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Characterizing the Geometry of Envy Human
Behaviour Using Game Theory Model with Two

Types of Homogeneous Players
A. S. Mousa, R. I. Rajab, A. A. Pinto

Abstract—An envy behavioral game theoretical model with two
types of homogeneous players is considered in this paper. The
strategy space of each type of players is a discrete set with only
two alternatives. The preferences of each type of players is given
by a discrete utility function. All envy strategies that form Nash
equilibria and the corresponding envy Nash domains for each type
of players have been characterized. We use geometry to construct
two dimensional envy tilings where the horizontal axis reflects the
preference for players of type one, while the vertical axis reflects
the preference for the players of type two. The influence of the envy
behavior parameters on the Cartesian position of the equilibria has
been studied, and in each envy tiling we determine the envy Nash
equilibria. We observe that there are 1024 combinatorial classes of
envy tilings generated from envy chromosomes: 256 of them are
being structurally stable while 768 are with bifurcation. Finally, some
conditions for the disparate envy Nash equilibria are stated.

Keywords—Game theory, Nash Equilibrium, envy Nash
Equilibrium, geometric tilings, bifurcation thresholds.

I. INTRODUCTION

MODELING the behavior of players using game theory

has been studied intensively by economists and

scientists. Ajzen [1] constructed the main goal in Planned

Behavior or Reasoned Action theories to understand and

predict the way players turn intentions into behaviors. In 2010,

Brida et al. [2] studied the characteristics of individuals that

might affect their decisions in a game theory model. One

year later, Almeida et al. [3] developed a game theoretical

model for reasoned action based on the works of Cownley and

Wooders [4] where different types of players were included.

In [5] Mousa et al. presented a dichotomous decision model,

where players choose between two alternative decisions and

can influence the decisions of the others. Soeiro et al. [6]

presented a game theoretical model to study the effects of

societies behaviour on the market shares and characterized all

possible strategies that form Nash equilibria. In [7], Mousa and

Pinto show that the pure Nash equilibria can be either cohesive

(all players with the same preferences make the same decision)

or can be disparate (there are players with the same preferences

who make an opposite decisions). For further readings in this

context, we refer the reader to [8] and [9].
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In this paper, we will study the influence of the envy

behavior for players over the utility function of other

type by extending the pure Nash equilibria studied in the

game decision model [5]. We will characterize all the pure

envy strategies that form Nash equilibria and determine

the corresponding envy Nash domains. Pure envy strategies
means the cohesive or the disparate envy strategies. The

disparate pure envy Nash equilibria can explain the conflict

decisions that divide a community. For a given level of an

envy behaviour, we construct the corresponding geometric

tiling in the cartesian xy- plane, where the horizontal axis

represents the relative preference of players with type t1, and

the vertical axis represents the relative preference of players

with type t2. Noting that the envy Nash domains form the

decision tiles, we show that there are 1024 combinatorial

classes of envy decision tilings, generated from the horizontal

envy chromosomes for players of type t1 and vertical envy

chromosomes for players of type t2, which demonstrates the

high complexity of human envy behaviour. Furthermore, we

found 256 combinatorial classes of tilings that are being

structurally stable while 768 combinatorial classes have either

single or double or degenerate bifurcations. We will show that

the tilings give a full geometrical characterization of the envy

Nash equilibria.

Possible extension to the decision game model would be

to include some kind of stochastic pattern with diffusion and

solve an optimization problem in a continuous time framework

(see [10], [11]).

This paper is organized as follows. In Section II we review

the decision model presented in [5]. In section III we study

the influence of the envy behavior for both types of players

over the utility functions of each other and characterize the

cohesive envy Nash equilibria. In Section IV we study the

geometric classes of pure envy Nash equilibria domains. In

Section V we study the disparate envy Nash equilibria. We

conclude in Section VI.

II. REVIEW OF THE DECISION MODEL

In this section we review the decision model formulated

in [5]. Let T = {t1, t2} be set with two types of players,

I1 = {1, . . . , n1} be the set of all players with type t1, I2 =
{1, . . . , n2} be the set of all players with type t2, and I =
I1 � I2 be the disjoint union. Each player i ∈ I is assumed to

make one decision d ∈ D = {Y,N}.

Let L be the preference decision matrix whose coordinates
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ωd
p indicate how much player with type tp likes or dislikes to

make decision d

L =

(
ωY
1 ωN

1

ωY
2 ωN

2

)
.

The preference decision matrix indicates, for each type of

players, the decision the players prefer, i.e. the players taste

type.

Let Nd be the preference neighbors matrix whose

coordinates αd
pq indicate how much player with type tp likes

or dislikes that player with type tq makes decision d

Nd =

(
αd
11 αd

12

αd
21 αd

22

)
.

