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Abstract—Currently, electricity suppliers must predict the 

consumption of their customers in order to deduce the power they 
need to produce. It is then important in a first step to optimize 
household consumptions to obtain more constant curves by limiting 
peaks in energy consumption. Here centralized real time scheduling 
is proposed to manage the equipments starting in parallel. The aim is 
not to exceed a certain limit while optimizing the power consumption 
across a habitat. The Raspberry Pi is used as a box; this scheduler 
interacts with the various sensors in 6LoWPAN. At the scale of a 
single dwelling, household consumption decreases, particularly at 
times corresponding to the peaks. However, it would be wiser to 
consider the use of a residential complex so that the result would be 
more significant. So the ceiling would no longer be fixed. The 
scheduling would be done on two scales, on the one hand per 
dwelling, and secondly, at the level of a residential complex. 

 
Keywords—Smart grid, Energy box, Scheduling, Gang Model, 

Energy consumption, Energy management system, and Wireless 
Sensor Network. 

I. INTRODUCTION 
RESENT project is concerning optimal management of 
habitat energy consumption. Observation of consumption 

shows the existence of sharp peaks very localized in time 
leading to important losses if production is as today delivered 
from large, centralized units with very slow response time. 
Two ways can be invoked to reduce such losses, 
corresponding to better management of consumption at local 
scale to smooth it out, and to organize better energy mix for 
fitting more closely the demand on larger scale. For the first, 
this is still under debate to determine the parameter domain 
where there is advantage for distributed organization over 
centralized one to run more efficiently the partition of limited 
amount of resources amongst a certain number of consumers.  

Classical approach to resource access problem is a 
centralized one where a unique intelligent agent [1], [2] 
controls fluxes from production system. This leads to choice 
of algorithm determining best possible combination. Producer 
will then evaluate all combinations before choosing best one. 
Such problem belongs to NP class and induces very limiting 
combinatorial explosion. Usually this is avoided by heuristic 
use. Even if as a consequence optimal solution is not reached, 
the problem can be solved within reasonable time. Centralized 
approach is simple and efficient, but it requires the knowledge 
of system state. Practically, this is not always the case, and 
system will have to internally approximate its structure. 

                                                           
M. Benbouzid, Q. Bresson, A. Duclos, K. Longo, and Q. Morel are 

Undergraduate Students with ECE Paris School of Engineering, France 
(Correspondence: qmorel@ece.fr, quentinmorel76@hotmail.com). 

In distributed approach [3]-[7] on the other hand, several 
intelligent agents are controlling fluxes. They are situated at 
local level, i.e. they are consumers sharing the flux coming 
from producer. Distributed intelligent algorithms mainly fall 
into two categories: 
• Cognitive approach, with very intelligent entities and 

weak interactions. Best results would correspond to 
complete split of initial interactive system into a set 
independent “components” representing at local level all 
system possible dynamics [8]-[9]. 

• Reactive approach with weakly intelligent entities and 
strong interactions (for modeling social phenomena such 
as decision making in ant colony [10]-[12]). 

Distributed approach imposes a Multi-Agent System (MAS) 
[13], [14], developed through specific tools [15]. Key point in 
distributed approach is communication. As agents are 
completely independent a strict communication protocol 
should be set up for their interaction. MAS are often more 
realistic with large number of interacting elements. They are 
by nature more flexible on system global structure such as 
population variation, as individual agent existence is not 
directly depending on it. But development of distributed 
approach is often very complex and results are not always as 
significant as with centralized approach. Both previous (and 
opposite) approaches have each shown their limits. They both 
have in common to be ‘’universal’’ in that they use only a 
global (macroscopic) vision and do not account for system 
structure and its specific properties. To proceed further, it is 
thus interesting to analyze it. For the case of relatively few 
consumers, advantage of distributed organization is not so 
evident by the information flux exchange constraints it 
implies. 

