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Characterization of solutions of nonsmooth
variational problems and duality

Juan Zhang, Changzhao Li

Abstract—In this paper, we introduce a new class of nonsmooth
pseudo-invex and nonsmooth quasi-invex functions to non-smooth
variational problems. By using these concepts, numbers of necessary
and sufficient conditions are established for a nonsmooth variational
problem wherein Clarke’s generalized gradient is used. Also, weak,
strong and converse duality are established.
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I. INTRODUCTION

AS is known to all, invexity is a generalization of convexity
and can be used to extend the sufficiency of the Kuhn-

Tucker conditions and duality theory of convex programs to
more general optimization problems. This invexity idea was
introduced by Hanson [1] for differential functions and was
generalized to nonsmooth functions in [2],[3]. Invexity was
also weakened in order that it can be served as a characteriza-
tion of problems where every Kuhn-Tucker point is a global
minimizer [4]. In [3], Reiland defined several types of invexity
for locally Lipschitz functions and obtained some optimization
results for nonsmooth mathematical programming problems.

In pioneering works, invextity was extended to variational
problems by Mond, Chandra and Husain, see [5] for more
details. There exists huge literature on necessary and sufficient
conditions on calculus of variations (One can see [6],[7], and
references therein).

In [8], the authors considered characterization of solutions
and duality for variational problem:

(CVP) Minimize F (x) =

∫ b

a

f(t, x, ẋ) dt

subject to x(a) = α, x(b) = β,

g(t, x, ẋ) ≤ 0, t ∈ I.

However, the functions in their papers were all continuously
differential ones.

To the best knowledge of us, there exist few studies on
nonsmooth variational problems. Motivated by the discussions
above, the main purpose of this paper is to give some opti-
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mality conditions of the following problem:

(NCVP) Minimize F (x, ẋ) =

∫ b

a

f(x, ẋ) dt

subject to x(a) = α, x(b) = β, a.e.,

g(x, ẋ) ≤ 0, t ∈ I, a.e..

The organization of the rest of this paper is given as follows:
In section 2, we give some preliminaries and definitions. In
section 3, the concepts of nonsmooth invexity, nonsmooth
pseudo-invexity and nonsmooth quasi-invexity are difined in
terms of Clarke’s generalized gradient. In section 4, we give
some necessary and sufficient conditions for a Kuhn-Tucker
(Fritz-John) critical point of the nonsmooth variational prob-
lem to be a minimum. In section 5, weak, strong and converse
duality are established. I wish you the best of success.

II. PRELIMINARIES

Let us introduce the variational problem and definitions.
Let I = [a, b] be a real interval, and Let f : Rn × Rn → R,
g : Rn × Rn → Rm be globally Lipschitz. For notational
convenience f(x(t), ẋ(t)) and g(x(t), ẋ(t)) will be written
f(x, ẋ) and g(x, ẋ) respectively. Let X =

{
(x, ẋ) ∈ L2

n[a, b]×
L2
n[a, b] : ẋ(t) :=

d
dtx(t) a.e., x(a) = α, x(b) = β, t ∈ I

}
with the norm

‖x‖ = ‖x‖∞ + ‖Dx‖∞,

where x : I → Rn is an absolutely continuous function which
can be expressed in the form

x(t) = α+

∫ t

a

u(s) ds

for some integrable function u and α is a given boundary
value; we then have ẋ(t) := d

dtx(t) = u(t) a.e.. Note that
X is closed and convex. We now consider the nonsmooth
constraint variational problem:

(NCVP) Minimize F (x, ẋ) =

∫ b

a

f(x, ẋ) dt

subject to x(a) = α, x(b) = β, a.e.,

g(x, ẋ) ≤ 0, t ∈ I, a.e..

We denote by K the set of feasible solutions of (NCVP), i.e.,

K =
{
(x, ẋ) ∈ X : x(a) = α, x(b) = β, g(x, ẋ) ≤ 0, t ∈ I, a.e.

}
.
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In order to obtain our results, we need the following defini-
tions:

Definition 2.1: (x, ẋ) ∈ K is said to be an optimal solution
or a minimum of (NCVP) if

F (x̄, ˙̄x) ≤ F (x, ẋ),

for all (x, ẋ) ∈ K, or equivalent, there is no

(x, ẋ) ∈ K : F (x, ẋ) < F (x̄, ˙̄x).

Definition 2.2: ([9]) A real valued function φ : X → R
is said to be locally Lipschitz at a point (u, u̇) ∈ X if there
exists a number K > 0 such that

‖φ(x, ẋ)− φ(x̄, ˙̄x)‖ ≤ K‖x− x̄‖∞ +K‖ẋ− ˙̄x‖∞,

for all (x, ẋ), (x̄, ˙̄x) ∈ X in a neighborhood of (u, u̇). A
function φ : X → R is said to be locally Lipschitz on X if it
is locally Lipschitz at each point of X . A function φ : X → R
is said to be globally Lipschitz on X if there exists a number
K > 0 such that

