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Abstract—The aim of the brain-computer interface studies on 

electroencephalogram (EEG) signals containing motor imagery is to 
extract the effective features that will provide the highest possible 
classification accuracy for the detection of the desired motor 
movement. However, achieving this goal is difficult as the most 
suitable frequency band and time frame vary from subject to subject. 
In this study, the classification success of the two-feature data 
obtained from raw EEG signals and the coefficients of the multi-
resolution analysis method applied to the EEG signals were analyzed 
comparatively. The method was applied to several EEG channels 
(C3, Cz and C4) signals obtained from the EEG data set belonging to 
the publicly available BCI competition III. 
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I. INTRODUCTION 

RAIN Computer Interface (BCI) measures brain activity 
by providing a natural communication and control facility 

with the human brain, and then attempts to make the measured 
activities understandable to establish a direct interaction 
between the brain and the computer [1], [2]. EEG-based data 
are widely used in BCI studies than alternatives due to its non-
invasive nature, low cost, and relative simplicity [3], [4]. In 
the literature, some of the BCI studies carried out EEG-based 
data containing motor imagery information. These studies 
focused on how to distinguish different motor imageries, and 
various algorithms are proposed to achieve successful results 
[5]-[7]. 

Zhang et al. [8] use the sparse Bayesian learning method of 
frequency bands to classify EEG signals containing motor 
imagery. Feature data are generated from the set of signals 
obtained by applying a filter bank with multiple overlapping 
sub-bands to raw EEG data using a common spatial model 
(CSP) algorithm. Sparse Bayesian learning is used to 
distinguish the most effective features from the feature set. 
Wang et al. [9] present an approach that applies time-spatial 
feature extraction including multivariate linear regression 
(MLR) to obtain distinctive steady-state visual evoked 
potential (SSVEP) features. MLR is applied to reduced-size 
EEG training data and a label matrix that is created to find the 
most suitable discriminating sub-areas. Zhang et al. [10] use a 
method based on multi-kernel extreme learning machine (MK-
ELM) to classify EEG signals containing motor imagery. The 
effects of two different kernel functions, Gaussian, and 
polynomial, on the performance of ELM are investigated. 
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MK-ELM method is created by combining these kernels with 
a multi-kernel learning strategy to classify the EEG motor 
imagery data with higher classification accuracy. Yang et al. 
[11] aimed to improve the classification accuracy of multi-
class EEG signals and reduce the number of EEG channels 
needed in the BCI system based on motor imagery data. They 
propose a method that searches for the most appropriate time-
frequency domains to extract specific features for the subject. 
Baali et al. [12] use a signal-dependent orthogonal transform 
for feature extraction called linear predictive singular value 
decomposition (LP-SVD). The transformation defines the 
mapping as left singular vectors of the LP coefficient filter 
impulse response matrix, and the obtaining features are 
presented to a logistic tree-based model classifier. Chaudhary 
et al. [13] present a method based on deep convolution neural 
networks (DCNN) to classify motor imagery EEG signals. The 
proposed method first converts the EEG signals to images by 
applying time frequency (T-F) approaches. DCNN is applied 
to the obtained images. The T-F approximations are short-
time-Fourier transform (STFT) and continuous wavelet 
transform (CWT).  

In this study, the classification of EEG signals containing 
motor imagery is performed by including the multi-resolution 
analysis method. The multi-resolution analysis method is 
wave atom transformation. The transformation is applied to 
selected EEG channel signals, and coefficients of transform 
are obtained. Two feature data are generated from these 
coefficients and raw EEG signals. K nearest neighborhood (k-
NN) and linear discriminant analysis (LDA) methods are used 
as classifiers.  

II. METHOD 

The motor imagery EEG data were obtained from the BCI 
competition III data set IIIa. The data set includes four classes 
motor imagery signals. However, this study focused on the 
classification of right and left-hand movements. In this 
direction, the data containing right and left-hand motor 
imagery were separated from the data set and made ready for 
application of the method. In practice, signals of C3, C4 and 
Cz channels, which are often preferred in the literature [11], 
are processed. Butterworth filter (5-30 Hz) was applied as the 
first operation to the specified signals. Then, feature extraction 
was performed in two ways: 1- The first feature data (F1) was 
created by extracting the features (mean, standard deviation, 
and log-variance) from the filtered EEG signals. 2- The 
transform coefficients were obtained by applying wave atom 
transform to the filtered EEG signals and the second feature 
data (F2) were generated by subtracting (mean, standard 

Nebi Gedik 

Classification of Right and Left-Hand Movement 
Using Multi-Resolution Analysis Method 

B 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:15, No:1, 2021

7

 

 

deviation, and log-variance) from the coefficients. These 
feature data sets were presented to the k-NN and LDA 
classifiers separately and combining them. The flow chart of 
the method is as in Fig. 1.  