The preference neighbors matrix indicates for each type of

players whom they prefer or not to be with in each decision,

i.e. the players crowding type.

We describe the (pure) decision of the players by a (pure)
strategy map S : I → D that associates to each player i ∈ I
its decision S(i) ∈ D. Let S be the space of all strategies S.

Given a strategy S, let OS be the strategic decision matrix
whose coordinates ldp = ldp(S) indicate the number of players

with type tp who make decision d, so OS is defined by

OS =

(
lY1 lN1
lY2 lN2

)
.

We denote by (l1, l2) = (lY1 (S), l
Y
2 (S)) the strategic

decision vector associated with strategy S, where l1 (resp.

n1 − l1) is the number of players with type t1 who make the

decision Y (resp. N ) and l2 (resp. n2 − l2) is the number of

players with type t2 who make the decision Y (resp. N ). The

set O of all possible strategic decision vectors is given by

O = {0, . . . , n1} × {0, . . . , n2} .

Let U1 : D×O → R be the utility function of player with

type t1 who makes decision Y (resp. N ) defined by

U1(Y ; l1, l2) = ωY
1 + αY

11(l1 − 1) + αY
12l2 (1)

U1(N ; l1, l2) = ωN
1 + αN

11(n1 − l1 − 1) + αN
12(n2 − l2) .

Let U2 : D × O → R be the utility function of player with

type t2 who makes decision Y (resp. N ) defined by

U2(Y ; l1, l2) = ωY
2 + αY

22(l2 − 1) + αY
21l1 (2)

U2(N ; l1, l2) = ωN
2 + αN

22(n2 − l2 − 1) + αN
21(n1 − l1) .

Given a strategy S ∈ S, the utility Ui(S) of player i with type

tp(i) is given by Up(i)(S(i); l
Y
1 (S), l

Y
2 (S)).

Definition 1: Let x = ωY
1 − ωN

1 be the horizontal relative
decision preference of the players with type t1 and y = ωY

2 −
ωN
2 be the vertical relative decision preference of the players

with type t2.

If x > 0, then players with type t1 prefer to decide Y without

taking into account the influence of the others. If x = 0, then

players with type t1 are indifferent to decide Y or N without

taking into account the influence of the others. If x < 0, then

players with type t1 prefer to decide N without taking into

account the influence of the others.

A strategy S∗ : I → D is a (pure) Nash Equilibrium if

Ui(S
∗) ≥ Ui(S)

for every player i ∈ I and for every strategy S ∈ S. The Nash
domain N(S) of a strategy S ∈ S is the set of all pairs (x, y)
for which S is a Nash Equilibrium.

Definition 2: A cohesive strategy is a strategy in which all

players with the same type prefer to make the same decision.

A disparate strategy is a pure strategy that is not cohesive.

Now we construct the Nash domains N(S) for the cohesive

strategies. We observe that there are four cohesive strategies:

(Y, Y ) strategy: all players make the decision Y ; (Y,N)
strategy: all players with type t1 make the decision Y and all

players with type t2 make the decision N ; (N,Y ) strategy:

all players with type t1 make the decision N and all players

with type t2 make the decision Y ; (N,N) strategy: all players

make the decision N .

The Nash domain N(Y, Y ) is the right-upper quadrant given

by

N(Y, Y ) = {(x, y) : x ≥ H(Y, Y ) and y ≥ V (Y, Y )} ,
(3)

where the horizontal H(Y, Y ) and vertical V (Y, Y ) strategic
thresholds of the (Y, Y ) strategy are

H(Y, Y ) = −αY
11(n1 − 1)− αY

12n2 and

V (Y, Y ) = −αY
22(n2 − 1)− αY

21n1 . (4)

Hence, the cohesive strategy (Y, Y ) is a Nash Equilibrium if

and only if (x, y) ∈ N(Y, Y ).
The Nash domain N(Y,N) is the right-lower quadrant

N(Y,N) = {(x, y) : x ≥ H(Y,N) and y ≤ V (Y,N)} ,
(5)

where the horizontal H(Y,N) and vertical V (Y,N) strategic
thresholds of the (Y,N) strategy are

H(Y,N) = −αY
11(n1 − 1) + αN

12n2 and

V (Y,N) = αN
22(n2 − 1)− αY

21n1 . (6)

Hence, the cohesive strategy (Y,N) is a Nash Equilibrium if

and only if (x, y) ∈ N(Y,N).
The Nash domain N(N,Y ) is the left-upper quadrant

N(N,Y ) = {(x, y) : x ≤ H(N,Y ) and y ≥ V (N,Y )} ,
(7)

where the horizontal H(N,Y ) and vertical V (N,Y ) strategic
thresholds of the (N,Y ) strategy are

