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Challenges in Video Based Object Detection in
Maritime Scenario Using Computer Vision
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Abstract—This paper discusses the technical challenges in
maritime image processing and machine vision problems for video
streams generated by cameras. Even well documented problems
of horizon detection and registration of frames in a video are
very challenging in maritime scenarios. More advanced problems
of background subtraction and object detection in video streams
are very challenging. Challenges arising from the dynamic nature
of the background, unavailability of static cues, presence of small
objects at distant backgrounds, illumination effects, all contribute to
the challenges as discussed here.
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I. INTRODUCTION

WHILE computer vision techniques have advanced video

processing and intelligence generation for several

challenging dynamic scenarios, research in computer vision

for maritime is still in nascent state and several challenges

remain open in this field [1]. This paper presents some of the

challenges unique to the maritime domain.

A simple block diagram for processing of maritime videos

is given in Fig. 1, where the objective is to track foreground

objects and generate intelligence and situation-awareness.

Foreground objects are the objects anchored, floating, or

navigating in water, including sea vessels, small personal boats

and kayaks, buoys, debris, etc. Air vehicles, birds, and fixed

structures, such as in ports, qualify as outliers or background.

Also, wakes, foams, clouds, water speckle, etc. qualify as

background. The first four blocks form the core of video

processing and the performance of these blocks directly affect

the attainment of the objective. The challenges specific to these

four blocks are discussed in Sections II to V, respectively. The

challenges due to weather are discussed in Section VI.

We use 3 datasets from three different sources to illustrate

the challenges. Two datasets are from the external sources,

buoy dataset [2] and Mar-DCT dataset [3]. The camera in

the buoy dataset is mounted on a floating buoy which is

subject to significant amount of motion from one frame to

another. The camera used in Mar-DCT dataset is mounted on

a stationary platform on-shore. Sometimes, zoom operations

are used while capturing the videos. The third dataset

Singapore-Marine-dataset is created by the authors using
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Fig. 1 Simple block diagram for maritime video processing

Canon 70D camera. Videos are acquired in two scenarios,

namely at sea (videos captured on-board a vessel in motion)

and on-shore (videos captured with camera on a stationary

platform on-shore). The details of the datasets are presented

in Table I.

II. HORIZON DETECTION

We represent horizon using two parameters, the vertical

position Y of the center of the horizon from the upper edge of

the image, and the angular position α made by the horizon with

the horizontal axis. This is illustrated in Fig. 2. In the case of

cameras mounted on mobile platform, the vertical and angular

position is subject to large amount of motion, as noted in Table

I. In Table I, E(Y ) and E(α) represent the mean values of Y
and α for a video. The ground truth for horizon is generated

for each frame of these videos manually using independent

volunteers [4].

We discuss two state-of-the-art methods [2], [5], which we

succinctly refer to as FGSL (abbreviation derived from the first

alphabets of the authors’ names) [2] and ENIW (abbreviation

derived from the first alphabets of the authors’ names) [5],

in the context of the present datasets. They are chosen as

TABLE I
DETAILS OF THE DATASETS USED IN THIS PAPER

Camera At sea On-shore
Datasets Buoy Singapore-Marine-Dataset Mar-DCT
Number 10 11 28 9
of videos
Number 998 2772 12604 7410
of frames

Horizon related
min(Y -E(Y )) -281.68 -436.30 -13.54 -52.32
(pixels)
max(Y -E(Y )) 307.82 467.86 9.95 35.69
(pixels)
Std. dev. 107.98 145.10 1.52 9.98
of Y (pixels)
min(α-E(α)) -15.72 -26.34 -0.99 -1.25
(degree)
max(α-E(α)) 20.72 12.99 0.51 1.75
(degree)
Std. dev. 4.40 1.11 0.04 0.22
of α (degree)

Objects related
Min number 0 0 0 1
of objects
Max. number 3 10 20 2
of objects
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Fig. 2 Representation of horizon using Y and α

they both use a combination of two main approaches used

for horizon detection, as discussed next.