Here, taking advantage of more accurate description of 
system components, it will be shown that with centralized 
approach an optimum distribution can be set up based on 
observation of consumption peaks. The idea is to have all 
housing equipments communicate with a centralized scheduler 
which manages power distribution within the habitat by rolling 
over equipments consumption to least expensive time period so 
that they can all satisfy their duty within a prescribed time 
interval and with prescribed maximum energy consumption. 
From a comprehensive state of the art on EMS (Energy 
Management System) [16], [17], it has been observed that all 
boxes representing system components are using the same 
techniques: electrical effacement, energy consumption 
analysis, heating and lighting control and alerts in case of 
overconsumption. The real time scheduling, an approach 
different from the field of computers, has been adopted. The 
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scheduler will place the equipments in a certain order to avoid 
the two energy peak consumptions during a day which are 
really expensive for electricity suppliers. This scheduling will 
make overall habitat consumption as smooth as possible with a 
priority to user comfort. 

II. CONTEXT 
The different equipments of typical habitat will be ordered 

as follows. Equipments are called random if their starting time 
cannot be predicted, and cannot be displaced. Typically, one 
cannot move the start of a television to meet user comfort. 
Programmable equipments on the other hand are equipments 
the start of which can be moved in time without disrupting user 
comfort (e.g. washing machine). 

Indeed, using a model of scheduling processors described in 
Part A below, a typical day can be split in four periods: the 
occupation of habitat in the morning, the vacancy period during 
the day, the period of occupation in the evening, and the night. 

The issue of present paper is the scheduling of 
programmable equipments during vacancy period and at night. 
The idea is that the user can activate the programmable 
equipments during periods of occupation, but they will be 
switched on only during the vacancy period, or during the 
night. 

A. The Gang Model 
The paper relies on the Gang Model [18], [19] which 

describes different processors scheduling algorithm. Some 
properties of this model are used for incorporating it into the 
energy field. It is based on two algorithms, "in the dark" and 
"clairvoyant", from which the semi-clairvoyant algorithm is 
defined as a basis of the model. 

1. The “In The Dark” Algorithm 
If the number of processors available is sufficient to 

complete a task before its deadline, the task is executed. The 
algorithm does not take into account the tasks at runtime, 
which may be interrupted due to processor assignment to a new 
task. The algorithm does not plan the tasks. 

2. The “Clairvoyant” Algorithm 
This algorithm provides a complete profile of tasks to be 

performed and assigns to each of them the adequate number of 
processors. Profile sets cannot be changed, and a new job 
outside the profile will run long after application. 

The first algorithm does not provide enough future 
operations or their impact on the tasks at runtime. The second, 
in contrast, provides too much and leaves no room for 
performing a task that does not belong to pre-established 
profile. So the chosen intermediate algorithm will be called 
“semi-clairvoyant”. 

3. The “Semi-Clairvoyant” Algorithm 
It approximates the clairvoyant algorithm scheduling tasks 

but for running only on a defined period. This helps promote 
both tasks at runtime, and the tasks to be performed. Present 
paper uses some transposition of this model to energy model in 
the sense that the number of allocated processors corresponds 

to habitat power limit. Gang Model which is semi-clairvoyant 
algorithm is used in the same way because the day is split into 
four periods during which each equipment will be 
programmed. 

Two constraints are considered, a power constraint and a 
time constraint. Recall that the problem only focuses on 
programmable equipment. Let: 

E = {e1, e2,…, en} as the set of tasks to be performed during 
a period T. In other words, T is the period over which the 
scheduling of n tasks must be performed. 

pi the average power for task ei. 
Ec = {f1, f2,…, fn} the set of consumption functions 

associated with all tasks of E and max (fi) the maximum 
consumption function of task i. 

III.  SYSTEM CONSTRAINTS AND ALGORITHM 

A.  Power Constraint 
Consider a power limit not to exceed Pmax. A set of tasks  

E = {e1, e2,…, en} is defined. A task ei corresponds to the 
execution of an action by equipment i for a period ti beginning 
at time td and ending at time tf. Let the nominal power of all 
programmable equipments Pi as Ptot = Σ Pi, Ptot is the sum of 
nominal powers. 

B.  Time Constraint 
Equipment activation will be carried out according to a 

second constraint, the time T, which it is also interesting to 
optimize as well as the power limit described above. This time 
T is the vacancy period during the day, or the period of sleep at 
night. It corresponds to user periods of inactivity where only 
programmable equipment can be activated. T is the input 
variable to be provided by the user when giving preferences. 
The algorithm will be the same for vacancy period during the 
day, and for night. 

