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Characterizations of Γ-Semirings by Their Cubic
Ideals
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Abstract—Cubic ideals, cubic bi-ideals and cubic quasi-ideals of
a Γ-semiring are introduced and various properties of these ideals
are investigated. Among all other results, some characterizations of
regular Γ-semirings are achieved.
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I. INTRODUCTION

SEMIRINGS which is a common generalization of rings

and distributive lattices, was introduced by Vandiver [8].

It has been found very useful for solving problems in different

areas of pure and applied mathematics, information sciences,

etc., since the structure of a semiring provides an algebraic

framework for modelling and studying the key factors in

these applied areas. Ideals of semiring play a central role

in the structure theory and useful for many purposes. The

theory of Γ-semirings was introduced by [6]. Since then many

researchers enriched this field.

The theory of fuzzy sets was proposed by Zadeh [9] and

used as a mathematical tool for describing the behavior of the

systems that are too complex or illdefined to admit precise

mathematical analysis by classical methods and tools. The

study of fuzzy algebraic structure was started by Rosenfeld [7].

The learning of cubic sets and cubic subgroups were initiated

by Jun et al. [3], [4]. Khan et al. [5] applied this in case of

cubic h-ideals of hemirings. Chinnadurai et al. [1], [2] used

this notion to study cubic bi-ideals and cubic lateral ideals in

near-ring and ternary near-ring respectively. As an extension

of these results, in this paper we have presented cubic ideal

in Γ-semiring and studied various properties of this ideal.

Also, we have defined cubic bi-ideals and cubic quasi-ideals

of Γ-semiring and used these to obtain some characterizations

of regular and intra-regular Γ-semiring.

II. PRELIMINARIES

We recall the following preliminaries for subsequent use.

Definition 1. Let S and Γ be two additive commutative

semigroups with zero. Then S is called a Γ-semiring if there

exists a mapping S ×Γ×S → S ( (a,α,b) �→ aαb) satisfying

the following conditions:

(i) (a+ b)αc = aαc+ bαc,
(ii) aα(b+ c) = aαb+ aαc,
(iii) a(α+ β)b = aαb+ aβb,
(iv) aα(bβc) = (aαb)βc.
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(v) 0Sαa = 0S = aα0S ,
(vi) a0Γb = 0S = b0Γa
for all a, b, c ∈ S and for all α, β ∈ Γ. For simplification we

write 0 instead of 0S and 0Γ.

Example 1. Let S be the set of all m×n matrices over Z−
0

(the set of all non-positive integers) and Γ be the set of all

n×m matrices over Z−
0 , then S forms a Γ-semiring with usual

addition and multiplication of matrices.

A subset A of a Γ-semiring S is called a left(resp. right)

ideal of S if A is closed under addition and SΓA ⊆ A
(resp.AΓS ⊆ A). A subset A of a Γ-semiring S is called

an ideal if it is both left and right ideal of S. A subset A
of a Γ-semiring S is called a quasi-ideal of S if A is closed

under addition and SΓA ∩ AΓS ⊆ A. A subset A of a

Γ-semiring S is called a bi-ideal if A is closed under addition

and AΓSΓA ⊆ A.

Definition 2. A fuzzy subset of a nonempty set X is defined

as a function μ : X → [0,1].

Definition 3. Let X be a non-empty set. A cubic set A in X is

a structure A = {< x, μ̃, f >: x ∈ X} which briefly denoted

as A =< μ̃, f > where μ̃ = [μ−, μ+] is an interval valued

fuzzy set (briefly, IVF) in X and f is a fuzzy set in X .

Definition 4. For any non-empty set G of a set X , the

characteristic cubic set of G is defined to be the structure

χG(x) =< x, ζ̃χG
(x), ηχG

(x) : x ∈ X > where

ζ̃χG
(x) = [1, 1] ≈ 1̃ if x ∈ G

= [0, 0] ≈ 0̃ otherwise.

and

ηχG
(x) = 0 if x ∈ G

= 1 otherwise.

Throughout this paper, unless otherwise mentioned S denotes

the Γ-semiring and for any two set P and Q, we use the

following notation:

∩{P,Q} = P ∩Q and ∪ {P,Q} = P ∪Q.

III. BASIC DEFINITIONS AND RESULTS OF CUBIC IDEALS

In this section, the notions of cubic ideals in Γ-semiring are

introduced and some of their basic properties are investigated.