H(N,Y ) = αN
11(n1 − 1)− αY

12n2 and

V (N,Y ) = −αY
22(n2 − 1) + αN

21n1 . (8)

Hence, the cohesive strategy (N,Y ) is a Nash Equilibrium if

and only if (x, y) ∈ N(N,Y ).
The Nash domain N(N,N) is the left-lower quadrant

N(N,N) = {(x, y) : x ≤ H(N,N) and y ≤ V (N,N)} ,
(9)

where the horizontal H(N,N) and vertical V (N,N) strategic

thresholds of the (N,N) strategy are

H(N,N) = αN
11(n1 − 1) + αN

12n2 and

V (N,N) = αN
22(n2 − 1) + αN

21n1 . (10)

Hence, the cohesive strategy (N,N) is a Nash Equilibrium if

and only if (x, y) ∈ N(N,N).
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III. ENVY NASH EQULIBRIA

In this section we will model the influence of envy behavior

created by both types of players over the utility function of

each other and study how this influence changes the Cartesian

position of the Nash equilibria studied in [5].

Let βi > 0, i = 1, 2 be the envy parameter associated with

players of type ti. We remark that β1 (resp. β2) measures the

influence of the envy behavior created by players with type t1
(resp. t2) over the utility function of players with type t2 (resp.

t1). Furthermore, we assume that β1 and β2 do not depend on

the decision d which has been made by players with type t1
and t2, respectively. However, a general framework includes

such dependence could be studied in a different paper.

Let Ue
1 : D×O×R

+ → R be the utility function of an envy

player with type t1 who makes decision Y (resp. N ) given by

U1(Y ; l1, l2, β1) = U1(Y ; l1, l2)− β1U2(Y ; l1, l2) (11)

U1(N ; l1, l2, β1) = U1(N ; l1, l2)− β1U2(N ; l1, l2)

and Ue
2 : D×O×R

+ → R be the utility function of an envy

player with type t2 who makes decision Y (resp. N ) given by

U2(Y ; l1, l2, β2) = U2(Y ; l1, l2)− β2U1(Y ; l1, l2) (12)

U2(N ; l1, l2, β2) = U2(N ; l1, l2)− β2U1(N ; l1, l2) ,

where the utility functions Ui(d; l1, l2), i = 1, 2 and d ∈ D are

as given in (1) and (1). We remark that if β1 = β2 = 0, then

the envy model coincides with the decision model presented

in [5].

A. Geometry of Pure Envy Nash Equilibria

In this section we will show that the horizontal and

vertical relative decision preferences, the preference neighbors

coordinates and together with the total number of players of

each type encode all the relevant information for characterizing

the cohesive envy Nash equilibria.

A strategy S∗
e : I → D is a (pure) envy Nash Equilibrium

if

Ui(S
∗
e ) ≥ Ui(S)

for every player i ∈ I and for every strategy S ∈ S. The envy
Nash domain Ne(S) of a strategy S ∈ S is the set of all pairs

(x, y) for which S is an envy Nash Equilibrium.

Given a strategy Se ∈ S, the utility functions Ui(Se) of

player i with type tp(i) is given by

Up(i)(Se(i); l
Y
1 (Se), l

Y
2 (Se)) .

Definition 3: An envy cohesive strategy is a strategy in

which all players with the same type prefer to make the same

decision. An envy disparate strategy is a pure envy strategy

that is not envy cohesive strategy.

Similarly, we observe that there are four distinct envy

cohesive strategies. We will now construct the envy Nash

domains Ne(Se) for each pure envy strategy Se ∈ S. The

four envy Nash domains are Ne(Y, Y ), Ne(Y,N), Ne(N,Y )
and Ne(N,N).

Theorem 1: Assume that β1β2 �= 1.

(i) The envy cohesive strategy Se = (Y, Y ) is an envy Nash
Equilibrium if and only if (x, y) ∈ Ne(Y, Y ), where the

envy Nash domain Ne(Y, Y ) is the right-upper quadrant

given by

Ne(Y, Y ) = {(x, y) ∈ R
2 : x ≥ He(Y, Y ), y ≥ V e(Y, Y )}

(13)

and the horizontal envy He(Y, Y ) and vertical envy
V e(Y, Y ) strategic thresholds of the (Y, Y ) pure envy

strategy are given by

He(Y, Y ) = H(Y, Y )

+ β1

(
αN
22 − αN

21 + β2(α
N
11 − αN

12)

1− β1β2

)

(14)

V e(Y, Y ) = V (Y, Y )

+ β2

(
β1(α

N
22 − αN

21) + αN
11 − αN

12

1− β1β2

)
,

where the horizontal H(Y, Y ) and vertical V (Y, Y )
strategic thresholds are as given in (4).