C.  Scheduling Algorithm 
There are two trivial cases. The first one is when for i 

scheduled tasks, the following inequality holds: 
 

∑ti<T.                                        (1) 
 

The second trivial case is: 
 

Ptot=∑ pi<Pmax.                               (2) 
 

If the i scheduled tasks satisfy both (1) and (2), they will be 
ordered one after the other rather than running simultaneously. 
If (1) is satisfied and (2) is not, the tasks are performed one 
after the other. If (2) is satisfied and (1) is not, the equipment 
are started simultaneously. 

The case where both inequalities are not satisfied is not 
trivial. Then T is the input variable and one seeks to minimize 
P. In this case the scheduling algorithm is applied. 

Algorithm Principle: 
To explain the algorithm, equipments consumption is 

modeled by rectangular blocks. T is the time during which the 
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equipment must be running (user-defined). Ttot is the total time 
of all equipments when they are placed one after the other. One 
defines Td = Ttot−T which must be less than or equal to 0 in 
order to satisfy the time constraint. A diagram is constructed 
with blocks representing each equipment task and the different 
variables: Ttot, Td, ei, ..,placed and reorganized according to 
three steps, see Fig. 1. 
Step 1. Equipments are sorted in ascending powers in the list: 

E={e1, e2,...en} 
Step 2. In the list of all the tasks, the two equipments of lower 

power are selected and their two representing blocks are 
superposed as displayed on Fig. 1: 

 

 
Fig. 1 To meet time constraint t, the two blocks of lower powers 

stack on top of one another (block 2 on top of block 1) 
 

The second task is added to the first at the moment when the 
power is minimal. Both tasks are added as a new task, denoted 
e1 + e2, and the new list is then formed {e1 + e2,e3,…,en}. 
Step 3. Td is calculated. If Td is greater than 0 return to step 2. 

IV. ALGORITHM IMPLEMENTATION 
In this section, consumer equipments are no longer 

considered as rectangular blocks but as functions. The 
algorithm therefore combines all the tasks {e1, ..., en} as a set of 
consumption functions {f1,f2,…,fn}. 
Step 1. The set of functions fi are sorted in ascending 

consumption order Ec = {f1, f2, ..., fn}. Subsequently, Ec 
will be considered as a list of functions each defined on 
a precise interval which may differ depending on the 
tasks ei. Denote Ec(i) the i−th element of this list and 
t(Ec(i)) the duration of task ei corresponding to this 
function. 

 

 
Fig. 2 Equipment consumption as time functions rather than blocks 

(withEc (i)) 
 

Step 2. While (td>0) //Until Td = Ttot – Tis greater than0onegoes 
around an extra loop 

{ 
i=0 ; 
// The two functions corresponding to smallest power are 
added by operator Fadd(Ec(i),Ec(i+1))explicated below 

//One checks if the space vacated by previous addition of two 
functions is sufficient to meet the time constraint. If so, the 
loop is exited, otherwise another iteration loop is performed. 
Td = Ttot – T ; 
i++ ; 
} 

The add function F: 
This function takes two functions of Eclist and adds them in 

a very specific interval. To determine the interval of addition, 
one first finds the minimum of first function by solving: 
 

d(Ec(i))/dt = 0                                      (3) 
 

The abscissa tl of the minimum will be the left terminal of 
the interval, denoted tl = min (Ec (i)). The right terminal trof the 
interval will be determined by the following expression: 
 

tr =max(t(Ec(i+1))+min(Ec(i)),t(Ec(i))            (4) 
 
Function Fadd(Ec(i), Ec(i+1)) will add the two functions on the 
interval : 
 

[tl,tr] = [min (Ec(i)) ; max(t(Ec(i+1))+min(Ec(i)),t(Ec(i))]  (5) 
 

As constructed, present algorithm finally minimizes P while 
respecting the time constraint T. 

V. TESTS AND RESULTS 

A. Scheduling Tests 
To test the proposed solution, two different modes have been 

considered. The first mode is automatic scenario. This scenario 
provides the consumption of a habitat following French 
consumption average [20]. For each equipment, the following 
parameters {run time, start time, end time frequency of use of 
the equipment in a day} have been fixed. They are 
implemented in the scheduler which then sets the curve of 
energy consumption within the home. Each equipment 
simulated by automatic scenario will ask if the scheduler can 
run or not according to scheduling algorithm. 