‖φ(x, ẋ)− φ(y, ẏ)‖ ≤ K‖x− y‖∞ +K‖ẋ− ẏ‖∞,

for all (x, ẋ), (y, ẏ) ∈ X .
Definition 2.3: ([9]) Let φ : X → R be a locally Lipschitz

function, then φ◦(U ;V) denotes Clarke’s generalized direc-
tional derivative of φ at U = (u, u̇) ∈ X in the direction
V = (v, v̇) ∈ X and is defined as

φ◦(U ;V) = lim sup
Y→U
t↓0

φ(Y + tV)− φ(Y)

t
,

where, of course, Y = (y, ẏ) is a vector in X and t is a
positive scalar. ∂φ(U) denotes Clarke’s generalized gradient
of φ at U , which is denoted as

∂φ(U) =
{
ξ ∈ X : φ◦(U ;V) ≥ 〈ξ,V〉, for all V = (v, v̇) ∈ X

}
.

Let g : X → Rm be a vector valued function given by g =
(g1, g2, . . . , gm), where each gi(i = 1, . . . ,m) is a real valued
function defined on X . Then g is said to be a locally Lipschitz
on X if each gi(i = 1, . . . ,m) is locally Lipschitz on X .
The generalized directional derivative of a locally Lipschitz
function g : X → Rm at U ∈ X in the direction V is given
by

g◦
(U ;V) = {

g◦1(U ;V), g◦2(U ;V), . . . , g◦m(U ;V)
}
.

The generalized gradient of g at U is the set

∂g(U) = ∂g1(U)× . . .× ∂gm(U),
where ∂gi(U) is the generalized gradient of gi at U for i =
1, 2, . . . ,m.

Every element B = (B1, B2, . . . , Bm) ∈ ∂gi(U) is a
continuous linear operator from X to Xm and 〈B,U〉 =(〈B1,U〉, . . . , 〈Bm,U〉) for all U ∈ X .

The following lemmas are useful for the proof of our main
results of this paper.

Lemma 2.1: ([6], [7])
(1) If gi : X → R is a locally Lipschitz function, then for

each U ∈ X , g◦i (U ,V) = max
{
〈ξ,V〉 : ξ ∈ ∂gi(U)

}
,

for every V ∈ X, i = 1, 2, . . . ,m.

(2) Let gi(i = 1, . . . ,m) be a finite family of locally
Lipschitz functions on X and let λi(i = 1, 2, . . . ,m)

be scalars. Then
m∑
i=1

gi is also locally Lipschitz, and

for every U ∈ X ,

∂
( m∑
i=1

λigi
)
(U) ⊂

m∑
i=1

λi∂gi(U).

Lemma 2.2: ([7]) If one of h1 : X → R, h2 : X → R is
Lipschitz near (x, ẋ), then

∂L(h1 + h2)(x, ẋ) ⊆ ∂Lh1(x, ẋ) + ∂Lh2(x, ẋ),

where ∂Lh1(x, ẋ), ∂Lh2(x, ẋ), ∂L(h1 + h2)(x, ẋ) denotes the
limiting subdifferential of h1, h2, h1+h2 at (x, ẋ), respectively
(About limiting subdifferential, one can see P61 in [7] for
more details).

Lemma 2.3: ([7]) The limiting subdifferential and the gen-
eralized gradient of F (x, ẋ) =

∫ b
a
f(x, ẋ) dt coincide, and we

have

∂LF (x, ẋ) = ∂f(x, ẋ)

=
{
ξ ∈ L2

n[a, b]× L2
n[a, b] : ξ(t) ∈ ∂f

(
x(t), ẋ(t)

)
a.e.

}
,

where ξ = (ξ1, ξ2), ξ(t) =
(
ξ1(t), ξ2(t)

)
.

Lemma 2.4: ([7]) Let f(x, ẋ) be a globally Lipschitz func-
tion on X , with Lipschitz constant K, then F (x, ẋ) =∫ b
a
f(x, ẋ) dt is well defined and finite on X , and globally

Lipschitz with Lipschitz constant K(b− a)
1
2 .

Definition 2.4: (x̄, ˙̄x) ∈ K is said to be a Fritz-John critical
point if there exist τ ∈ R and λ ∈ Rm such that

(0, 0) ∈ ∂(τf)
(
x̄(t), ˙̄x(t)

)
+ λT∂g

(
x̄(t), ˙̄x(t)

)
a.e.,

λiGi

(
x̄(t), ˙̄x(t)

)
= 0 (i, . . . ,m) a.e.,

(τ, λ) ≥ 0, (τ, λ) �= 0. (1)

As is usual in optimization theory, if τ �= 0, we say that the
problem is normal or regular [10] and the critical point is a
Kuhn-Tucker critical point. Correspondingly, in that case, the
condition (1) reduces to λ ≥ 0, respectively.

Remark 2.1: We recall that some additional hypotheses are
necessary to guarantee τ �= 0, for example, the generalized
Slater constraint qualification.