Definition 5. Let < μ̃, f > be a non empty cubic subset of

a Γ-semiring S. Then < μ̃, f > is called a cubic left ideal

[cubic right ideal] of S if

(i) μ̃(x + y) ⊇ ∩{μ̃(x), μ̃(y)}, f(x + y) ≤
max{f(x), f(y)} and

(ii) μ̃(xγy) ⊇ μ̃(y), f(xγy) ≤ f(y) [respectively μ̃(xγy) ⊇
μ̃(x), f(xγy) ≤ f(x)].
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for all x, y ∈ S, γ ∈ Γ.

A cubic ideal of a Γ-semiring S is a non empty cubic subset

of S which is a cubic left ideal as well as a cubic right ideal

of S. Note that if < μ̃, f > is a cubic left or right ideal of

a Γ-semiring S, then μ̃(0) ⊇ μ̃(x) and f(0) ≤ f(x) for all

x ∈ S.

A cubic right ideal is defined similarly. By a cubic ideal

< μ̃, f >, we mean that < μ̃, f > is both cubic left and cubic

right ideal.

Example 2. Consider S be the additive commutative

semigroup of all non positive integers and Γ be the additive

commutative semigroup of all non positive even integers. Then

S is a Γ-semiring if aγb denotes the usual multiplication of

integers a, γ, b where a, b ∈ S and γ ∈ Γ. Let < μ̃, f > be a

cubic subset of S, defined as follows

μ̃(x) = [1, 1] if x = 0
= [0.6, 0.7] if x is even

= [0.1, 0.2] if x is odd

and
f(x) = 0 if x = 0

0.4 if x is even

0.9 if x is odd

The cubic subset < μ̃, f > of S is a cubic ideal S.

Throughout this section, we prove results only for cubic

left ideals. Similar results can be obtained for cubic right

ideals and cubic ideals.

Theorem 1. A cubic set C =< μ̃, f > of S is a cubic left

ideal of S if and only if any level subset Ct =< μ̃t, ft >:=
{x ∈ S : μ̃(x) ⊇ [t, t] and f(x) ≤ t, t ∈ [0, 1]} is a left ideal

of S, provided it is non-empty.

Proof: Let < μ̃, f > be a cubic left ideal of S and assume

that < μ̃t, ft > �= φ for t ∈ [0,1]. Let x, z ∈ S and a, b ∈<
μ̃t, ft >. Then μ̃(a + b) ⊇ ∩{μ̃(a), μ̃(b)} ⊇ [t, t] and f(a +
b) ≤ max{f(a), f(b)} ≤ t; implies that a + b ∈< μ̃t, ft >.

Also, in addition for γ ∈ Γ, μ̃(xγa) ⊇ μ̃(a) ⊇ [t, t] and

f(xγa) ≤ f(a) ≤ t which implies xγa ∈< μ̃t, ft >. So,

< μ̃t, ft > is a left ideal of S. Conversely, suppose < μ̃t, ft >
is a left ideal of S. If possible, suppose < μ̃, f > is not

a cubic left ideal of S. Then there exist a, b ∈ S such that

μ̃(a + b) ⊂ ∩{μ̃(a), μ̃(b)} or f(a + b) > max{f(a), f(b)}.

Taking t0 = 1
2 [f(a+ b)+max{f(a), f(b)}], we see that t0 ∈

[0,1] and f(a+b) > t0 > max{f(a), f(b)} whence a, b ∈ ft0
but a+b �∈ ft0 - which is a contradiction. Therefore, μ̃(a+b) ⊇
∩{μ̃(a), μ̃(b)} and f(a+ b) ≤ max{f(a), f(b)}for all a, b ∈
S. The other property can be proved similarly. Consequently,

< μ̃, f > is a cubic left ideal of S.

Theorem 2. Let A be a non-empty subset of a Γ-semiring

S. Then A is a left ideal of S if and only if the characteristic

function χA =< μ̃χA
, fχA

> is a cubic left ideal of S.

Proof: Assume that A is a left ideal of S and x, y ∈ S
and γ ∈ Γ. Suppose μ̃χA

(x + y) ⊂ ∩{μ̃χA
(x), μ̃χA

(y)}
and fχA

(x + y) > max{fχA
(x), fχA

(y)}. It follows that

μ̃χA
(x+y) = 0̃, ∩{μ̃χA

(x), μ̃χA
(y)} = 1̃ and fχA

(x+y) = 1,
max{fχA

(x), fχA
(y)} = 0. This imply that x, y ∈ A

but x + y �∈ A − a contradiction. So, μ̃χA
(x + y) ⊇

∩{μ̃χA
(x), μ̃χA

(y)} and fχA
(x+y) ≤ max{fχA

(x), fχA
(y)}.