The second mode is the manual scenario. This scenario 
simulates real-time scheduling algorithm. Sensors Kit Raven 
[21] is used to simulate the electrical habitat. Thus, a simple 
press of the button will simulate the sensor's user switching 
equipment. This test mode allows test scheduling algorithm in 
real conditions. 

B. Results 
To smooth out electricity consumption curve with proposed 

scheduling for habitat equipments, they are clustered into three 
categories: 
– The random ones with non regular and predicable 

activation 
– The programmable ones which follow a predetermined 

sequence which cannot be stopped unless one should 
restart the duty cycle from the beginning, such as a 
washing machine, a dryer or a dish washer. These 
equipments are used in a relatively regular manner 
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– The constant equipments utilizing periodically energy for 
some time intervals, such as VMC and refrigerator. 

On the other hand, heating can be used in two different 
ways, one for heating the whole house and the other one for hot 
water tank (with adiabatic vessel allowing heating long before 
utilization). So house heating can be started typically 30mn 
before inhabitant arrival, whereas hot water tank can be 
activated much longer before. 

The sequence of firing up the equipments (the blocks on 
Figs. 1 and 2) has been defined depending on allowable time 
interval. If it is large, one will try to put the blocks one after the 
other, knowing that the scheduler puts the larger blocks first 
and follows the firing order of the tasks to give the user the 
largest power in case of earlier return at home. If the time 
interval is small, the scheduler puts smaller blocks on top of 
large ones. If their addition exceeds the power limit, their firing 
is slide to a later time period. 

In first automatic mode 5 scenarios are included for 
validation. Without scheduling the system is driven by user 
desire. Two main periods are distinguished in the year, summer 
and winter, where the user can be either at home or at work. 

In manual second mode user behavior can be simulated by 
inserting different time intervals for equipments activation 
during the week-end and during week working days. Even if 
obtained curves may not represent perfect reality, it is already 
possible to verify their interaction with proposed algorithm. 

Interesting results are found when comparing consumption 
curves for different scenarios with a model habitat of 100 m2 
with 4 inhabitants, see Appendix for parameter description. 
Three basic scenarios have been considered where equipments 
have been fired at the same time for ease of comparison: 
scenario 1 without scheduling for reference, scenario 2 with 
scheduling during winter period (i.e. with home heating) and 
scenario 3 during summer period (i.e. without home heating). 
Results are displayed on Figs. 3 (a)-(c), respectively.   

First observation on Fig. 3 (a) is that consumption takes only 
place when inhabitants are at home and not asleep, and exhibits 
two important peaks at 7400W in the morning with a pedestal 
at 4200W and at 10350W in the evening with a pedestal at 
8000W. Such uncontrolled consumption creates high difficulty 
for distribution network and producers to be satisfied. With 
scheduling, it is observed that in scenarios 2 and 3 see Figs. 3 
(b), (c), some equipments (washing machine, drier, dish 
washer, electrical vehicle and heat accumulators) are shifted to 
inoccupation periods. There is little difference between the 
corresponding consumption curves which just stays in the time 
intervals 4:00am-6:00am and 16:00pm-18:30pm and, in 
particular, peak values are completely erased and dramatically 
reduced to 3400W typically to 1/3 of non scheduled value. 
Already for this simple case does scheduling show very 
effective and more manageable consumption reduction which 
could not be easily improved due to high consumption levels of 
some equipments (electrical vehicle, heat accumulator, drier). 

 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 3 (a) One day consumption with scenario 1, (b) one day 
consumption with scenario 2, (c) one day consumption with scenario 

3 
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VI. CONCLUSION AND FUTURE WORK 
Present study has been devoted to reduction of peaks 

consumption usually occurring in habitat without application 
of any specific rule, and which are responsible of large power 
waste when considering a whole country. Many methods have 
been proposed so far with great interest recently for distributed 
ones which have been shown to overcome the inherent 
difficulty of centralized more classical methods to generate 
NP-complex problems because of combinatorial explosion 
produced by analysis of full system network. However there 
remains to determine the critical number Ncrit of system 
elements above which this (asymptotic) property is effective 
and makes the switch to distributed control methods 
inevitable. Along this line a centralized method using a simple 
scheduling has been proposed and applied to a representative 
habitat. The obtained results when considering different 
possible inhabitant behaviors and different situations are very 
clearly showing that classical approach is still in order in this 
case with a first cut reduction of peak consumption by a factor 
of three.  