III. INVEXITY, PESUSO-INVEXITY AND QUASI-INVEXITY
OF NONSMOOTH FUNCTIONS

Invexity was first introduced by Hanson [1] for differential
functions and was generalized to nonsmooth functions in [3]
and [11]:

Definition 3.1: f : X → R is said to be generalized invex
at the point (x̄, ˙̄x) ∈ X , if there exists η : X ×X → X such
that, for every (x, ẋ) ∈ X and ξ ∈ ∂f(x, ẋ),

f(x, ẋ)− f(x̄, ˙̄x) ≥ 〈ξ, η〉.
Definition 3.2: f : X → R is said to be nonsmooth invex

at the point (x̄, ˙̄x) ∈ X if there exists η : X ×X → X such
that, for every (x, ẋ) ∈ X ,

f(x, ẋ)− f(x̄, ˙̄x) ≥ f◦((x, ẋ); η).
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Lemma 3.1: f : X → R is generalized invex at a point
(x̄, ˙̄x) ∈ X with respect to η : X ×X → X if and only if f
is nonsmooth invex at (x̄, ˙̄x) ∈ X with respect to same η.

Proof: For the “only if ” part, if f is generalized invex at
(x̄, ˙̄x), then there exists η : X ×X → X such that, for every
(x, ẋ) ∈ X and ξ ∈ ∂f

(
(x̄, ˙̄x)

)
,

f(x, ẋ)− f(x̄, ˙̄x) ≥ 〈ξ, η〉.
Choose ξ̄ ∈ ∂f(x̄, ˙̄x) such that

〈ξ̄, η〉 = sup
{〈ξ, η〉 : ξ ∈ ∂f(x̄, ˙̄x)

}
= f◦((x̄, ˙̄x); η),

then
f(x, ẋ)− f(x̄, ˙̄x) ≥ 〈ξ̄, η〉 = f◦((x̄, ˙̄x); η).

Therefore, f is nonsmooth invex at (x̄, ˙̄x) with respect to same
η.

Let us turn to the the “if ” part. If f is nonsmooth invex at
(x̄, ˙̄x) ∈ X , then there exists η : X ×X → X such that, for
every (x, ẋ) ∈ X ,

f(x, ẋ)− f(x̄, ˙̄x) ≥ f◦((x̄, ˙̄x); η),
where

f◦((x̄, ˙̄x); η) = 〈ξ̄, η〉 = sup
{
〈ξ, η〉 : ξ ∈ ∂f(x̄, ˙̄x)

}
,

which implies

f(x, ẋ)− f(x̄, ˙̄x) ≥ f◦((x̄, ˙̄x); η) ≥ 〈ξ, η〉, ∀ ξ ∈ ∂f(x̄, ˙̄x).

Therefore, f is generalized invex at (x̄, ˙̄x) with respect to same
η ∈ X .

Invextiy was weakened in order that it can be served
as a necessary optimality condition ( One can see
[5],[11],[12],[13]). We now introduce the various generaliza-
tions of nonsmooth invex functions.

Definition 3.3: f : X → R is said to be nonsmooth pseudo-
invex at (x̄, ˙̄x) ∈ X if there exists η : X ×X → X such that,
for every (x, ẋ) ∈ X ,

f(x, ẋ)− f(x̄, ˙̄x) < 0 ⇒ f◦((x̄, ˙̄x); η) < 0,

or equivalently, f◦((x̄, ˙̄x); η) ≥ 0 ⇒ f(x, ẋ) ≥ f(x̄, ˙̄x).
Definition 3.4: f : X → R is said to be nonsmooth quasi-

invex at (x̄, ˙̄x) ∈ X , if there exists η : X×X → X such that,
for every (x, ẋ) ∈ X ,

f(x, ẋ)− f(x̄, ˙̄x) ≤ 0 ⇒ f◦((x̄, ˙̄x); η) ≤ 0.

Lemma 3.2: If f is nonsmooth invex at (x̄, ˙̄x) ∈ X with
respect to η : X × X → X , then it is nonsmooth pseudo-
invex at (x̄, ˙̄x) with respect to same η.

Proof: If f : X → R is nonsmooth invex at (x̄, ˙̄x) ∈ X ,
then there exists η : X×X → X such that, for every (x, ẋ) ∈
X ,

f(x, ẋ)− f(x̄, ˙̄x) ≥ f◦((x̄, ˙̄x); η). (1)

Suppose that f(x, ẋ)−f(x̄, ˙̄x) < 0, directly from (1), we have

f◦((x̄, ˙̄x); η) < 0.

Then, f is nonsmooth pseudo-invex at (x̄, ˙̄x) ∈ X with respect
to same η.

Remark 3.1: Converse of the above lemma is not true as
can be seen from the following example.

Example 3.1: Let

f(x, ẋ) =

{
0, x(t) ≥ 0,
x(t)
2 , x(t) < 0,

where (x, ẋ) ∈ X , I = [0, 1], α = x(0), n = 1. Let η =
(η1, η̇1) ∈ X be defined as η1 = (x − x̄)3. Then, at x̄ = 0,

η = (x3, 3x2ẋ), f◦((0, 0); η) = {
0, x(t) ≥ 0,
x3(t)
2 , x(t) < 0.

Then, f(x, ẋ) < 0 ⇒ f◦((0, 0); η) < 0, which implies f
is nonsmooth pseudo-invex at (0, 0). But f is not nonsmooth
invex at (0, 0) ∈ X , because, for x(t) = −t, t ∈ (0, 1),

f(x, ẋ)− f(0, 0)− f◦((0, 0); η) < 0.