 

 

Fig. 1 Flow chart of the method 

A. Wave Atom Transform 

Wave atom transform [14] is a non-adaptive structure of 
compact backed wave packets. 𝑗 scaled real-valued 1-D wave 
atom function is expressed as: 

 

 𝜓௠,௡
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where  𝑗 controls the resolution scale, while the location in the 
frequency and time domain is controlled by m and n. F-1 is the 
inverse Fourier transform. The symmetrical double pump 
main wave atom function is defined as: 
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𝜋ሺ𝑚 ൅ 1 2⁄ ሻ൯ቁሿ                                   (2) 
 

where α୫ ൌ π 2⁄ ሺm ൅ 1 2⁄ ሻ,  ε୫ ൌ ሺെ1ሻ୫, 𝑔 is the real 
valued 𝐶ஶ pump function with compact support in the 2𝜋 
interval [14]. On the condition of (3), an orthonormal basis is 
created in L2(ℝ) and uniform tiling is provided in the 
frequency axis. 
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B. Data Set 

Motor imagery EEG data were taken from BCI competition 
III [15]. BCI competitions are held to ensure the validation of 
various data analysis techniques and to encourage the 
development of BCI technology. In each competition, various 

data sets are made available to everyone on the internet, and 
each data set is a record of brain signals prepared in 
experienced and leading laboratories in BCI technology. 
These records consist of two parts: the labeled data partition 
(the "training set") and the unlabeled data partition (the "test 
set"). The proposed method was evaluated using the data set 
IIIa, which includes four classes motor imagery data in the 
BCI competition III. It includes right hand, left hand, foot and 
tongue information from three subjects. Also, it consists of 60 
channels and 60 trials for each class [16]. The recording of 
EEG signals was performed with a 64-channel EEG amplifier, 
using the left mastoid for reference and the right mastoid as 
the ground. Channel positions are shown in Fig. 2. 

 

 

Fig. 2 Channel positions for EEG recording of data set IIIa [16] 
 

The subject performed imagery right hand, left hand, foot 
and tongue movements according to the randomly presented 
signals while sitting in a comfortable chair. The processing 
time sequence for each recording is shown in Fig. 3. 

 

 

Fig. 3 Processing time sequence for each recording stage 
 

In Fig. 3, on each trial, the first 2s are quiet. At 2s, a 
warning beep is emitted indicating the start of the trial, and a 
cross "+" appears on the screen. Then, at the 3rd second, an 
arrow showing up, down, left, and right direction appears for 
1s. Meanwhile, the subject is asked to imagine a left hand, 
right hand, tongue, or foot movement, respectively, in the 
direction of the arrow until the arrow disappears from the 
screen (t = 7s). 

III. FINDINGS 

After filtering the EEG signals of the selected channels, 
feature extraction was performed in two ways. The first one, 
F1, involves the computation of mean, standard deviation, and 
log-variance features from directly filtered signals. The second 
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one, F2, wave atom transform was applied to filtered data, and 
coefficients of transform were obtained. Then, mean, standard 
deviation and log-variance features were calculated using 
these coefficients. Classification success rates were 
determined by presenting these two feature sets to classifiers 
separately and by combining them. The results are given in 
Table I.  

 
TABLE I 

CLASSIFICATION RESULTS (ACCURACY) 

Feature set Subject 
Classifiers 

k-NN k-value LDA 

F1 

Subjects 1 54,44 29 50 

Subjects 2 56,67 11 51,67 

Subjects 3 60 13 58,33 

F2 

Subjects 1 62,22 15 51,11 

Subjects 2 63,33 13 53,33 

Subjects 3 68,33 3 55 

F1+F2 

Subjects 1 55,56 5 51,11 

Subjects 2 51,67 31 50 

Subjects 3 60 13 45 

 

The most successful results in the classification process 
were obtained from the features obtained from wave atom 
transform using k-NN classifier. For the k value of the 
classifier, 30 different values starting from 3 were used, and 
the highest classification accuracy was evaluated. These 
classification results are shown in Fig. 4. 

 

 

Fig. 4 Accuracy values of k-NN classification, based on feature set 
and subject 

 
Considering all subjects, the best average classification 

result was 57.03 with k-NN classifier for features obtained 
directly from EEG signals (F1), while it was 64.62 wit k-NN 
classifier for features derived from wave atom transform (F2). 
When both feature data were combined (F1 + F2), the best 
average classification result was 55.74 with k-NN classifier 
for all subjects. The most successful classification results were 
derived from the features obtained from the EEG signals of 
subject 3. A comparative representation of the classifiers 
based on average classification results of all subjects is shown 
in Fig. 5. 

 

 

Fig. 5 Average classification results of all subjects for k-NN and 
LDA 

IV. CONCLUSION 

The aim of the study was to classify the motor imagery 
EEG signals containing right- and left-hand movements. Two 
different feature data were created, and the classification 
success of these features was evaluated comparatively using 
two different classifiers. The feature data were generated from 
the EEG signals and the wave atom transform applied to the 
EEG signals. It was concluded that the feature data obtained 
from wave atom transform give more successful results in 
classification. In addition, it was observed that the method 
gave more successful results in distinguishing right- and left-
hand movements with the data of subject 3. 
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