Despite the fancy appeal of smart and/or intelligent 
distributed approaches, the problem of peak consumption 
reduction can be efficiently handled with very inexpensive and 
robust method discussed here. The very reason is in the great 
dispersion of individual power consumption of the various 
consuming elements in a habitat which, apart a few large ones, 
includes many low consumption elements. It is not worth it to 
equip these last ones with high quality communication 
modules for exchanging further information. This is almost 
useless here as it has already been mentioned from observation 
of the results that the low obtained peak is almost at the level 
of highest individual consumption. A consequence is that the 
number Ncrit is not the only parameter fixing the switch to 
distributed methods which are not really making a difference 
when as in present case there are many small consumption 
elements. Present results suggest to keep centralized method at 
basic habitat level and to use distributed ones at higher cluster 
level of a certain number of apartments. Further comparison 
between centralized and distributed methods will be discussed 
elsewhere.  

In present study only power reduction satisfying time 
constraint has been considered. A more realistic approach 
would imply to also account for energy cost as a function of 
time slot, i.e. to introduce electricity cost at equipments launch 
time. Corresponding program will have to work on many tests 
at the approach to cost switching time to determine lowest 
expense partition under the constraint of fixed running time T. 
In a second loop variation on T within natural fixed limits will 
determine best optimal scheduled solution. Extension of 
energy task scheduling to higher level cluster of several 
habitats is interesting to determine the relevance of classical 
centralized approach applied to such cluster and in particular 
to evaluate the number of elements in the cluster above which 
distributed approach is more appropriate. Such problem will 
be discussed elsewhere. 

APPENDIX 
100 m2habitat is considered with four inhabitants. Tests are 

performed during a working day where inhabitants are at home 
and active from 6:00am to 8:00am and from 18:00pm to 
23:00pm, and are sleeping from 23:00pm to 6:00am. 

The following table displays power consumption of habitat 
electrical equipments and their working cycles used in the 
different scenarios. 

 
TABLE I 

HABITAT PARAMETERS 
Power 
watts Equipment Working Cycle 

170 TV 6:30-7:30 ; 19:00-23:00 
1310* Lightings 6:00-8:00 ; 18:00-23:00 

1500 Cooker 18:30-19:00 
1250 Microwave Hoven 19:00-19:10 
900 Iron 7:30-7:50 ; 18:00-18:20 
700 Vacuum Cleaner 18:30-18:40 
600 Toaster 6:10-6:20 
100 Pumping Hood 18:30-19:00 
450 Hair Drier 6:30-7:00 
150 Personal Computer 18:00-21:00 
750 Coffee Machine 6:00-6:10 
10 DVD Reader 21:00-23:00 
34 VMC 24/24 
41 Refrigerator 24/24 

1300 
2000 
1500 
3300 
1000 
3000 

 
1000 

 
 

Washing Machine 
Drier 

Dish Washer 
Electrical Vehicle 

Heater (no scheduling) 
Heat Accumulator 

(only with scheduling) 
Heater Sanitary Water 

 
 

6:10-8:10 + 
7:50-9:50 + 
7:30-9:30 + 

18:00-2:00 ° 
6:00-8:00 ; 18:00-23:00 
4:00-5:00 ; 16:00-17:00 

 
6:00-6 :30 ; 18:00-18 :30(scénario 1) 

5:00-5 :30 ; 17:00-17 :30 
(scénario 2) 

*13.1W/m2 ;+Shifted when unoccupied habitat with scheduling 
° Shifted to night time with scheduling 

ACKNOWLEDGMENT 
The authors are very much indebted to ECE Paris School of 

Engineering for having provided the environment in which the 
present work has been developed and Pr. M. Cotsaft is for help 
in preparing the manuscript. 

