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Abstract—We have developed a new computer program in
Fortran 90, in order to obtain numerical solutions of a system
of Relativistic Magnetohydrodynamics partial differential equations
with predetermined gravitation (GRMHD), capable of simulating
the formation of relativistic jets from the accretion disk of matter
up to his ejection. Initially we carried out a study on numerical
methods of unidimensional Finite Volume, namely Lax-Friedrichs,
Lax-Wendroff, Nessyahu-Tadmor method and Godunov methods
dependent on Riemann problems, applied to equations Euler in
order to verify their main features and make comparisons among
those methods. It was then implemented the method of Finite
Volume Centered of Nessyahu-Tadmor, a numerical schemes that
has a formulation free and without dimensional separation of
Riemann problem solvers, even in two or more spatial dimensions,
at this point, already applied in equations GRMHD. Finally, the
Nessyahu-Tadmor method was possible to obtain stable numerical
solutions - without spurious oscillations or excessive dissipation -
from the magnetized accretion disk process in rotation with respect
to a central black hole (BH) Schwarzschild and immersed in a
magnetosphere, for the ejection of matter in the form of jet over a
distance of fourteen times the radius of the BH, a record in terms
of astrophysical simulation of this kind. Also in our simulations,
we managed to get substructures jets. A great advantage obtained
was that, with the our code, we got simulate GRMHD equations in
a simple personal computer.

Keywords—Finite Volume Methods, Central Schemes, Fortran
90, Relativistic Astrophysics, Jet.

I. INTRODUCTION

IN recent decades, the applications of numerical
methods and computational techniques in simulations of

astrophysical systems are becoming increasingly intensified,
due to advances obtained in numerical analysis researches,
scientific computing, analytical studies, observational
and experimental techniques. However, new scenarios,
phenomena, properties and characteristics are discovered
and detailed collaborating with the understanding of fluid
flow in astrophysical processes.

Central compact objects that attract the matter around
them, resulting in the formation of relativistic jets, earn
highlight for they are large emitters of energy that
influence many galactic processes [7]. These phenomena
are modeled by the Magnetohydrodynamics equations and
General Relativity (GRMHD) [31].
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Due the complexity of the differential equations system
from GRMHD, the computational difficulty of treatment
imposed by non-linear character of the equations and by
involving phenomena that operate in different orders of
magnitudes, the processes of plasma accretion and ejection
by the central compact object were initially treated separately
[3], [4], [8], [28].

Simulations that consider the accretion process, jet
formation and its ejection in the same temporal evolution
have been recently researched by Koide [17], Nishikawa
[24], McKinney [20], Shibata [16], among others. However,
the computational implementations of these phenomena by
means of numerical methods still pose challenges because
they require much attention on issues involving order of
accuracy, discontinuities in the solution of the equations,
stability of numerical methods, processing time (CPU time)
and memory used.

Another point of difficulty is the moment of transition
between the accretion disk and the beginning of the
formation of collimated jet formation, because in this
situation the quantities involved have abrupt variations
characteristic of the phenomenon and an inadequate
numerical treatment can add spurious oscillations or
excessive numerical dissipation that impair the simulation’s
performance.

Such difficulties can be perceived by two facts: since the
pioneering work of Koide, Shibata and Kudoh (1999) [16]
to the present day, researchers still use the Lax-Wendroff
method with the following properties: Total Variation
Diminishing (TVD) in the time; Artificial Viscosity;
dimensional splitting and slope limiters to avoid oscillations;
and the other fact is that the current codes available in
GRMHD don’t have the relativistic jets formation modeling
problems from the accretion disk to the ejection of matter.

Currently, the main codes used for the GRMHD
equations have an emphasis on Godunov methods that
need of analytical or approximate Riemann Solvers, with
dimensional splitting and slope limiter, even though the
equations system have degeneracy of eigenvalues obtained
from the Jacobian matrix [1], [5], [6], [9], [10], [12],
[22], [29]. This limits the applicability of such methods.
Another restrictive issue associated with these methods is
the use of dimensional splitting, which aren’t recommended
for problems whose eigenvalues have large differences in
orders of magnitude. These differences occur exactly at the
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transition that defines the formation of jets.
In this context, the main objective of this work was

to develop a new GRMHD code applied to the formation
of relativistic jets, able to describe it from the accretion
of matter in the form of a disk until the collimated
ejection. Featuring a jet by applying central schemes of
Finite Volumes without dimensional decomposition, in order
to better represent the temporal evolution of astrophysical
system with a larger extent than found in the literature [17],
[16].

the basic equations needed for the modeling and simulation

that were applied on problem in study and also we performed
comparisons between the approximate solutions obtained
from the schemes applied on the unidimensional Euler

jet formation through the new code developed in Fortran
90, the numerical solutions were obtained through the
two-dimensional Nessyahu-Tadmor method and the Euler

V we wrote the conclusions of this work.