(ii) The envy cohesive strategy Se = (Y,N) is an envy Nash
Equilibrium if and only if (x, y) ∈ Ne(Y,N), where the

envy Nash domain Ne(Y,N) is the right-lower quadrant

Ne(Y,N) = {(x, y) ∈ R
2 : x ≥ He(Y,N), y ≤ V e(Y,N)}

(15)

and the horizontal envy He(Y,N) and vertical envy
V e(Y,N) strategic thresholds of the (Y,N) pure envy

strategy are given by

He(Y,N) = H(Y,N)

+ β1

(
β2(α

N
11 + αY

12)− (αY
22 + αN

21)

1− β1β2

)

(16)

V e(Y,N) = V (Y,N)

+ β2

(
(αN

11 + αY
12)− β1(α

Y
22 + αN

21)

1− β1β2

)
,

where the horizontal H(Y,N) and vertical V (Y,N)
strategic thresholds are as given in (6).

(iii) The envy cohesive strategy Se = (N,Y ) is an envy Nash
Equilibrium if and only if (x, y) ∈ Ne(N,Y ), where the

envy Nash domain Ne(N,Y ) is the left-upper quadrant

Ne(N,Y ) = {(x, y) ∈ R
2 : x ≤ He(N,Y ), y ≥ V e(N,Y )}

(17)

and the horizontal envy He(N,Y ) and vertical envy
V e(N,Y ) strategic thresholds of the (N,Y ) pure envy

strategy are given by

He(N,Y ) = H(N,Y )

+ β1

(
αN
22 + αY

21 − β2(α
Y
11 + αN

12)

1− β1β2

)

(18)

V e(N,Y ) = V (N,Y )

+ β2

(
β1(α

N
22 + αY

21)− (αY
11 + αN

12)

1− β1β2

)
,

where the horizontal H(N,Y ) and vertical V (N,Y )
strategic thresholds are as given in (8).
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(iv) The envy cohesive strategy Se = (N,N) is an envy Nash
Equilibrium if and only if (x, y) ∈ Ne(N,N), where the

envy Nash domain Ne(N,N) is the left-lower quadrant

Ne(N,N) = {(x, y) ∈ R
2 : x ≤ He(N,N), y ≤ V e(N,N)}

(19)

and the horizontal envy He(N,N) and vertical envy
V e(N,N) strategic thresholds of the (N,N) pure envy

strategy are given by

He(N,N) = H(N,N)

+ β1

(
αY
21 − αY

22 + β2(α
Y
12 − αY

11)

1− β1β2

)

(20)

V e(N,N) = V (N,N)

+ β2

(
β1(α

Y
21 − αY

22) + αY
12 − αY

11

1− β1β2

)
,

where the horizontal H(N,N) and vertical V (N,N)
strategic thresholds are as given in (10).

Proof: We will prove case (i) and the proof of the other

cases follow similarly. The coherent envy strategy Se = (Y, Y )
is Nash Equilibrium if and only if the following inequalities

hold

U1(Y
e;n1, n2, β1) ≥ U1(N

e;n1 − 1, n2, β1)

(21)

U2(Y
e;n1, n2, β2) ≥ U2(N

e;n1, n2 − 1, β2) .

Substituting the envy utility functions from (11) and (12) in

(21) and rearrange the terms we obtain

ωY
1 − ωN

1 ≥ −αY
11(n1 − 1)− αY

12n2

+β1

(
αN
22 − αN

21 + β2(α
N
11 − αN

12)

1− β1β2

)

ωY
2 − ωN

2 ≥ −αY
22(n2 − 1)− αY

21n1

+β2

(
β1(α

N
22 − αN

21) + αN
11 − αN

12

1− β1β2

)
.

This, respectively, simplifies to

x ≥ He(Y, Y ) and y ≥ V e(Y, Y ) .

Hence, the envy cohesive strategy Se = (Y, Y ) is an envy
Nash Equilibrium if and only if (x, y) ∈ Ne(Y, Y ).

As a result of Theorem 1, we conclude the following:

the envy cohesive strategy Se = (Y,N) is an envy Nash
Equilibrium if and only if (x, y) ∈ Ne(Y,N), the envy

cohesive strategy Se = (N,Y ) is an envy Nash Equilibrium if

and only if (x, y) ∈ Ne(N,Y ), and the envy cohesive strategy

Se = (N,N) is an envy Nash Equilibrium if and only if

(x, y) ∈ Ne(N,N).
Now we will study the influence of the envy parameters

created by both types of players on the location of Nash

equilibria. More precisely, when a certain Nash Equilibrium

strategy can be envy Nash Equilibrium by comparing the Nash

domains N(S) with the envy Nash domains Ne(S) for a given

strategy S ∈ S.