Lemma 3.3: If f is nonsmooth invex at (x̄, ˙̄x) ∈ X with
respect to η : X ×X → X , then it is nonsmooth quasi-invex
at (x̄, ˙̄x) ∈ X with respect to same η.

Proof: If f is nonsmooth invex at (x̄, ˙̄x) ∈ X , then there
exists η : X ×X → X such that, for every (x, ẋ) ∈ X

f(x, ẋ)− f(x̄, ˙̄x) ≥ f◦((x̄, ˙̄x); η). (2)

Suppose that f(x, ẋ) − f(x̄, ˙̄x) ≤ 0, then directly from (2),
we have

f◦((x̄, ˙̄x); η) ≤ 0,

which implies f is nonsmooth quasi-invex at (x̄, ˙̄x) with
respect to same η.

Remark 3.2: Converse of the above lemma is not true as
can be seen form the following example.

Example 3.2: Let

f(x, ẋ) =

{
x(t)
2 , x(t) ≤ 0,

x2(t), x(t) > 0,

where (x, ẋ) ∈ X , I = [0, 1], x(0) = x0, n = 1.
Let η = (η1, η̇1) ∈ X be defined as η1 = (x − x̄)3. Then,

at x̄ = 0, η = (x3, 3x2ẋ),

f◦((0, 0); η) = {
x3(t)
2 , x(t) ≤ 0,

0, x(t) > 0.

So, f(x, ẋ) ≤ 0 ⇒ f◦((0, 0); η) ≤ 0, which implies f is
nonsmooth quasi-invex at (0, 0). But f is not nonsmooth invex
at (0, 0) ∈ X , because, for x(t) = −t, t ∈ (0, 1),

f(x, ẋ)− f(0, 0)− f◦((0, 0); η) < 0.

Remark 3.3: If f is differential, then nonsmooth invex,
nonsmooth pseudo-invex and nonsmooth quasi-invex reduce
to invex, pseudo-invex and quasi-invex defined by Hanson [1],
respectively.

We recall the definitions of invexity for functional given in
[8].

Definition 3.5: The functional F (x, ẋ) =
∫ b
a
f(x, ẋ) dt is

said to be nonsmooth invex at (x̄, ˙̄x) ∈ X , if there exists η :
X×X → X such that for every (x, ẋ) ∈ X and ξ ∈ ∂f(x̄, ˙̄x),

F (x, ẋ)− F (x̄, ˙̄x) ≥
∫ b

a

〈ξ, η〉 dt.
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Definition 3.6: The functional F (x, ẋ) =
∫ b
a
f(x, ẋ) dt is

said to be nonsmooth pseudo-invex at (x̄, ˙̄x) ∈ X , if there
exists η : X × X → X such that for every (x, ẋ) ∈ X and
ξ ∈ ∂f(x̄, ˙̄x),

F (x, ẋ)− F (x̄, ˙̄x) < 0 ⇒
∫ b

a

〈ξ, η〉 dt < 0,

or equivalently,
∫ b
a
〈ξ, η〉 dt ≥ 0 ⇒ F (x, ẋ) ≥ F (x̄, ˙̄x).

Definition 3.7: The functional F (x, ẋ) =
∫ b
a
f(x, ẋ) dt is

said to be nonsmooth quasi-invex at (x̄, ˙̄x) ∈ X , if there exists
η : X × X → X such that for every (x, ẋ) ∈ X and ξ ∈
∂f(x̄, ˙̄x),

F (x, ẋ)− F (x̄, ˙̄x) ≤ 0 ⇒
∫ b

a

〈ξ, η〉 dt ≤ 0.

IV. OPTIMALITY CONDITIONS

Let F (x, ẋ) =
∫ b
a
f(x, ẋ) dt and G(x, ẋ) =

∫ b
a
g(x, ẋ) dt.

In this section, we first prove that a minimum point is
necessarily a KKT(Karush-Kuhn-Tucker) point of (NCVP)
under nonsmooth invex and the Slater constraint qualification
assumptions.

Definition 4.1: The problem (NCVP) is said to satisfy the
Slater constraint qualification, if there exists (x̃, ˙̃x) ∈ K such
that g(x̃, ˙̃x) < 0.

Theorem 4.1: Let F and Gi(i = 1, 2, . . . ,m) be nonsmooth
invex at (x̄, ˙̄x) ∈ K with respect to same η : X × X → X .
Suppose that the Slater constraint qualification is satisfied, and
if (NCVP) attains a minimum at (x̄, ˙̄x), then it is a KKT point
of (NCVP).

Proof: Since (x̄, ˙̄x) is a minimum point of (NCVP), there
is no (x, ẋ) ∈ K such that

F (x, ẋ)− F (x̄, ˙̄x) < 0.

Then, there is no solution (x, ẋ) ∈ K of the system((
F (x, ẋ)− F (x̄, ˙̄x)

)
, G(x, ẋ)

)
< 0.