Similarly we can show that μ̃(xγy) ⊇ μ̃(y), f(xγy) ≤ f(y).
Therefore χA =< μ̃χA

, fχA
> is a cubic left ideal of S.

Conversely, assume that χA =< μ̃χA
, fχA

> is a cubic

left ideal of S for any subset A of S. Let x, y ∈ A,

a, b ∈ S and γ ∈ Γ. Then μ̃χA
(x) = μ̃χA

(y) = 1̃ and

fχA
(x) = fχA

(y) = 0. Now μ̃(x+ y) ⊇ ∩{μ̃(x), μ̃(y)} = 1̃,

f(x + y) ≤ max{f(x), f(y)} = 0 and μ̃(xγy) ⊇ μ̃(y) = 1̃,

f(xγy) ≤ f(y) = 0 . This implies x+ y, xγy ∈ A. Hence A
is a left ideal of S.

Definition 6. Let A =< μ̃, f > and B =< θ̃, g > be two

cubic sets of a Γ-semiring S. Define intersection of A and B
by

A ∩B =< μ̃, f > ∩ < θ̃, g >=< μ̃ ∩ θ̃, f ∪ g > .

Proposition 1. Intersection of a non-empty collection of

cubic left ideals is a cubic left ideal of S.

Proof: Let Ai = {< μ̃i, fi >: i ∈ I} be a non-empty

family of ideals of S. Let a, b, x, y, z ∈ S and γ ∈ Γ.
Then

( ∩
i∈I

μ̃i)(x+ y) = ∩
i∈I

{μi(x+ y)} ⊇ ∩
i∈I

{∩{μ̃i(x), μ̃i(y)}}
= ∩{ ∩

i∈I
μ̃i(x), ∩

i∈I
μ̃i(y)}

= ∩{( ∩
i∈I

μ̃i)(x), ( ∩
i∈I

μ̃i)(y)}.

( ∪
i∈I

fi)(x+ y) = sup
i∈I

{f(x+ y)} ≤ sup
i∈I

{max{fi(x), fi(y)}}
= max{sup

i∈I
fi(x), sup

i∈I
fi(y)}

= max{( ∪
i∈I

fi)(x), ( ∪
i∈I

fi)(y)}.
Again

( ∩
i∈I

μ̃i)(xγy) = ∩
i∈I

{μ̃i(xγy)} ⊇ ∩
i∈I

{μ̃i(y)} = ( ∩
i∈I

μ̃i)(y).

( ∪
i∈I

fi)(xγy) = sup
i∈I

{fi(xγy)} ≤ sup
i∈I

{fi(y)} = ( ∩
i∈I

fi)(y).

( ∪
i∈I

fi)(x) = sup
x∈I

{fi(x)} ≤ sup
i∈I

{max{fi(a), fi(b)}}
= max{sup

i∈I
fi(a), sup

i∈I
fi(b)}

= max{( ∪
i∈I

fi)(a), ( ∪
i∈I

fi)(b)}.

Hence, ∩
i∈I

Ai = {< ∩
i∈I

μ̃i, ∪
i∈I

fi >: i ∈ I} is a cubic left ideal

of S.

Proposition 2. Let f : R → S be a morphism of

Γ−hemirings and A =< φ̃, g > be a cubic left ideal of S,

then f−1(A) is a cubic left ideal of R where f−1(A)(x) =<
f−1(φ̃)(x), f−1(g)(x) >=< φ̃(f(x)), g(f(x)) >

Proof: Let f : R → S be a morphism of Γ-semirings.

Let A =< φ̃, g > be a cubic left ideal of S and r, s ∈ R,

γ ∈ Γ. Then

f−1(φ̃)(r + s) = φ̃(f(r + s)) = φ̃(f(r) + f(s))

⊇ ∩{φ̃(f(r)), φ̃(f(s))}
= ∩{(f−1(φ̃))(r), (f−1(φ̃))(s)}
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f−1(g)(r + s) = g(f(r + s)) = g(f(r) + f(s))
≤ max{g(f(r)), g(f(s))}
= max{(f−1(g))(r), (f−1(g))(s)}

Again (f−1(φ̃))(rγs) = φ̃(f(rγs)) = φ̃(f(r)γf(s)) ⊇
φ̃(f(s)) = (f−1(φ̃))(s).
(f−1(g))(rγs) = g(f(rγs)) = g(f(r)γf(s)) ≤ g(f(s)) =
(f−1(g))(s).
Thus < f−1(φ̃)(x), f−1(g)(x) > is a cubic left ideal of R.

