 6) be prime. We know by theorem
8 that there are 25+ dlliptic curves y? = 23 + a®(mod p) for
a € Fy. If dso p = 1(mod9), (that is p = 1(mod18) by
the Chinese remainder theorem) then we can group these 231
values of a into groups of three, consisting of {a,aw,aw%}
for a € K. Therefore when p = 1(mod 18), there are 5+
sets of the values of a, for a € K.

Example 3.1: Let p = 37. Then K3, =
{1,6,8,10,11, 14, 23, 26,27, 29, 31, 36}. Here w = 26 € F%;
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by lemma 1 and w € K3, by theorem 3. Then the 271 = 4
sets of the values of a can be obtained as follows:

{a =1, aw = 26, aw? = 10}

{a =6, aw = 8, aw? = 23}

{a =11, aw = 27, aw? = 36}

{a = 14, aw = 31, aw? = 29}

One obtains the same elliptic curve for each of three
elements a, aw, aw? in one of these sets.

|

We know by theorem 8 that there are %1 elliptic curves
for a € F. Now we have

Theorem 3.5: Let p = 1 (mod 18) be prime. For y = 0,
there are three points with z € K, on the Z51of the 2%
curves appearing for each triple of elements a, aw, aw?.

Let p =1 (mod 6) be primeand p # 1 (mod 18). Then
each of the % curves consisting of a triple a, aw, aw?
contains exactly one element of K.

Proof: The first part follows from Theorem 9.

For the second part, as p # 1 (mod 18), we know that w ¢
K by Theorem 3. By Theorem 8, the values of a between 1
and p — 1 are divided into 25* sets. By Corollary 4b), only
one of a, aw, aw® belongsto K . [ |

Theorem 3.6; Let p = 1 (mod 6) be prime. Out of these
221 curves, exactly 2=1 contains three points (z,0) where
x € Qp, and % contains three points (z,0) where z ¢ Q,.

Proof: For y = 0, 23 = —a®(modp) and as the number
of quadratic and non quadratic residues are equal, we have %
sets consisting of three values of a € @, and % consisting
of three values of a ¢ @Q),,, by Lemma 2. [ ]
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