One popular approach is to detect the most prominent line

feature through parametric projection of edges in the image

space to the parametric space of line features, such as Hough

transform (HT). This approach assumes that horizon appears

as a long line feature in the image. We note that this approach

uses projective mappings and parametric space and is different

from another line of research on line fitting on edge maps

[6]-[8]. Although we do not exclude the utility of dominant

point detection and line fitting [9], [10] for horizon detection

in the on-board maritime detection problems, we note that no

research work on horizon detection has so far employed these

techniques.

The second popular approach is to select a candidate horizon

solution that maximizes the statistical distances between the

color distributions [11] of the two regions created by the

candidate solution. This approach assumes that sea and sky

regions have color distributions with large statistical distance

between them and that the candidate solution separates the

regions into sea and sky regions. While they are similar in

using statistical distribution as the main criterion and using

prominent linear features as candidate solutions, they are

different in the choice of statistical distance measures.

The performance of these methods is presented in Table II.

It is seen that the methods perform extremely well for Buoy

dataset but perform poorly for the other datasets in terms of

the vertical position of the horizon. In Fig. 3, we show that

the assumption behind the statistical approach used by both

methods may not apply. We present one image from each

dataset (3rd row), the horizon ground truth (red solid line),

TABLE II
STATISTICS OF ERRORS IN Y FOR DIFFERENT METHODS

Buoy On-board On-shore Mar-DCT
Error in Y

25th percentile (1st quartile)
ENIW 0.92 71.82 15.30 1.38
FGSL 0.72 72.06 7.30 4.29

50th percentile (median)
ENIW 1.93 117.81 115.25 37.43
FGSL 1.59 118.14 115.25 198.58

Error in α
25th percentile (1st quartile)

ENIW 0.24 0.47 0.18 0.26
FGSL 0.20 0.49 0.18 0.64

50th percentile (median)
ENIW 0.46 1.10 0.38 1.18
FGSL 0.38 1.19 0.35 1.00

the most prominent HT candidate (green dashed line), and the

color distributions of the regions created by them in Fig. 3. For

the first image, it is seen that the HT candidate for the horizon

matches the ground truth and indeed the color distributions

corresponding to the sea and sky regions match well. However,

for the other three images, the Hough transform candidates do

not match with the ground truth. Let us first consider the upper

regions created by the ground truth and the Hough candidates.

For the Singapore-Marine dataset, the upper region created by

the Hough candidate includes the sky region and part of the

sea region. This causes some change in the color distribution

at lower color values. Nevertheless, the distribution is clearly

dominated by sky and statistical distance metrics may not be

effective in distinguishing sea and sky regions effectively. For

example, the mean values (shown using vertical lines in the

color distribution plots) of the distributions corresponding to

the incorrect horizon are not significantly different from the

mean values of the distributions corresponding to the ground

truth. Numerically, the means show the same shift for all the

color channels between the incorrect horizon and the ground

truth. The maximum shift of 25 value (between 0 to 256 digital

values) is observed for the third image for the sky region.

The shift is caused by the inclusion of part of the sea in the

upper region. In the other cases, the typical shift is 0 value to

5 values. The same observation applies to the example from

Mar-DCT dataset as well, however with the shift observed in

the bottom region.

Further, we note some frames from

Singapore-Marine-dataset in Fig. 4, which are challenging

due to reasons such as absence of line features of horizon,

presence of competing line features (such as through ships

and vegetation), adverse effects of conditions such as haze

and glint, etc. For all these images, we show below them

their edge maps where red edges are long edges and green

edges are the edges of medium length. The dearth of line

features representing horizon is evident in these edge maps.

Also notable is that in conditions such as haze, the color

distributions of sea and sky regions may be practically

inseparable.

The statistical distance between sea and sky distributions

may be increased by adding extra spectral channels [12]

and abstract statistical distance metrics may be used through

machine learning techniques [13], [14]. However, these

approaches require sensor modification or their performance

depends upon the diversity of the training dataset.