Definition 7. A cubic left ideal < μ̃, f > of a Γ-semiring

S, is said to be normal cubic left ideal if μ̃(0) = 1̃, f(0) = 0.
Proposition 3. Given a cubic left ideal < μ̃, f > of a

Γ-semiring S, let < μ̃+, f+ > be a cubic set in S obtained

by μ̃+(x) = μ̃(x) + 1̃ − μ̃(0), f+(x) = f(x) − f(0) for all

x ∈ S. Then < μ̃+, f+ > is a normal cubic left ideal of S.

Proof: For all x, y ∈ S and γ ∈ Γ, we have μ̃+(0) =
μ̃(0) + 1̃− μ̃(0) = 1̃, f+(0) = f(0)− f(0) = 0 Now,

μ̃+(x+ y) = μ̃(x+ y) + 1̃− μ̃(0)

⊇ ∩{μ̃(x), μ̃(y)}+ 1̃− μ̃(0)

= ∩{{μ̃(x) + 1̃− μ̃(0)}, {μ̃(y) + 1̃− μ̃(0)}}
= ∩{μ̃+(x), μ̃+(y)}

f+(x+ y) = f(x+ y)− f(0)
≤ max{f(x), f(y)} − f(0)
= max{{f(x)− f(0)}, {f(y)− f(0)}}
= max{f+(x), f+(y)}

and

μ̃+(xγy) = μ̃(xγy) + 1̃− μ̃(0) ⊇ μ̃(y) + 1̃− μ̃(0) = μ̃+(y).

f+(xγy) = f(xγy)− f(0) ≤ f(y)− f(0) = f+(y).

Hence, < μ̃+, f+ > is a normal cubic left ideal of S.

Definition 8. Let A =< μ̃, f > and B =< ν̃, g > be cubic

subsets of X. The cartesian product of A and B is defined

by (A × B)(x, y) = (< μ̃, f > × < ν̃, g >)(x, y) = (<
μ̃ × ν̃, f × g >)(x, y) = [∩{μ̃(x), ν̃(y)},max{f(x), g(y)}]
for all x, y ∈ X .

Theorem 3. Let A =< μ̃, f > and B =< ν̃, g > be cubic

left ideals of a Γ-semiring S. Then A×B is a cubic left ideal

of the Γ-semiring S × S.

Proof: Let (x1, x2), (y1, y2) ∈ S × S and γ ∈ Γ. Then

(μ̃× ν̃)((x1, x2) + (y1, y2))
= (μ̃× ν̃)(x1 + y1, x2 + y2)
= ∩{μ̃(x1 + y1), ν̃(x2 + y2)}
⊇ ∩{∩{μ̃(x1), μ̃(y1)},∩{ν̃(x2), ν̃(y2)}}
= ∩{∩{μ̃(x1), ν̃(x2)},∩{μ̃(y1), ν̃(y2)}}
= ∩{(μ̃× ν̃)(x1, x2), (μ̃× ν̃)(y1, y2)}

(f × g)((x1, x2) + (y1, y2))
= (f × g)(x1 + y1, x2 + y2)
= max{f(x1 + y1), g(x2 + y2)}
≤ max{max{f(x1), f(y1)},max{g(x2), g(y2)}}
= max{max{f(x1), g(x2)},max{f(y1), f(y2)}}
= max{(f × g)(x1, x2), (f × g)(y1, y2)}

and
(μ̃× ν̃)((x1, x2)γ(y1, y2))
= (μ̃× ν̃)(x1γy1, x2γy2)
= ∩{μ̃(x1γy1), ν̃(x2γy2)}
⊇ ∩{μ̃(y1), ν̃(y2)}
= (μ̃× ν̃)(y1, y2).

(f × g)((x1, x2)γ(y1, y2))
= (f × g)(x1γy1, x2γy2)
= max{f(x1γy1), g(x2γy2)}
≤ max{f(y1), g(y2)}
= (f × g)(y1, y2).

Hence, A×B is a cubic left ideal of S × S.

IV. CUBIC BI-IDEALS AND CUBIC QUASI-IDEALS

Definition 9. Let A =< μ̃, f > and B =< θ̃, g > be two

cubic sets of a Γ-semiring S. Define composition of A and B
by

AΓcB =< μ̃, f > Γc < θ̃, g >=< μ̃Γcθ̃, fΓcg >

where

μ̃Γcθ̃(x) = ∪[∩{μ̃(a1),
x=a1γb1

θ̃(b1)}]
= 0̃, if x cannot be expressed as above

and

fΓcg(x) = inf{max{f(a1)
x=a1γb1

, g(b1)}}
= 1, if x cannot be expressed as above

for x, a1, b1 ∈ S and γ ∈ Γ.
Definition 10. Let A =< μ̃, f > and B =< θ̃, g > be two

cubic sets of a Γ-semiring S. Define generalized composition

of A and B by

AocB =< μ̃, f > oc < θ̃, g >=< μ̃ocθ̃, focg >

where

μ̃ocθ̃(x) = ∪[∩
i
{∩{μ̃(ai), θ̃(bi)

x=

n∑
i=1

aiγibi

}}]