Since F and Gi(i = 1, 2, . . . ,m) are all nonsmooth invex
with respect to same η (or we can say (F,G1, G2, . . . , Gm)
is nonsmooth invex with respect to same η), it follows from
the generalized alternative theorem ([14]) that there exist τ ∈
R+, λ̃ ∈ Rm+ , with (τ, λ̃) �= 0, such that

τ
(
F (x, ẋ)− F (x̄, ˙̄x)

)
+ λ̃TG(x, ẋ) ≥ 0, ∀(x, ẋ) ∈ K. (1)

If possible τ = 0, then λ̃ �= 0 and from (1),

λ̃TG(x, ẋ) ≥ 0, ∀(x, ẋ) ∈ K. (2)

By generalized Slater constraint qualification, there exists
(x̃, ˙̃x) ∈ K such that g(x̃, ˙̃x) < 0, it follows that

λ̃TG(x̃, ˙̃x) < 0,

which is a contradiction to (2). Hence, τ �= 0.
Therefore, (1) is equivalent to

(F (x, ẋ)− F (x̄, ˙̄x)) + λ̄TG(x, ẋ) ≥ 0, ∀ (x, ẋ) ∈ K, (3)

where λ̄ = λ̃
τ = ( λ̃1

τ , . . . , λ̃m

τ ) ≥ 0. Taking (x, ẋ) = (x̄, ˙̄x) in
(3), we get

λ̄TG(x̄, ˙̄x) ≥ 0, i.e.,
m∑
i=1

λ̄iGi(x̄, ˙̄x) ≥ 0.

Since λ̄ ≥ 0 and g(x̄, ˙̄x) ≤ 0, we have

λ̄iGi(x̄, ˙̄x) ≤ 0 (i = 1, . . . ,m).

Hence,
λ̄iGi(x̄, ˙̄x) = 0 (i = 1, . . . ,m). (4)

Thus, from (3), (4), we have, for all (x, ẋ) ∈ K,

F (x, ẋ) + λ̄TG(x, ẋ) ≥ F (x̄, ˙̄x) + λ̄TG(x̄, ˙̄x),

which implies that (x̄, ˙̄x) is a minimum point of the problem

min
(x,ẋ)∈K

(
F + λ̄TG

)
(x, ẋ).

Hence, by Lemma 2.2 and Lemma 3.5, we see that

(0, 0) ∈ ∂L(F + λ̄TG)(x̄, ˙̄x) ⊂ ∂LF (x̄, ˙̄x) + ∂L(λ̄
TG)(x̄, ˙̄x).

Combining Lemma 2.3 and Lemma 2.1, we deduce that

(0, 0) ∈ ∂f(x̄, ˙̄x) + λ̄T∂g(x̄, ˙̄x). (5)

From (5), together with (4) and λ̄ ≥ 0, we see that (x̄, ˙̄x) is a
KKT point of (NCVP).

In the same way, we can prove that a minimum point is
necessarily a Fritz-John point of (NCVP) under nonsmooth
invex assumption.

Theorem 4.2: Let F and Gi (i = 1, 2, . . . ,m) be nons-
mooth invex at (x̄, ˙̄x) ∈ K with respect to same η : X×X →
X . If (NCVP) attains a minimum at (x̄, ˙̄x), then (x̄, ˙̄x) is a
Fritz-John point of (NCVP).
Now we give sufficient optimality conditions in the form of
the following theorem:

Theorem 4.3: Let F and Gi(i = 1, 2, . . . ,m) be nonsmooth
invex at (x̄, ˙̄x) ∈ K with respect to same η : X × X → X
and suppose that (x̄, ˙̄x) ∈ K is a KKT point. Then (x̄, ˙̄x) is a
minimum point of (NCVP).

Proof: Since (x̄, ˙̄x) is a KKT point, there exists λ̄ ≥ 0
such that

(0, 0) ∈ ∂f(x̄, ˙̄x) + ∂
(
λ̄T g

)
(x̄, ˙̄x) a.e.,

λ̄iGi(x̄, ˙̄x) = 0 (i = 1, . . . ,m) a.e..

So, there exist ξ∗ ∈ ∂f(x̄, ˙̄x), ζ∗ ∈ ∂
(
λ̄T g

)
(x̄, ˙̄x) such that

ξ∗ + ζ∗ = 0. (6)

Let if possible (x̄, ˙̄x) be not a minimum of (NCVP). Then,
there exists (x, ẋ) ∈ K, such that

F (x, ẋ)− F (x̄, ˙̄x) < 0. (7)

Since F and Gi (i = 1, 2, . . . ,m) are nonsmooth invex at
(x̄, ˙̄x) ∈ K with respect to same η ∈ X , we have

F (x, ẋ)− F (x̄, ˙̄x) ≥
∫ b

a

〈A, η〉 dt, ∀ A ∈ ∂f(x̄, ˙̄x), (8)
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and

G(x, ẋ)−G(x̄, ˙̄x) ≥
∫ b

a

〈B, η〉 dt, ∀ B ∈ ∂g(x̄, ˙̄x). (9)

By (7) and (8), we get∫ b

a

〈A, η〉 dt < 0, ∀ A ∈ ∂f(x̄, ˙̄x).