III. REGISTRATION

Registration refers to the situation where different frames in

a scene correspond to the same physical scene with matching

world coordinates. In marine scenario, especially for sensors

mounted on sea vessels and buoys, the unpredictable motion of

the sensors often result in a complicated registration problem

where even the consecutive frames are not registered and may

have a large angular and positional shift, as noted in Table I.

The angular difference between the two consecutive frames

may have all the three angular components, viz. yaw, roll,

and pitch. If the horizon is present, roll and pitch can be
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Fig. 3 Statistical distribution of the sea and sky regions determined by the horizon ground truth (solid red line) and the upper and lower regions determined
by the most prominent HT candidate (green dashed lines)

Fig. 4 Challenging situations in which horizon detection is challenging

significantly corrected for since they result in the change

of angle and position of the horizon, respectively. However,

yaw cannot be corrected for. This is illustrated using two

consecutive frames from a video in the buoy dataset are used

in Fig. 5. It is seen that horizon based registration does reduce

the differences (see middle row, 3rd image) but the zoom-ins

shown in the bottom row clearly indicate that the boat and

cloud have unequal horizontal difference between them. In

this scenario, it is impossible to say if the cloud was stationary

and the boat moved, or the boat was stationary and the cloud

moved, or both of them moved.

In order to correct for the yaw, we need some additional

features that allow the detection of the horizontal staggering

between two consecutive frames. The availability and

possibility to detecting the stationary features is important for

yaw correction. Buildings, landmarks, and terrain features may

serve this purpose [15], if they are present in the scene. For
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Fig. 5 The top row shows the original consecutive frames and their
difference from a video. Results of registration using horizon are shown in
the second row. The third row shows two insets from difference image of

the registered image

example, we consider two consecutive frames in Fig. 6 taken

from another video in buoy dataset which does have stationary

features. The result of registration using horizon only is shown

in the middle row. However, using just a few manually selected

stationary points on the shoreline, accuracy in registration is

significantly enhanced, as seen in the third row.

Notably, although a ship may be stationary and can be

easily detected, it is difficult to conclude whether the ship

is stationary or not. Also, it is discussed in [16] that the

line features in a scene with moving vessels and absence of

stationary cues may enable registration only if the vessels

in the scene are not rotating. Thus, for a general maritime

scenario, registration of frames is still a challenge. Strictly

speaking, the best possible way of dealing with this scenario

is the use of the ship’s motion sensors and gyro sensors.

Nevertheless, some help can be derived from texture-based

features for registration across frames, assuming that the

generalized shapes of texture boundaries might not change

significantly over few consecutive frames [17]. Another related

approach is used in [18] for registration, where a narrow

horizontal strip is taken around the horizon in both the

images and the shift at which the two images have maximum

correlation is determined. This shift is used for registration.

An example is shown in Fig. 7. Optical flows may also be

useful [19], although at significant computation cost.

Fig. 6 The top row shows the original consecutive frames and their
difference from a video. Results of registration using horizon are shown in

the second row. Registration results using just four fixed points on the
shoreline are shown in the third row. The four points used for registration

are shown in the last row

Fig. 7 Registration using cross-correlation of strip around the horizon. (a)
The difference image obtained by registration using horizon only,

reproduced from Fig. 6. (b) The difference image after horizontal shift of 48
pixels, identified as the peak of the cross-correlation function

IV. BACKGROUND SUBTRACTION

There are several useful surveys on the topic of background

suppression in video sequences [20]. Water background is

more difficult than other stationary as well as dynamic

backgrounds because of several reasons. One reason is that

water background is continuously dynamic both in spatial and

temporal dimensions due to waves, whereas the background

subtraction methods typically address dynamic backgrounds

that where dynamics are either spatially restricted (such as

rustle of trees) or temporally restricted (such as a parked

car). Second reason is that waves have a high spatio-temporal

correlations [21] while the dynamic background subtraction

methods implicitly infer high spatio-temporal correlations as

patterned (i.e. non-random) movement of foreground objects.