= 0̃, if x cannot be expressed as above

and

focg(x) = inf[max
i

{max{f(ai), g(bi)

x=

n∑
i=1

aiγibi

}}]

= 1, if x cannot be expressed as above

where x, ai, bi ∈ S and γi ∈ Γ, for i=1,...,n.

Proposition 4. Let A =< μ̃1, f >, B =< μ̃2, g > be
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two cubic ideal of a Γ-semiring S. Then AΓcB ⊆ AocB ⊆
A ∩ B ⊆ A,B, where AΓcB =< μ̃1Γcμ̃2, fΓcg > and

AocB =< μ̃1ocμ̃2, focg >.

Proof: Suppose A =< μ̃1, f >, B =< μ̃2, g > be two

cubic ideals of a Γ-semiring S. Then

(μ̃1ocμ̃2)(x) = ∪{∩
i
{∩{μ̃1(ai), , μ̃2(bi),

x=

n∑
i=1

aiγibi

}}}

where x, ai, bi ∈ S and γi ∈ Γ
⊇ ∪{∩{μ̃1(a1)

x=a1γb1

, μ̃2(b1))}}
where x, a1, b1 ∈ S and γ ∈ Γ
= (μ̃1Γcμ̃2)(x)

(focg)(x) = inf{max
i

{max{f(ai), g(bi)

x=

n∑
i=1

aiγibi

}}}

where x, ai, bi ∈ S and γi ∈ Γ
≤ inf{max{f(a1),

x=a1γb1

g(b1)}}
where x, a1, b1 ∈ S and γ ∈ Γ

= (fΓcg)(x)

Therefore, AΓcB ⊆ AocB.

(μ̃1ocμ̃2)(x) = ∪{∩
i
{∩{μ̃1(ai), μ̃2(bi)

x=

n∑
i=1

aiγibi

}}}

where x, ai, bi ∈ S and γi ∈ Γ
⊆ ∪{∩

i
{μ̃1(ai)}}

⊆ ∪{∩{μ̃1(

n∑
i=1

aiγibi)

x=

n∑
i=1

aiγibi

}} = μ̃1(x)

(focg)(x) = inf{max
i

{max{f(ai), g(bi)

x=

n∑
i=1

aiγibi

}}}

where x, ai, bi ∈ S and γi ∈ Γ
= inf{max

i
f(ai)}

≥ inf{max{f(
n∑

i=1

aiγibi)

x=

n∑
i=1

aiγibi

}} = f(x)

Since this is true for every representation of x, AocB ⊆ A.

Similarly we can prove that AocB ⊆ B. Therefore, AocB ⊆
A ∩ B. Hence the Proposition.

Definition 11. A cubic subset < μ̃, f > of a Γ-semiring S

is called cubic bi-ideal if for all x, y ∈ S and α, β ∈ Γ we

have

(i) μ̃(x+ y) ⊇ ∩{μ̃(x), μ̃(y)}, f(x+ y) ≤ max{f(x), f(y)}

(ii) μ̃(xαy) ⊇ ∩{μ̃(x), μ̃(y)}, f(xαy) ≤ max{f(x), f(y)}
(iii) μ̃(xαyβz) ⊇ ∩{μ̃(x), μ̃(z)}, f(xαyβz) ≤
max{f(x), f(z)}

Definition 12. A cubic subset < μ̃, f > of a Γ-semiring S is

called cubic quasi-ideal if for all x, y ∈ S we have

(i) μ̃(x+ y) ⊇ ∩{μ̃(x), μ̃(y)}, f(x+ y) ≤ max{f(x), f(y)}
(ii) (μ̃ocζ̃χS

) ∩ (ζ̃χS
ocμ̃) ⊆ μ̃, (focηχS

) ∪ (ηχS
ocf) ⊇ f .

Theorem 4. A cubic subset < μ̃, f > of a Γ-semiring S is a

cubic left ideal of S if and only if for all x, y ∈ S, we have

(i) μ̃(x+ y) ⊇ ∩{μ̃(x), μ̃(y)}, f(x+ y) ≤ max{f(x), f(y)}
(ii) ζ̃χS

ocμ̃ ⊆ μ̃, ηχS
ocf ⊇ f .