Lemma 1: Given a strategy S ∈ S. If S = (Y, Y ) is a Nash

Equilibrium, then it is an envy Nash Equilibrium if and only

if

β1(α
N
22 − αN

21) < αN
12 − αN

11 and

β2(α
N
11 − αN

12) < αN
21 − αN

22 .

Proof: The proof follows from the definitions of the envy

Nash domain Ne(Y, Y ) given in (13) and the Nash domain

N(Y, Y ) given in (3) when N(Y, Y ) ⊂ Ne(Y, Y ).
Hence, if players with type t1 (resp. t2) like more being

with players with type t2 (resp. t1) than being together making

decision N (means αN
11 < αN

12 and αN
22 < αN

21), then

N(Y, Y ) ⊂ Ne(Y, Y ) holds (see Fig. 1b) and the following

inequalities hold

β1 > 0 >
αN
12 − αN

11

αN
22 − αN

21

and β2 > 0 >
αN
22 − αN

21

αN
12 − αN

11

. (22)

On the other hand, if players with type t1 (resp. t2) like more

being together than being with players with type t2 (resp. t1)

making decision N (means αN
11 > αN

12 and αN
22 > αN

21), then

Ne(Y, Y ) ⊂ N(Y, Y ) (see Fig. 1a).

x 

y 

Hᵉ(Y,Y) 

Vᵉ(Y,Y) 

H(Y,Y) 

V(Y,Y) 
N(Y,Y) 

Nᵉ(Y,Y) 

(a) Ne(Y, Y ) ⊂ N(Y, Y ).

x 

y 

H(Y,Y) 

V(Y,Y) 

Hᵉ(Y,Y) 

Vᵉ(Y,Y) 
Nᵉ(Y,Y) 

N(Y,Y) 

(b) N(Y, Y ) ⊂ Ne(Y, Y ).

Fig. 1 The geometry of envy pure Nash domain Ne(Y, Y )

We remark that Lemma 1 provides some properties for the

Nash domains Ne(Y, Y ) and N(Y, Y ):

(i) Ne(Y, Y ) = N(Y, Y ) if and only if αN
11 = αN

12 and αN
22 =

αN
21, which means the equilibria coincide.

(ii) Ne(Y, Y ) ⊂ N(Y, Y ) if and only if

β1(α
N
22 − αN

21) > αN
12 − αN

11 and

β2(α
N
11 − αN

12) > αN
21 − αN

22 .
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(iii) the Nash domains Ne(Y, Y ) and N(Y, Y ) overlaps in the

otherwise cases.

Lemma 2: Given a strategy S ∈ S. If S = (Y,N) is a Nash

Equilibrium, then it is an envy Nash Equilibrium if and only

if

β1(α
Y
22 + αN

21) < αN
11 + αY

12 and

β2(α
N
11 + αY

12) < αY
22 + αN

21 .

Proof: The proof follows from the definitions of the envy

Nash domain Ne(Y,N) given in (15) and the Nash domain

N(Y,N) given in (5) when N(Y,N) ⊂ Ne(Y,N).
Hence, if αN

11+αY
12 < 0 and αY

22+αN
21 < 0, then N(Y,N) ⊂

Ne(Y,N) (see Fig. 2b) and the following inequalities hold

β1 >
αN
11 + αY

12

αY
22 + αN

21

> 0 and β2 >
αY
22 + αN

21

αN
11 + αY

12

> 0 . (23)

On the other hand, if αN
11 +αY

12 > 0 and αY
22 +αN

21 > 0, then

Ne(Y,N) ⊂ N(Y,N) (see Fig. 2a).

 
 
 

y 

H(Y,N) 

Vᵉ(Y,N) 

V(Y,N) 

x Hᵉ(Y,N) 

N(Y,N) ( )

Nᵉ(Y,N) )

)

y

H(Y N) Hᵉ(YN)

(a) Ne(Y,N) ⊂ N(Y,N).

 
 
 

y 

Hᵉ(Y,N) 

V(Y,N) 

Vᵉ(Y,N) 

x H(Y,N) 

Nᵉ(Y,N) ( )

N(Y,N) )

)

y

Hᵉ(YN) H(Y N)

(b) N(Y,N) ⊂ Ne(Y,N).

Fig. 2 The geometry of envy pure Nash domain Ne(Y,N)

We remark that Lemma 2 provides some properties for the

Nash domains Ne(Y,N) and N(Y,N):

(i) Ne(Y,N) ⊂ N(Y,N) if and only if

β1(α
Y
22 + αN

21) > αN
11 + αY

12 and

β2(α
N
11 + αY

12) > αY
22 + αN

21 .

(ii) Ne(Y,N) = N(Y,N) if and only if αN
11 = −αY

12 and

αY
22 = −αN

21, which means the equilibria coincide.

(iii) the Nash domains Ne(Y,N) and N(Y,N) overlaps in the

otherwise cases.