REFERENCES 
[1] N. Shaikh-Husin, M.K. Hani, Teoh Giap Seng: Implementation of 

Recurrent Neural Network Algorithm for Shortest Path Calculation in 
Network Routing, Proc. Intern. Symp. on Parallel Architectures 
Algorithms and Networks (I-SPAN '02), pp. 313-317, 22-24 May 2002. 

[2] Liu Rong, Liu Ze-Min, Zhou Zheng : Neural Network Approach for 
Communication Network Routing Problem, Proc. Computer, 
Communication, Control and Power Engineering (TENCON '93), 
pp.649– 652, Vol.3, Oct.19-21, 1993. 

[3] St. Russell, P. Norvig: Artificial Intelligence: A Modern Approach, 
Prentice-Hall, Upper Saddle River, New Jersey, 2003. 

[4] L. Padgham, M. Winikoff: Developing Intelligent Agent Systems: A 
Practical Guide, Wiley, New York, 2004. 

[5] A. Konar: Artificial Intelligence and Soft Computing, CRC Press, New 
York, 1999. 

[6] M. Hutter: Universal Algorithmic Intelligence: A Mathematical Top-
>Down Approach, Artificial General Intelligence, pp.227-290, Springer, 
2007. 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:11, 2013

1449

[7] A.D. Linkevitch: Self Organization in Intelligent Multi-Agent Systems 
and Neural Networks, Nonlinear Phenomena in Complex Systems, Part 
I: Vol.4 (1), pp.18-46, Part II: Vol.4 (3), pp.212-249. 

[8] K. Fischer: Holonic Multi-Agent Systems – Theory and Applications, 
Proc. 9th Portuguese Conference on Progress in Artificial Intelligence 
(EPIA-99), LNAI Vol.1695, LNAI. Springer Verlag, 1999. 

[9] S. Rodriguez, V. Hilaire, A. Koukam:  Formal Specification of Holonic 
Multi-Agent System Framework, Proc. Intern. Conf. on Computational 
Science, Lecture Notes in Computer Science, Vol.3516, pages 719–726. 
Springer-Verlag, 2005. 

[10] E. Bonabeau, M. Dorigo, G. Theraulaz: Swarm Intelligence: From 
Natural to Artificial Systems, Oxford University Press, Oxford, 1999. 

[11] D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck, B. 
Baesens : Classification with Ant Colony Optimization, IEEE Trans. on 
Evolutionary Computation, Vol.11(5), pp. 651-665, 2007. 

[12] M. Zlochin, M. Birattari, N. Meuleau, M. Dorigo: Model-based search 
for combinatorial optimization: A critical survey, Annals of Operations 
Research, Vol.131, pp.373-395, 2004. 

[13] J. Ferber: Les Systèmes Multi-Agents, Versune Intelligence Collective, 
Inter Editions, Paris, 1995. 

[14] N. Vlassis: A Concise Introduction to Multiagent Systems and 
Distributed Artificial Intelligence, Morgan and Claypool Synthesis 
Lectures on Artificial Intelligence and Machine Learning, Vol.2, 2007. 

[15] Jade Software at http://www.jade.co.nz, Janus Software at 
http://www.janus-software.com/. 

[16] P. Palensky, D. Dietrich: Demand Side Management: Demand 
Response, Intelligent Energy Systems, and Smart Loads, IEEE Trans. 
Indus. Informatics, Vol.7 (3), pp.381-388, 2011. 

[17] F. Saffre, R. Gedge: Demand-Side Management for the Smart Grid, in 
Proc. IEEE/IFIP Network Oper. Manage. Symp. Workshops 
(NOMSWksps), Apr. 2010, pp 300-303. 

[18] J. Goossens, V. Berten: Gang FTP Scheduling for Periodic and Parallel 
Rigid Real Time Tasks, RTNS 2010, ULB, Brussels. 

[19] J. Goossens, P. Courbin, V. Berten :Gang Fixed Priority Scheduling of 
Periodic Moldable Real-Time Tasks, Proc. JRWRTC 2011, Nantes, 
Sept. 29-30, 2011. 

[20] Cabinet O. Sidler: Analyse et Valorisationdes Campagnes de Mesure sur 
les Usages Electriques dans le Secteur Résidentiel Français. 

[21] Atmel Store/Atmel AVRRAVEN at http://store.atmel.com. 