Proof: Assume that < μ̃, f > is a cubic left ideal of S.

Then it is sufficient to show that the condition (ii) is satisfied.

Let x ∈ S. If x can be expressed as x =

n∑
i=1

aiγibi, for

ai, bi ∈ S and γi ∈ Γ ; i=1,...,n, then we have

(ζ̃χS
ocμ̃)(x) = ∪[∩

i
{∩{ζ̃χS

(ai), μ̃(bi)

x=

n∑
i=1

aiγibi

}}]

⊆ ∪[∩
i
{∩{μ̃(aiγibi)}}]

x=

n∑
i=1

aiγibi

⊆ ∪[∩{μ̃(
n∑

i=1

aiγibi)}]

x=

n∑
i=1

aiγibi

= μ̃(x).

(ηχS
ocf)(x) = inf[max

i
{max{ηχS

(ai)f(bi)}}]

x=

n∑
i=1

aiγibi

= inf[max
i

{max{f(bi}}]

x=

n∑
i=1

aiγibi

≥ inf[max
i

{max{f(aiγibi)}}]

x=

n∑
i=1

aiγibi

≥ inf[max{f(
n∑

i=1

aiγibi)}]

x=

n∑
i=1

aiγibi

= f(x).

This implies that ζ̃χS
ocμ̃ ⊆ μ̃, ηχS

ocf ⊇ f . Conversely,

assume that the given conditions hold. Then it is sufficient

to show the second condition of the definition of cubic ideal.
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Let x, y ∈ S and γ ∈ Γ. Then we have

μ̃(xγy) ⊇ (ζ̃χS
ocμ̃)(xγy) = ∪[∩

i
{∩{ζ̃χS

(ai), μ̃(bi)}}]

xγy=

n∑
i=1

aiγibi

⊇ μ̃(y)(since xγy = xγy).

f(xγy) ≤ (ηχS
ocf)(xγy)

= inf[max
i

{max{ηχS
(ai), f(bi)}}]

xγy=

n∑
i=1

aiγibi

≤ f(y)(since xγy = xγy).

Hence < μ̃, f > is a cubic left ideal of S.

Theorem 5. Let A =< μ̃, f > and B =< ν̃, g > be a

cubic right ideal and a cubic left ideal of a Γ-semiring S,

respectively. Then A ∩B is a cubic quasi-ideal of S.

Proof: Let x, y be any element of S. Then

(μ̃ ∩ ν̃)(x+ y)
= ∩{μ̃(x+ y), ν̃(x+ y)}
⊇ ∩{∩}μ̃(x), μ̃(y)},∩{ν̃(x), ν̃(y)}}
= ∩{∩{μ̃(x), ν̃(x)},∩{μ̃(y), ν̃(y)}}
= ∩{(μ̃ ∩ ν̃)(x), (μ̃ ∩ ν̃)(y)}.

(f ∪ g)(x+ y)
= max{f(x+ y), g(x+ y)}
≤ max{max{f(x), f(y)},max{g(x), g(y)}}
= max{max{f(x), g(x)},∩{f(y), g(y)}}
= max{(f ∪ g)(x), (f ∪ g)(y)}.

On the other hand, we have

((A ∩B)ocχS) ∩ (χSoc(A ∩B))

⊆ (AocχS) ∩ (χSocB) ⊆ (A ∩B).

This completes the proof.

Lemma 1. Any cubic quasi-ideal of S is a cubic bi-ideal of

S.

Proof: Let < μ̃, f > be any cubic quasi-ideal

of S. It is sufficient to show that μ̃(xαyβz) ⊇
∩{μ̃(x), μ̃(z)}, f(xαyβz) ≤ max{f(x), f(z)} and

μ̃(xαy) ⊇ ∩{μ̃(x), μ̃(y)}, f(xαy) ≤ max{f(x), f(y)}
for all x, y, z ∈ S and α, β ∈ Γ.
In fact, by the assumption, we have

μ̃(xαyβz)

⊇ ((μ̃ocζ̃χS
) ∩ (ζ̃χS

ocμ̃))(xαyβz)

= ∩{(μ̃ocζ̃χS
)(xαyβz), (ζ̃χS

ocμ̃)(xαyβz)}
= ∩{∪(∩(μ̃(ai), ζ̃χS

(bi)))

xαyβz=

n∑
i=1

aiγibi

,∪(∩(ζ̃χS
(ai), μ̃(bi))

xαyβz=

n∑
i=1

aiγibi

}

⊇ ∩{∩(μ̃(x), ζ̃χS
(z)),∩(ζ̃χS

(x), μ̃(z))}(since xαyβz = xαyβz)
= ∩{μ̃(x), μ̃(z)}

f(xαyβz)
≤ (focηχS

) ∪ (ηχS
ocf))(xαyβz)