An associated difficulty in marine background detection is

that the electro-optical sensor mounted on a mobile platform

is subject to a lot of motion. Most background learning

methods learn background by assuming that a pixel remains

background or foreground for at least a certain period of

time. Thus, background modelling depends upon the accuracy
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Fig. 8 Results of three methods from change detection competition that perform the best or fastest

of registration, which is a challenging problem as discussed

in the previous section. Third reason is that wakes, foams,

and speckle in water are inferred as foreground by typical

background detection method whereas they are background in

the context of maritime object detection problem.

To illustrate the need for new algorithms addressing

maritime background, we applied the 34 algorithms that

participated in the change detection competition [22]. This

competition was conducted in 2014 as a part of a

change detection workshop at a prestigious computer vision

conference [23]. It used a dataset of 51 videos comprising

of about 140,000 frames separated into 11 categories of

background challenges such as dynamic background, camera

jitter, intermittent object motion, shadows, infrared videos,

snow, storm, fog, low frame rate, night videos, videos

from pan-tilt-zoom camera, and air air turbulence. Since the

dataset addressed several background challenges encountered

in maritime videos as well and the submitted algorithms

represented the state-of-the-art for these challenges, we tested

their performance on Singapore-Marine-dataset.

Here, we show in Fig. 8 the result of three methods for

one frame of a video from on-shore Singapore-Marine dataset.

The three methods are Gaussian mixture model (GMM) [24],

which models background’s color distribution as mixture

of Gaussian distributions, Gaussian background model of

PFinder [25], which models the intensity at each background

pixel as a single Gaussian function and then clusters these

Gaussian functions as representing the background, and

the self-balancing sensitivity segmenter (SuBSENSE) [26],

which uses local binary similarity patterns at pixel levels

for modeling background. It is seen that these methods are

ineffective through producing false positives in the water

region or through producing false negatives while suppressing

water background.

V. FOREGROUND OBJECT DETECTION

Even with proper dynamic background subtraction, such

that wakes, foams, clouds, etc. are suppressed, it is notable

that further foreground segmentation can result in detection

of mobile objects only. However, as noted in Table I, there

are several stationary objects as well in the videos. In Table

I, the ground truth for stationary and dynamic objects have

been generated for each video manually by independent

volunteers. The segmented background has to be further

analysed for detecting the static foreground objects. Since

the general dynamic background subtraction and foreground

tracking problems do not require the detection of static objects,

no integrated approaches exist that can simultaneously detect

the stationary and mobile foreground objects. This is an

open challenge for the maritime scenario. Research for the

problem of object detection in images may be applied for

detection of objects in individual images, thus catering for both

static and mobile objects. However, the complicated maritime

environment with potential of occlusion, orientation, scale, and

variety of objects make it computationally challenging [27].

Further, complicated motion patterns imply that frame to frame

matching of objects for tracking is challenging if detection is

performed independently for each frame.

VI. WEATHER AND ILLUMINATION CONDITIONS

A maritime scene is subjected to a vast variety of weather

and illumination conditions such as bright sunlight, twilight

conditions, night, haze, rain, fog, etc. Further, the solar

angles induce different speckle and glint conditions in the

water. Tides also influence the dynamicity of water. The

situations that affect the visibility influence the contrast,

statistical distribution of sea and water, and visibility of

far located objects. Effects such as speckle and glint create

non-uniform background statistics which need extremely

complicated modelling such that foreground is not detected

as the background and vice versa. Also, the color gamuts

for illumination conditions such as night (dominantly dark),

sunset (dominantly yellow and red), and bright daylight

(dominantly blue), and hazy conditions (dominantly gray) also

vary significantly. As a consequence, the suitable methods

and models for one weather and illumination condition is
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not effective for other conditions. Seamless selection of

approaches and transition between one approach to another

with varying conditions is important for making maritime

processing practically useful.

VII. CONCLUSION

As discussed above, maritime video processing problem

poses challenges that are absent or less severe in other

video processing applications. It needs unique solutions that

address these challenges. It also needs algorithms with better

adaptability to the various conditions encountered in maritime

scenario. Thus, the field is rich with possibilities of innovation

in maritime video processing technology. We hope that the

discussion here motivates the researchers to pursue maritime

video processing challenges with enthusiasm and vigour.
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