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Abstract—The fluid mechanics principle is used extensively in 

designing axial flow fans and their associated equipment. This paper 
presents a computational fluid dynamics (CFD) modeling of air flow 
distribution from a  radiator axial flow fan used in an acid pump truck 
Tier4 (APT T4) Repower. This axial flow fan augments the transfer 
of heat from the engine mounted on the APT T4. 

CFD analysis was performed for an area weighted average static 
pressure difference at the inlet and outlet of the fan. Pressure 
contours, velocity vectors, and path lines were plotted for detailing 
the flow characteristics for different orientations of the fan blade.  
The results were then compared and verified against known 
theoretical observations and actual experimental data. This study  
shows that a CFD simulation can be very useful for predicting and 
understanding the flow distribution from a radiator fan for further 
research work.  

 
Keywords—Computational fluid dynamics (CFD), acid pump 

truck (APT) Tier4 Repower, axial flow fan, area weighted average 
static pressure difference, and contour plots.  

I. INTRODUCTION AND BACKGROUND 

HE axial flow fan is extensively used in many engineering 
applications. Its adaptability has resulted in 

implementation into large scale systems, from industrial 
dryers and air conditioning units to automotive engine cooling 
and in-cabin air recirculation systems. The benefit of using 
axial flow fans for the purpose of augmenting heat transfer is 
particularly evident in the automobile industry because of the 
need for relatively compact designs. The extended use of axial 
flow fans for fluid movement and heat transfer has resulted in 
detailed research into the performance attributes of many 
designs [1], [2]. Numerical investigations have been 
performed to quantify the performance of axial fans and their 
flow characteristics [3], [4]. However, the more-practical 
example of cooling a heated engine or heated plate using an 
axial flow fan has received more attention in regards to 
understanding  flow characteristics and heat transfer [5]-[7]. 
Moreover, an additional practice for monitoring axial fan 
performance is by using the experimental technique discussed 
in this paper. 

With the expressive computer capability and extensive 
development in the simulation field, CFD have drawn 
attention in recent years. With the help of CFD, the complex 
3-D geometries of equipment can now be modeled with only 
minor simplifications. CFD models, if created correctly, can 
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account for the complex flows in equipment. CFD models for 
axial fans have been used to evaluate the flow behavior and 
characteristics. The models provide sufficiently accurate 
predictions over a range of operating conditions, which are not 
possible using other methods. Without an understanding of the 
characteristics of air flow passing through a fan, problems 
related to engine cooling systems can never be fully resolved. 
In this paper, CFD were used to model the flow passing 
through a radiator fan, which was then compared with actual 
experimental data. 
 

 
Fig. 1 Radiator and fan assembly 

 
An APT T4 repower radiator fan and fan shroud (Fig. 1) 

play a crucial role in complicated engine cooling systems, 
such as the one shown in Fig. 2. A radiator (Figs. 1 and 2) is a 
type of heat exchanger designed to transfer thermal energy 
from the coolant to the surrounding air by means of a 
mechanism known as natural or forced convection. The latter 
case concerns the use of a radiator fan to pull the air through 
the radiator core.  
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Fig. 2 Cooling system 

 

 
Fig. 3 Right oriented blade 

 

 
Fig. 4 Left oriented blade 

 
The fan provides air flow through the radiator. The 

orientation of the blade also plays an important role in 
understanding the flow of air across the radiator and fan. Figs. 
3 and 4 show a fan and its associated orientation 
configuration. For a right oriented blade, the direction of fan 
rotation is clockwise; for a left oriented blade, the direction of 
fan rotation is counterclockwise.  

II.  NUMERICAL CFD MODEL AND PROCEDURE 

The first step is to identify a typical radiator axial flow fan 
that can be reproduced as a 3-D CAD Solidworks® software 
engineering drawing package (Fig. 5).  
 

 
Fig. 5 Computational domain of a fan 

The 3-D models are then imported into the CFD software, 
remodeled into different sections, and refined to generate a 
finite volume meshing (Fig. 6). This is a crucial step, where 
details of the geometrical shape need to be defined precisely. 
The flow domain is also created, and the final meshing of all 
components needs to be accurate. The total element count will 
be around 1.6 million, with an inflation layer on the blades. 
Any errors in the drawings and flow area need to be corrected 
before continuing. 

 

 
Fig. 6 Meshing of Rotor and Computational Domain 

 
The second step is to import the files into the CFD code 

preprocessor, which will solve the flow equations. Here, the 
flow fields boundary conditions are set. These include inlet air 
mass flow, outlet pressure, fluid properties, and flow domain 
characterization, such as moving internal zone and stationary 
solid walls. The next step is to set the simulation process as a 
3-D steady and turbulent problem (Fig. 7).  
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Fig. 9b Static pressure at outlet 

 

 
Fig. 10a Velocity vector distribution 

 

 
Fig. 10b Flow lines around rotor 

 
Figs. 10a and 10b show the velocity vector distribution and 

flow lines at a plane normal to the x-axis and perpendicular to the 
rotor. A high flow region formed around the outer diameter of the 
flow domain and a low reverse flow region formed in the center 
behind the fan hub. Between the high and low reverse flow 
regions, there existed strong circulation vortices. Strong 
circulation regions were also observed behind the fan blades. This 
helps in understanding the flow behavior around the rotor with a 
left oriented blade.  