= max{(focηχS
)(xαyβz), (ηχS

ocf)(xαyβz)}
= max{inf(max(f(ai), ηχS

(bi)))

xαyβz=

n∑
i=1

aiγibi

, inf(max(ηχS
(ai), f(bi)))

xαyβz=

n∑
i=1

aiγibi

}

≤ max{max(ηχS
(x), f(z)),max(f(x), ηχS

(z))}
(since xαyβz + 0γ = xαyβz)

= max{f(x), f(z)}

Similarly, we can show that μ̃(xαy) ⊇ ∩{μ̃(x), μ̃(y)},

f(xαy) ≤ max{f(x), f(y)} for all x, y ∈ S and α ∈ Γ.

V. REGULARITY AND INTRA-REGULARITY

In this section, the concept of regularity in Γ-semiring are

studied by using cubic ideal, cubic bi-ideal, cubic quasi-ideal.

Definition 13. A Γ-semiring S is said to be regular if for each

x ∈ S, there exist a ∈ S and α, β ∈ Γ such that x = xαaβx.
Theorem 6. Let S be a regular Γ-semiring. Then for any

cubic right ideal A =< μ̃, f > and any cubic left ideal

B =< ν̃, g > of S we have AΓcB = A ∩B.

Proof: Let S be a regular Γ-semiring. By Proposition 4,

we have AΓcB ⊆ A ∩ B. For any a ∈ S, there exist x1 ∈ S
and α1, β1 ∈ Γ such that a = aα1x1β1a.
Then

(μ̃Γcν̃)(a) = ∪{∩{μ̃(e),
a=eγb

ν̃(b)}} ⊇ ∩{μ̃(aα1x1), ν̃(a)}
⊇ ∩{μ̃(a), ν̃(a)} = (μ̃ ∩ ν̃)(a).

(fΓcg)(a) = inf{max{f(e),
a=eγb

g(b)}}
≤ max{f(aα1x1), g(a)}
≤ max{f(a), g(a)} = (f ∪ g)(a).

Therefore (A ∩B) ⊆ (AΓcB). Hence AΓcB = A ∩B.

Corollary 1. If S be a regular Γ-semiring, then for any

cubic right ideal A =< μ̃, f > and any cubic left ideal

B =< ν̃, g > of S we have AocB = A∩B. Theorem 7. Let

S be a regular Γ-semiring. Then

(i) A ⊆ AocχSocA for every cubic bi-ideal A =< μ̃, f > of

S.

(ii) A ⊆ AocχSocA for every cubic quasi-ideal A =< μ̃, f >
of S.

Proof: Suppose that A =< μ̃, f > be any cubic bi-ideal

of S and x be any element of S. Since S is regular there exist
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a ∈ S and α, β ∈ Γ such that x = xαaβx. Now

(μ̃ocζ̃χS
ocμ̃)(x)

= ∪(∩{(μ̃ocζ̃χS
)(ai),

x=

n∑
i=1

aiγibi

μ̃(bi)})

⊇ ∩{(μ̃ocζ̃χS
)(xαa), μ̃(x)}

= ∩{∪(∩{μ̃(ai), (ζ̃χS
)(bi)

xαa=

n∑
i=1

aiγibi

}), μ̃(x)}}

⊇ ∩{μ̃(x), μ̃(x)}(since xαa = xαaβxαa).
= μ̃(x)

(focηχS
ocf)(x)

= inf(max{(focηχS
)(ai), f(bi)})

x=

n∑
i=1

aiγibi

≤ max{(focηχS
)(xαa), f(x)}

= max{inf(max{(f(ai), ηχS
(bi))})

xαa=

n∑
i=1

aiγibi

, f(x)}

≤ max{f(x), f(x)}(since xαa = xαaβxαa)
= f(x)

This implies that A ⊆ AocχSocA.

(i)⇒(ii) This is straight forward from Lemma 1.

Theorem 8. Let S be a regular Γ-semiring. Then

(i) A ∩B ⊆ AocBocA for every cubic bi-ideal A =< μ̃, f >
and every cubic ideal B =< ν̃, g > of S.

(ii) A ∩ B ⊆ AocBocA for every cubic quasi-ideal

A =< μ̃, f > and every cubic ideal B =< ν̃, g > of S.