Lemma 3: Given a strategy S ∈ S. If S = (N,Y ) is a Nash

Equilibrium, then it is an envy Nash Equilibrium if and only

if

β1(α
N
22 + αY

21) < αY
11 + αN

12 and

β2(α
Y
11 + αN

12) < αN
22 + αY

21 .

Proof: The proof follows from the definitions of the envy

Nash domain Ne(N,Y ) given in (17) and the Nash domain

N(N,Y ) given in (7) when N(N,Y ) ⊂ Ne(N,Y ).
Hence, if αY

11+αN
12 < 0 and αN

22+αY
21 < 0, then N(N,Y ) ⊂

Ne(N,Y ) (see Fig. 3b) and the following inequalities hold

β1 >
αY
11 + αN

12

αN
22 + αY

21

> 0 and β2 >
αN
22 + αY

21

αY
11 + αN

12

> 0 . (24)

On the other hand, if αY
11 +αN

12 > 0 and αN
22 +αY

21 > 0, then

Ne(N,Y ) ⊂ N(N,Y ) (see Fig. 3a).

 
 
 

x 

y 

Hᵉ(N,Y) 

Vᵉ(N,Y) 

H(N,Y) 

V(N,Y) 
N(N,Y) ( , )))

Nᵉ(N,Y) 

(a) Ne(N,Y ) ⊂ N(N,Y ).

 
 
 

x 

y 

H(N,Y) 

V(N,Y) 

Hᵉ(N,Y) 

Vᵉ(N,Y) 
Nᵉ(N,Y) ( , )))

N(N,Y) 

(b) N(N,Y ) ⊂ Ne(N,Y ).

Fig. 3 The geometry of envy pure Nash domain Ne(N,Y )

We remark that Lemma 3 provides some properties for the

Nash domains Ne(N,Y ) and N(N,Y ):

(i) Ne(N,Y ) ⊂ N(N,Y ) if and only if

β1(α
N
22 + αY

21) > αY
11 + αN

12 and

β2(α
Y
11 + αN

12) > αN
22 + αY

21 .

(ii) Ne(N,Y ) = N(N,Y ) if and only if αY
11 = −αN

12 and

αN
22 = −αY

21, which means the equilibria coincide.

(iii) the Nash domains Ne(N,Y ) and N(N,Y ) overlaps in the

otherwise cases.

Lemma 4: Given a strategy S ∈ S. If S = (N,N) is a

Nash Equilibrium, then it is an envy Nash Equilibrium if and
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only if

β1(α
Y
22 − αY

21) < αY
12 − αY

11 and

β2(α
Y
11 − αY

12) < αY
21 − αY

22 .

Proof: The proof follows from the definitions of the envy

Nash domain Ne(N,N) given in (19) and the Nash domain

N(N,N) given in (9) when N(N,N) ⊂ Ne(N,N).
Hence, if players with type t1 (resp. t2) like more being

with players with type t2 (resp. t1) than being together

making decision Y (means αY
11 < αY

12 and αY
22 < αY

21),

then N(N,N) ⊂ Ne(N,N) (see Fig. 4b) and the following

inequalities hold

β1 > 0 >
αY
12 − αY

11

αY
22 − αY

21

and β2 > 0 >
αY
22 − αY

21

αY
12 − αY

11

. (25)

On the other hand, if players with type t1 (resp. t2) like more

being together than being with players with type t2 (resp. t1)

making decision Y (means αY
11 > αY

12 and αY
22 > αY

21), then

Ne(N,N) ⊂ N(N,N) (see Fig. 4a).

 
 
 

x 

y 

Vᵉ(N,N) 

Hᵉ(N,N) H(N,N) 

V(N,N) N(N,N) 

Nᵉ(N,N) 

(a) Ne(N,N) ⊂ N(N,N).

 
 
 

x 

y 

V(N,N) 

H(N,N) Hᵉ(N,N) 

Vᵉ(N,N) Nᵉ(N,N) 

N(N,N) 

(b) N(N,N) ⊂ Ne(N,N).

Fig. 4 The geometry of envy pure Nash domain Ne(N,N)

We remark that Lemma 4 provides some properties for the

Nash domains Ne(N,N) and N(N,N):

(i) Ne(N,N) ⊂ N(N,N) if and only if

β1(α
Y
22 − αY

21) > αY
12 − αY

11 and

β2(α
Y
11 − αY

12) > αY
21 − αY

22 .

(ii) Ne(N,N) = N(N,N) if and only if αY
11 = αY

12 and

αY
22 = αY

21, which means the equilibria coincide.

(iii) the Nash domains Ne(N,N) and N(N,N) overlaps in

the otherwise cases.