In particular, ∫ b

a

〈ξ∗, η〉 dt < 0, ξ∗ ∈ ∂f(x̄, ˙̄x).

Now using (6), we see that∫ b

a

〈−ζ∗, η〉 dt < 0.

As λ̄ ≥ 0 and ζ∗ ∈ ∂
(
λ̄T g

)
(x̄, ˙̄x), we have

ζ∗ = λ̄TB∗, for some B∗ ∈ ∂g(x̄, ˙̄x).

Therefore, ∫ b

a

〈−B∗λ̄, η〉 dt < 0, B∗ ∈ ∂g(x̄, ˙̄x). (10)

Since λ̄ ≥ 0, it follows from (9)

λ̄T
(
G(x, ẋ)−G(x̄, ˙̄x)−

∫ b

a

〈B, η〉 dt) ≥ 0, ∀ B ∈ ∂g(x̄, ˙̄x),

which, on using λ̄iGi(x̄, ˙̄x) = 0 (i = 1, . . . ,m) and
λ̄TG(x, ẋ) ≤ 0, implies that

−
∫ b

a

〈λ̄TB, η〉 dt ≥ 0, ∀ B ∈ ∂g(x̄, ˙̄x).

This is a contradiction to (10). Hence, (x̄, ˙̄x) is a minimum
of (NCVP).

We have proved that under nonsmooth invex assumption the
Kuhn-Tucker condition is a necessary and sufficient one for
a feasible point to be a minimum. Next, we shall prove the
sufficiency of the Kuhn-Tucker optimality conditions under
nonsmooth pseudo-invex and nonsmooth quasi-invex assump-
tions of F and G, respectively.

For notational convenience, we denote M = {i : i =
1, . . . ,m} and I = {i ∈ M : λi �= 0}.

Theorem 4.4: Let F be nonsmooth pseudo-invex and
Gi(i = 1, 2, . . . ,m) be nonsmooth quasi-invex at (x̄, ˙̄x) ∈ K
with respect to same η : X×X → X and suppose that (x̄, ˙̄x)
is a KKT point of (NCVP). Then (x̄, ˙̄x) is a minimum of
(NCVP).

Proof: Since (x̄, ˙̄x) is a KKT point, there exists λ̄ ≥ 0
such that

(0, 0) ∈ ∂f(x, ẋ) + ∂(λ̄T g)(x̄, ˙̄x) a.e.,

λ̄iGi(x̄, ˙̄x) = 0 (i = 1, . . . ,m) a.e..

Therefore, there exists ξ∗ ∈ ∂f(x, ẋ), ζ∗ ∈ ∂(λ̄T g)(x̄, ˙̄x) such
that

ξ∗ + ζ∗ = 0. (11)

Let if possible (x̄, ˙̄x) be not a minimum of (NCVP). Then,
there exists (x, ẋ) ∈ K, such that

F (x, ẋ)− F (x̄, ˙̄x) < 0.

Since F is nonsmooth pseudo-invex at (x̄, ˙̄x) ∈ K, we get∫ b

a

〈A, η〉 dt < 0, for all A ∈ ∂f(x̄, ˙̄x), (12)

Since g(x, ẋ) ≤ 0, we have

λ̄iGi(x̄, ˙̄x) = 0 (i = 1, . . . ,m).

Since λ̄iGi(x̄, ˙̄x) = 0 (i = 1, . . . ,m), it follows that

λ̄i
(
Gi(x, ẋ)−Gi(x̄, ˙̄x)

) ≤ 0 (i = 1, . . . ,m). (13)

Now we claim that

λ̄i

∫ b

a

〈Bi, η〉 dt ≤ 0, ∀Bi ∈ ∂gi(x̄, ˙̄x), i = 1, . . . ,m. (14)

If λ̄ = 0, then the above inequality holds trivially. If λ̄ �= 0,
then from (13), we obtain

Gi(x, ẋ)−Gi(x̄, ˙̄x) ≤ 0 (i ∈ I).

Since Gi(i = 1, 2, . . . ,m) is nonsmooth quasi-invex at (x̄, ˙̄x)
we have ∫ b

a

〈Bi, η〉 dt ≤ 0, ∀Bi ∈ ∂gi(x̄, ˙̄x), i ∈ I.

which implies (14) holds. In particular,∫ b

a

〈ζ∗i , η〉 dt ≤ 0,

where λ̄i ≥ 0, ζ∗i ∈ ∂(λ̄igi)(x̄, ˙̄x), i ∈ I .
Combining with (11), we get∫ b

a

〈ξ∗, η〉 dt ≥ 0, for some ξ∗ ∈ ∂f(x̄, ˙̄x),

which is a contradiction to (12). Hence, (x̄, ˙̄x) is a minimum
of (NCVP).

We have proved that nonsmooth pseudo-invex together with
nonsmooth quasi-invex is a sufficient condition, and now, we
shall prove it is a necessary condition.

Theorem 4.5: If all Kuhn-Tucker critical points are mini-
mums for (NCVP), then F is nonsmooth pseudo-invex and
Gi(i = 1, 2, . . . ,m) is nonsmooth quasi-invex.