Experimental measurements were performed on a Tier4 unit 
for the radiator axial flow fan. The experiments were 
performed at atmospheric pressure having standard SAE 
condition at 77°F and 300 ft. Several different points were 
considered on the fan inlet and outlet face for measuring static 
pressure and air flow. With the help of transducers and a data 
acquisition system, static pressure and air flow (cubic feet per 
minute) were measured at different points, which were spaced 
over the inlet and outlet face of the fan. Later, air flow in CFM 
was converted into mass flow rate (kg/s). Average values of 
these points were considered to compare with CFD results. 

Fig. 11 shows a comparison of axial fan experimental and 
numerical CFD performance with a left oriented blade. The 
static pressure (in terms of H20) was plotted for a variable 
mass flow rate of 10, 14.6, 25.26, 32.26, 36.7, 39.544, and 
41.97 kg/s. The graph demonstrates the same trend curve and 
values for both the experimental and numerical CFD results. 
The insignificant disparity in the results could be a result of 
experimental conditions, fluctuations of fan rev/min, or the 
considered ideal condition while simulating the analysis. 

 
Fig. 11 Experimental vs. CFD performance 

B. Right Oriented Blade 
For a right oriented blade, results were compiled for the 

same working conditions as for the left oriented blade—air 
flowing at a mass flow rate of 25.26 kg/s and fan rotation of 
1,680 rev/min in a clockwise direction and having the outlet 
pressure as atmospheric. Fig. 12 illustrates the velocity 
magnitude on the rotor with a right oriented blade, which 
confirms that velocity increased moving from the hub to the 
tip on the rotor and thus validated the theoretical concept of 
V= r.ω. This also affirms that the rotor was rotating at the 
center point of the fan axis. 
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Fig. 12 Velocity magnitude on rotor 

 
Figs. 13a and 13b show the pressure contours for static 

pressure at the inlet and outlet of the axial fan with a right 
oriented blade. By observing the pressure contour at the inlet, 
pressure varies on negative scale, and at the outlet, pressure 
varies from negative to positive scale; thus, creating a pressure 
zone at the outlet. This is in accordance with the theoretical 
observation, and the pressure zone conditions were similar to 
that of fan with a left oriented blade. 
 

 
Fig. 13a Static pressure at inlet 

 

 
Fig. 13b Static pressure at outlet 

 
Figs.14a and 14b show the velocity vector distribution and 

flow lines at a plane normal to the x-axis and perpendicular to the 
rotor. Again, a high flow region formed around the outer diameter 
of the flow domain (i.e., at the tip side of the blade). Also, a low 
reverse flow region formed in the center behind the fan hub. 
There existed strong circulation vortices in between the high and 
low reverse flow regions. Similar strong circulation regions were 
also observed behind the fan blades as those seen in a fan with a 
left oriented blade. This is useful in understanding the flow 
behavior around the rotor with a right oriented blade. 

 

 
Fig. 14a Velocity vector distribution 
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Fig. 14b Flow lines around rotor 

 
A similar experimental setup was been used for a right 

oriented blade as was used for the left oriented blade.  
Fig. 15 shows a comparison of the experimental and 

numerical CFD performance of the axial fan. The static 
pressure (in terms of H20) was plotted for a variable mass flow 
rate of 10, 14.6, 25.26, 32.26, 36.7, 39.544, and 41.97 kg/s. 
The graph demonstrates the same trend curve and values for 
both the experimental and numerical CFD results. The 
nominal difference in the results could be a result of 
experimental conditions, fluctuations of fan rev/min, or the 
considered ideal condition while simulating the analysis. 
 

 
       Fig. 15 Experimental vs. CFD performance 

IV. CONCLUSION 
The results from the numerical simulations provided an 

insightful understanding of the behavior of fluid flow around 
the different fan blade orientations. Numerical CFD analysis 
was performed for a fan with a left and right oriented blade. 
The numerical CFD results were then compared with the 
experimental data. The key and important outcomes of this 
study are as follows: 
1. The CFD modeling shown in this study proved to be very 

helpful in initiating further and more comprehensive 
numerical study of the off-road engine cooling system. 

2. CFD results were presented in the form of velocity vectors 
and path lines, which provided actual flow characteristics of 
air around the fan for different blade orientations.  

3. Detection of high and low air flow regions with re-
circulations and vortices immensely improved 
understanding of flow in the complex system studied, which 
helped to understand the complications involved in hot air 
recirculation. 

4. This study showed how the flow of air was interrupted by 
the hub obstruction, thereby resulting in unwanted reverse 
flow regions.  

5. The different orientation of blades was also considered 
while performing CFD analysis. The study revealed that a 
left oriented blade fan with counterclockwise rotation 
performed the same as a right oriented blade fan with 
clockwise rotation. 

6. The CFD results were in agreement with the experimental 
data measured during physical testing. Any error was 
probably a result of the experimental conditions, 
fluctuations of fan rev/min, or the considered ideal condition 
while simulating the analysis. 
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