IV. GEOMETRIC CLASSES OF ENVY TILINGS

The representations of the Nash domains N(Y, Y ), N(Y,N),
N(N,Y ), N(N,N) and the envy Nash domains Ne(Y, Y ),
Ne(Y,N), Ne(N,Y ), Ne(N,N) in the cartesian xy−plan

determine an envy decision tiling. These tilings characterize

geometrically all Nash equilibria strategies.

Definition 4: Let Att′ = αY
tt′ + αN

tt′ , for t, t′ ∈ {1, 2}, be

the coordinates of the influence matrix.

If Att′ > 0, then players with type t′ have a positive influence
over the utility function of the players with type t. If Att′ = 0,

then players with type t′ are indifferent for the utility function

of the players with type t. If Att′ < 0, then players with type

t′ have a negative influence over the utility function of the

players with type t.
Definition 5: Let B(n1, n2) be the balanced threshold

weight matrix whose coordinates are given by

B11(n1, n2) = A11(n1 − 1)−A12n2,

B12(n1, n2) = A11(n1 − 1) +A12n2,

B21(n1, n2) = A22(n2 − 1) +A21n1,

B22(n1, n2) = A22(n2 − 1)−A21n1.

The signs of the coordinates of the influence matrix and

balanced threshold weight matrix determine a certain order

for the horizontal and vertical strategic thresholds.

Definition 6: An envy decision tiling is structurally stable
if all horizontal and vertical thresholds are pairwise distinct.

An envy decision tiling is a bifurcation if there are at least

two horizontal thresholds coincide or there are at least two

vertical thresholds coincide. Two envy decision tilings are

combinatorial equivalent, if the lexicographic orders of the

horizontal and vertical thresholds along the axis are the same

in both tilings.

We call the pair of horizontal and vertical braids the envy
human decision chromosomes as they play a central role to

determine the human decision behavior, see Fig. 5 where

we show only the horizontal braid of envy human decision

chromosomes for players with type t1 (the vertical braid of

envy human decision chromosomes for players with type t2
follows similarly to Fig. 5). Each pair of lines transversal to

the horizontal and vertical braids, respectively, determines a

unique envy decision tiling, up to combinatorial equivalence,

and vice-versa. We observe that there are 1024 combinatorial

classes of envy decision tilings, and 256 of them are being

structurally stable and 768 combinatorial classes of bifurcation

decision tilings.

In Fig. 5, note that pink circles represent the horizontal

envy threshold He(N,N), black circles represent the

horizontal envy threshold He(N,Y ), green circles represent

the horizontal threshold H(N,N), blue circles represent

the horizontal threshold H(N,Y ), orange circles represent

the horizontal threshold H(Y,N), red circles represent the

horizontal threshold H(Y, Y ), yellow circles represent the

horizontal envy threshold He(Y,N), gray circles represent

the horizontal envy threshold He(Y, Y ), light green arrows

↔ represent the occurrence of four times of horizontal (resp.

vertically) bifurcations, and light orange arrows ↔ represent
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Fig. 5 Horizontal braid of envy human decision chromosomes for players
with type t1

the occurrence of three times of horizontal (resp. vertically)

bifurcations.
In Figs. 6, 7 and 8, we present three envy decisions tilings

where

(i) regions with cohesive uniqueness Nash equilibria

domains U(Y, Y ) ⊂ N(Y, Y ), U(Y,N) ⊂ N(Y,N),
U(N,Y ) ⊂ N(N,Y ) and U(N,N) ⊂ N(N,N) colored

red, orange, blue and green, respectively;

(ii) regions with cohesive uniqueness envy Nash equilibria

domains Ue(Y, Y ) ⊂ Ne(Y, Y ), Ue(Y,N) ⊂ Ne(Y,N),
Ue(N,Y ) ⊂ Ne(N,Y ) and Ue(N,N) ⊂ Ne(N,N)
colored light red, light orange, light blue and light green,

respectively;

(iii) regions with neither cohesive Nash equilibria nor envy

Nash equilibria colored purple;

(iv) regions with two, three, four, five, six, seven and eight

cohesive Nash equilibria colored yellow, brown, pink,

light yellow, gray, chartreuse and rainbow, respectively.