Proof: Let (x, ẋ), (x̄, ˙̄x) ∈ K, (x̄, ˙̄x, λ̄) verifies
(2.2) (2.3), with τ = 1, such that{

F (x, ẋ)− F (x̄, ˙̄x) < 0,
G(x, ẋ)−G(x̄, ˙̄x) ≤ 0.

We have to find η((x, ẋ), (x̄, ˙̄x)) ∈ X , such that∫ b

a

〈A, η〉 dt < 0,

∫ b

a

〈λTB, η〉 dt ≤ 0, (15)

where A ∈ ∂f(x̄, ˙̄x), B ∈ ∂g(x̄, ˙̄x). On the contrary, suppose
(15) has no solution for all A ∈ ∂f(x̄, ˙̄x), B ∈ ∂g(x̄, ˙̄x), then
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from the alternative theorem [15], there exist ω1, ω2 ∈ X ,
ω1 ≥ 0, ω2 ≥ 0, with (ω1, ω2) �= 0 such that∫ b

a

〈A,ω1〉 dt+
∫ b

a

〈λTB,ω2)〉 dt = 0, (16)

then (0, 0) is necessarily a solution to (16) with respect to
ω1, ω2. Thus,

(0, 0) ∈ ∂f(x̄, ˙̄x) + ∂(λ̄T g)(x̄, ˙̄x).

That is to say (x̄, ˙̄x) is a KKT point, then, by the assumption,
(x̄, ˙̄x) is a minimum point, which stands in contradiction to
F (x, ẋ)− F (x̄, ˙̄x) < 0. So, there exists η((x, ẋ), (x̄, ˙̄x)) ∈ X
such that { ∫ b

a
〈A, η〉 dt < 0,∫ b

a
〈λTB, η〉 dt ≤ 0,

for all A ∈ ∂f(x̄, ˙̄x), B ∈ ∂g(x̄, ˙̄x), and then, F is nonsmooth
pseudo-invex and G is nonsmooth quasi-invex at (x̄, ˙̄x) with
respect to same η.

Therefore, in Theorem 4.4, 4.5, we have proved that nons-
mooth pseudo-invex and nonsmooth quasi-invex of F and G
respectively are both sufficient and necessary in order that a
Kuhn-Tucker critical point is a minimum of (NCVP).

V. DUALITY

We now establish duality between (NCVP) and the next
dual problem (NCVD1), which is a modified Mond-Weir dual
problem formulated by Bector, Chandra and Husain, see [10]
for more details.

(NCVD1) Maximize

∫ b

a

f(u, u̇) dt

subject to (0, 0) ∈ ∂f
(
u, u̇

)
+ ∂(λT g)(u, u̇) a.e.,

λ̄iGi(x̄, ˙̄x) = 0 (i = 1, . . . ,m) a.e.,

λ ≥ 0,

(u, u̇) ∈ K .

Let H be the feasible set of (NCVP).
Theorem 5.1: (Weak duality) Let (x, ẋ) be feasible for

(NCVP) and (u, u̇, λ) be feasible for (NCVD1). If F and
G are nonsmooth invex at (u, u̇) with respect to same η :
X ×X → X and λ ≥ 0, then∫ b

a

f(x, ẋ) dt ≥
∫ b

a

f(u, u̇) dt.

Proof: Since (u, u̇, λ) is feasible for (NCVD1), we get
that there exist ξ∗ ∈ ∂f(u, u̇) and ζ∗ ∈ ∂(λT g)(u, u̇) such
that

ξ∗ + ζ∗ = 0. (1)

Let if possible ∫ b

a

f(x, ẋ) dt <

∫ b

a

f(u, u̇) dt. (2)

Since F and G are nonsmooth invex at (u, u̇) with respect to
same η : X ×X → X , we have

F (x, ẋ)− F (u, u̇) ≥
∫ b

a

〈A, η〉 dt, ∀ A ∈ ∂f(u, u̇), (3)

and

G(x, ẋ)−G(u, u̇) ≥
∫ b

a

〈B, η〉 dt, ∀ B ∈ ∂g(u, u̇). (4)

Combining (2) and (3), we get∫ b

a

〈A, η〉 dt < 0, for all A ∈ ∂f(u, u̇).

In particular,∫ b

a

〈ξ∗, η〉 dt < 0, for some ξ∗ ∈ ∂f(u, u̇).

By using (1), we get∫ b

a

〈−ζ∗, η〉 dt < 0.

Since ζ∗ ∈ ∂
(
λT g

)
(u, u̇) and λ ≥ 0, we see that

ζ∗ = λTB∗, for some B∗ ∈ ∂g(u, u̇).

Thus,∫ b

a

〈−λTB∗, η〉 dt < 0, for some B∗ ∈ ∂g(u, u̇). (5)

Now as λ ≥ 0, from (4), we have

λT
(
G(x, ẋ)−G(u, u̇)−

∫ b

a

〈B, η〉 dt) ≥ 0. (6)

Since (x, ẋ) ∈ K and
(
u, u̇, λ

) ∈ H ,

λTG(x, ẋ) ≤ 0 = λTG(u, u̇),

therefore, (6) gives that

−
∫ b

a

〈B, η〉 dt ≥ 0, ∀ B ∈ ∂g(u, u̇),

which is a contradiction to (5). Hence,∫ b

a

f(x, ẋ) dt ≥
∫ b

a

f(u, u̇) dt.