Proof: Suppose S is a regular Γ-semiring and A =<
μ̃, f >, B =< ν̃, g > be any cubic bi-ideal and cubic ideal

of S, respectively and x be any element of S. Since S is

regular, there exist a ∈ S and α, β ∈ Γ such that x = xαaβx.

Now

(μ̃ocν̃ocμ̃)(x)
= ∪(∩{(μ̃ocν̃)(ai), μ̃(bi)})

x=

n∑
i=1

aiγibi

⊇ ∩{(μ̃ocν̃)(xαa), μ̃(x)}
= ∩{∪(∩{(μ̃(ai), ν̃(bi))

xαa=

n∑
i=1

aiγibi

}, μ̃(x)}

⊇ ∩{∩{μ̃(x), ν̃(aβxαa), μ̃(x)}(since xαa = xαaβxαa)
⊇ ∩{μ̃(x), ν̃(x)} = (μ̃ ∩ ν̃)(x).

(focgocf)(x)
= inf(max{(focg)(ai), f(bi)})

x=

n∑
i=1

aiγibi

≤ max{(focg)(xαa), f(x)}
= max{inf(max{(f(ai), g(bi))})

xαa=

n∑
i=1

aiγibi

, f(x)}

≤ max{max{f(x), g(aβxαa), f(x)}(since xαa = xαaβxαa)
⊇ max{f(x), g(x)} = (f ∪ g)(x).

(i)⇒(ii) This is straight forward from Lemma 1.

Definition 14. A Γ-semiring S is said to be intra-regular if

for each x∈S, there exist ai, a
′
i ∈S, and η, αi, βi ∈ Γ, i∈ N,

the set of natural numbers, such that x =
n∑

i=1

aiαixηxβia
′
i.

Theorem 9. Let S be a intra-regular Γ-semiring. Then

A ∩ B ⊆ AocB for every cubic left ideal A =< μ̃, f > and

every cubic right ideal A =< ν̃, g > of S.

Proof: Suppose S is intra-hemiregular. Let A =< μ̃, f >
and A =< ν̃, g > be any cubic left ideal and cubic right ideal

of S respectively. Now let x ∈ S. Then by hypothesis there

exist ai, a
′
i ∈S, and αi, βi, η ∈ Γ, i ∈ N, the set of natural

numbers, such that x =
n∑

i=1

aiαixηxβia
′
i. Therefore

(μ̃ocν̃)(x) = ∪[∩
i
{∩{μ̃(ai), ν̃(bi)

x=

n∑
i=1

aiγibi

}}]

⊇ ∩
i
[∩{μ̃(aiαix), ν̃(xβia

′
i)}]

⊇ ∩{μ̃(x), ν̃(x)} = (μ̃ ∩ ν̃)(x).

(focg)(x) = inf[max
i

{max{f(ai), g(bi)

x=

n∑
i=1

aiγibi

}}]

≤ max
i

[max{f(aiαix), g(xβia
′
i)}]

≤ max{f(x), g(x)} = (f ∪ g)(x).

Hence the proof.

Theorem 10. Let S be both regular and intra-regular

Γ-semiring. Then

(i) A = AocA for every cubic bi-ideal A =< μ̃, f > of S.

(ii) μ = μ̃ohμ for every cubic quasi-ideal A =< μ̃, f > of S.

Proof: Suppose S be both regular and intra-regular

Γ-semiring. Let x ∈ S and A =< μ̃, f > be any cubic

bi-ideal of S. Since S is both regular and intra-regular, there

exist ai, bi ∈ S and αi, βi, α
′
i, β

′
i , η ∈ Γ, i ∈ N such that

x =
n∑

i=1

xαiaiα
′
ixηxβ

′
ibiβix. Therefore
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(μ̃ocμ̃)(x) = ∪[∩
i
{∩{μ̃(ai), μ̃(bi)

x=

n∑
i=1

aiγibi

}}]

⊇ ∩
i
[∩{μ̃(xαiaiα

′
ix), μ̃(xβ

′
ibiβix)}]

x=

n∑
i=1

xαiaiα
′
ixηxβ

′
ibiβix

⊇ μ̃(x).

(focf)(x) = inf[max
i

{max{f(ai), f(bi)

x=

n∑
i=1

aiγibi

}}]

≤ max
i

[max{f(xαiaiα
′
ix), f(xβ

′
ibiβix)}]

x=

n∑
i=1

xαiaiα
′
ixηxβ

′
ibiβix

≤ f(x).

Now AocA ⊆ AocχS ⊆ A. Hence AocA = A for every

cubic bi-ideal Aof S.

(i)⇒(ii) This is straightforward from the Lemma 1.
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