 
 
 

 
 

y 

x 

N(Y,Y)=Nᵉ(Y,Y) N

xx

( , ) ( , )

yy

N(Y,N)=Nᵉ(Y,N) 

N(N,Y)=Nᵉ(N,Y) 

N(N,N)=Nᵉ(N,N) 

U(Y,Y)=Uᵉ(Y,Y) 

U(Y,N)=Uᵉ(Y,N) 

U(N,Y)=Uᵉ(N,Y) 

U(N,N)=Uᵉ(N,N) 

Fig. 6 Envy Nash equilibria domain when A11 = A12 = A21 = A22 = 0

In Fig. 6, for every relative decision preferences x and y,

there is only one cohesive Nash equilibrium and one envy

Nash equilibrium, except along the horizontal and vertical

axises where there are two cohesive Nash equilibria and two

envy Nash equilibria, and at the origin where there are four

cohesive Nash equilibria and four envy Nash equilibria.
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Vᵉ(N,N) 

V(N,N) 

Vᵉ(Y,N) 
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Fig. 7 Simple Distribution of cohesive envy Nash equilibria domains

In Fig. 7, we show one possible tiling with simple

distribution of the cohesive envy Nash equilibria domains

when αd
11 > αd

12, αd
22 > αd

21, αd
11 + αd′

12 > 0, αd′
22 + αd

21 > 0
for d �= d′ ∈ {Y,N} and A11 < 0, A22 < 0, A12 > 0,

A21 > 0 and B12 < 0, B21 < 0. We show that there is an

unbounded region colored purple with neither cohesive Nash

equilibrium nor cohesive envy Nash equilibrium.
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Fig. 8 The complexity of envy Nash equilibria domain

In Fig. 8, we show the high complexity of distributing the

cohesive envy Nash eqilibria domains when αd
11 < αd

12, αd
22 <

αd
21, αd

11 + αd′
12 < 0, αd

22 + αd′
21 < 0 for d �= d′ ∈ {Y,N}

and A11 > 0, A22 > 0, A12 < 0, A21 < 0 and B12 > 0,

B21 > 0. We show that there are regions with two, three,

four, five, six, seven and eight cohesive Nash equilibria colored

yellow, brown, pink, light yellow, gray, chartreuse and rainbow,

respectively.
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V. DISPARATE ENVY NASH EQUILIBRIA

In this section we will study the disparate envy Nash

equilibria.
Definition 7: The strategic envy set (l1, l2) is the set of all

pure strategies S ∈ S with l1(S) = l1 and l2(S) = l2. The

cohesive strategic envy set (l1, l2) is the set all pure strategies

S ∈ S with l1 ∈ {0, n1} and l2 ∈ {0, n2}. The disparate
strategic envy set (l1, l2) is the set all pure strategies that are

not cohesive strategic envy set.
We observe that a cohesive strategic envy set has a single

strategy but the disparate strategic envy set has more than one

strategy.
Since players with the same type are identical

(homogenous), a strategy to be a Nash Equilibrium depends

only upon the number of players of each type who decide

either Y or N , and not upon the player who is making the

decision.
Definition 8: The pure envy Nash Equilibrium (set) (l1, l2)

is strategic envy set whose strategies are Nash equilibria. The

(pure) envy Nash domain Ne(l1, l2) is the set of all pairs (x, y)
for which the strategic envy set (l1, l2) is a Nash Equilibrium

set.
The pure envy Nash Equilibrium set (l1, l2) is cohesive

if l1 ∈ {0, n1} and l2 ∈ {0, n2}. The pure envy Nash

Equilibrium set (l1, l2) is disparate if l1 /∈ {0, n1} or l2 /∈
{0, n2}.

Lemma 5: Let (l1, l2) be an envy Nash Equilibrium set.

(i) If A11 > β1A21, then l1 ∈ {0, n1}.

(ii) If A22 > β2A12, then l2 ∈ {0, n2}.

Furthermore, if A11 > β1A21 and A22 > β2A12, then (l1, l2)
is cohesive envy Nash Equilibrium set.

Hence, if the players with a given type have a high positive

influence over the utility of the players with the same type

such that A11 > β1A21 and A22 > β2A12, then there are no

disparate Nash equilibria.
Proof: Suppose, by contradiction, that the envy strategy

(l1, l2) is a Nash Equilibrium for l1 ∈ {1, . . . , n1−1}. Hence,

the following two inequalities hold

U1(Y ; l1, l2, β1) ≥ U1(N ; l1 − 1, l2, β1) and

U1(N ; l1, l2, β1) ≥ U1 (Y ; l1 + 1, l2, β1) .

By rearranging the terms in the previous inequalities, we

obtain A11 ≤ β1A21 which contradicts that A11 > β1A21.

Hence, Lemma 5 (i) holds. The proof of the other cases follow

similarly to the proof of the first case.

VI. CONCLUSION

We have presented an envy behavioral game theoretical

model for two homogenous types of players. We have

characterized all envy strategies that form Nash equilibria and

determined the corresponding envy Nash domains for each

type of players. We have compared between the Nash domains

and the envy Nash domains. We have studied the geometric

envy tilings and showed that there are 1024 combinatorial

classes of envy decision tilings, 256 of them are being

structurally stable while 768 have bifurcation. We have stated

some conditions for which the disparate envy strategic set is

a Nash Equilibrium.
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