Theorem 5.2: (Weak duality)Let (x, ẋ) be feasible for
(NCVP) and (u, u̇, λ) be feasible for (NCVD1). If F is
nonsmooth pesudo-invex and G is nonsmooth quasi-invex at
(u, u̇) with respect to same η : X ×X → X and λ ≥ 0, then∫ b

a

f(x, ẋ) dt ≥
∫ b

a

f(u, u̇) dt.

Proof: Since (u, u̇, λ) is feasible for (NCVD1), there
exist ξ∗ ∈ ∂f(u, u̇) and ζ∗ ∈ ∂(λT g)(u, u̇) such that

ξ∗ + ζ∗ = (0, 0). (7)
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Let if possible
∫ b
a
f(x, ẋ) dt <

∫ b
a
f(u, u̇) dt. Since F is

nonsmooth pesudo-invex at (u, u̇), we get∫ b

a

〈A, η〉 dt < 0, ∀ A ∈ ∂f(u, u̇).

In particular ,∫ b

a

〈ξ∗, η〉 dt < 0, where ξ∗ ∈ ∂f(u, u̇).

By using (7), we get∫ b

a

〈−ζ∗, η〉 dt < 0.

Since ζ∗ ∈ ∂(λT g)(u, u̇), λ ≥ 0, we see that

ζ∗ = λTB∗, for some B∗ ∈ ∂g(u, u̇).

Thus, ∫ b

a

〈−λTB∗, η〉 dt < 0, where B∗ ∈ ∂g(u, u̇). (8)

Also, (x, ẋ) is feasible for (NCVP) and (u, u̇, λ) is feasible
for (NCVD1), therefore,

λiGi(x, ẋ) ≤ 0 = λiGi(u, u̇) (i = 1, . . . ,m). (9)

Now we claim that

λT
∫ b

a

〈B, η〉 dt ≤ 0, (10)

If λ = 0, then above inequality holds trivially. Suppose λ �= 0,
then from (9) we get

Gi(x, ẋ)−Gi(u, u̇) ≤ 0 (i ∈ I).

Since Gi is nonsmooth quasi-invex at (u, u̇), we get∫ b

a

〈Bi, η〉 dt ≤ 0 (i ∈ I),

which implies (10) holds. This is a contradiction to (8). Hence,∫ b

a

f(x, ẋ) dt ≥
∫ b

a

f(u, u̇) dt.

The proof is completed.
Theorem 5.3: (Strong duality) Let (x̄, ˙̄x) be a minimum

point of (NCVP) and the Slater constraint qualification is
satisfied. If F and G are nonsmooth invex at (x̄, ˙̄x) with
respect to same η : X ×X → X , then there exist λ̄ ≥ 0 such
that (x̄, ˙̄x, λ̄) is a feasible point of (NCVD1). Furthermore,
if the conditions of Weak duality Theorem 5.1 hold for
all feasible (x, ẋ) for (NCVP) and feasible (u, u̇, λ) for
(NCVD1), then (x̄, ˙̄x, λ̄) is a maximum of (NCVD1) and
the value of the objective functions are equal.

Proof: Since (x̄, ˙̄x) is a minimum point of (NCVP) and
the Slater qualification is satisfied, by Theorem 4.1, we know
that there exists λ̄ ≥ 0 with τ = 1 such that

(0, 0) ∈ ∂f(x̄, ˙̄x) + ∂(λ̄T g)(x̄, ˙̄x) a.e,

and
λ̄iGi(x̄, ˙̄x) = 0,

which implies that (x̄, ˙̄x, λ̄) is feasible for (NCVD1). Let if
possible (x̄, ˙̄x, λ̄) be not a maximum of (NCVD1), then there
exists (u, u̇, λ) feasible for (NCVD1) such that∫ b

a

f(u, u̇) dt >

∫ b

a

f(x̄, ˙̄x) dt,

which is a contradiction to Weak duality Theorem 5.1. Hence,(
x̄, ˙̄x, λ̄

)
is a maximum of (NCVD1). The values of the

objective functions are trivially equal.
Theorem 5.4: (Converse duality) Let

(
ū, ˙̄u, λ̄

)
be a max-

imum of (NCVD1), and (x, ẋ) ∈ K. If F is nonsmooth
pseudo-invex and G is nonsmooth quasi-invex at (ū, ˙̄u) with
respect to same η : X ×X → X , then (ū, ˙̄u) is a minimum
point of (NCVP) and the value of the objective functions are
equal.

Proof: Since F is nonsmooth pseudo-invex and G is
nonsmooth quasi-invex at (ū, ˙̄u) with respect to same η, and
it follows from Theorem 5.2 that∫ b

a

f(ū, ˙̄u) dt ≤
∫ b

a

f(x, ẋ) dt, for all (x, ẋ) ∈ K.

And since (ū, ˙̄u) ∈ K, we have (ū, ˙̄u) is a minimum of
(NCVP), and their objective function values are trivially
equal.
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