II. MODELING OF RELATIVISTIC JETS

A. Fundamental Equations

The equations that provide base to the mathematical
modeling of relativistic jets come from the relativistic
magnetohydrodynamics (GRMHD), which consists of
relativistic balance laws of mass, momentum and energy,
coupled with the Electromagnetism [31],

∇μ(ρU
ν) = 0 , (1)

∇μT
μν
g = 0 , (2)

∂μFνλ + ∂νFλμ + ∂λFμν = 0 , (3)
∇μF

μν = 0 , (4)

where Uν are the components of the four-velocity. The
scalars ρ, p and ε are the proper density, proper pressure
and density of proper total energy

ε = ρc2 +
p

Γ− 1
,

respectivety. The constant Γ is related to the specific
heat, ∇ν is covariante derivate. The components of the
energy-momentum tensor is given by

Tμν
g = pgνμ + (ε+p)UνUμ + Fμ

σ F
νσ − 1

4
gμνFλκFλκ ,

where gμν and F νμ are the components of the space-time
metric and of the stress tensor of the electromagnetic field,
respectivety. In the case of the metric satisfy gμν = 0 for
μ �= ν, we have h0 =

√−g00, h1 =
√
g11, h2 =

√
g22 and

h3 =
√
g33.

Equations (1)-(4) are rewritten to have a similar
formulation to a conservation law, but with an additional

source term. The variables are represented by the following
vector

u = ( D P1 P2 P3 ε B1 B2 B3 )T ;

in which D is density; P1, P2 and P3 are the components of
the momentum; ε internal energy; B1, B2 and B3 componets
of magnetic field.

The interest in rewriting (1)-(4) for the conservation
laws format arises from the use of finite volume methods
for obtaining approximate solutions. This formulation was
initially developed by Koide, Kudoh and Shibata [16] and
other formulations are discussed in [9].

In this formulation, the components of the vectors v of
velocity, B of magnetic field and E of electric field, in fiducial
coordinates, are defined by

vi =
c

γ
hiU

i , (5)

Bi = εijk
hi

J
F jk , (6)

Ei =
1

h0hi
F 0i , (7)

where i, j, k = 1, 2, 3, γ is the Lorentz factor and J =
h1h2h3 is the Jacobian.

The conserved quatities are given by

D = γρ , (8)

ε = (e+ p)γ2 − p−Dc2 +
1

2

(
B2 +

E2

c2

)
, (9)

P =
1

c2
[
(e+ p)γ2v + E × B

]
, (10)

and energy-momentum tensor,

T = pI+
1

c2
(e+ p) γ2vv−BB− 1

c2
EE+

1

2

(
B2 +

E2

c2

)
I ,

(11)
with the componens being

T ij = hihjT
ij
g , i, j = 1, 2, 3 .

The magnetic and electric field are normalized by the
magnetic permeability μ, that is,

B =
B∗√
μ

e E =
E∗√
μ

,

where the quantities with asterisk are standard units of the
international system.

In addition to the assumptions and equations presented
in this section, we consider the problem under study with
axial symmetry, that is, the problem has no variation with
respect to azimuthal variable φ. In this case the problem
is two-dimensional in space, so the spatial variables are:
radial r and polar θ. However, with x1 = r, x2 = θ and
the hypothesis of axial symmetry, the equations are reduced
to

This paper was divided as follows: in Section II we present

of jets formation; in Section III we show numerical methods

equations; in Section IV we have a simulation of relativistic

method of four stages to add terms sources; and in Section
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Mass Equation:

∂D

∂t
= − 1

J

{
∂

∂x1
(h0h2h3Dv1) +

∂

∂x2
(h0h3h1Dv2)

}
(12)

Motion Equations:

∂P1

∂t
= − 1

J

{
∂

∂x1

(
h0h2h3T

11
)
+

∂

∂x2

(
h0h3h1T

12
)}

+S2

(13)

∂P2

∂t
= − 1

J

{
∂

∂x1

(
h0h2h3T

21
)
+

∂

∂x2

(
h0h3h1T

22
)}

+S3

(14)

∂P3

∂t
= − 1

J

{
∂

∂x1

(
h0h2h3T

31
)
+

∂

∂x2

(
h0h3h1T

32
)}

+S4

(15)

Energy Equation:

∂ε

∂t
= − 1

J

{
∂

∂x1
[h0h2h3 (P1 −Dv1)]

}
+

− 1

J

{
∂

∂x2
[h0h3h1 (P2 −Dv2)]

}
+ S5

(16)

Equations of Magnetic Field:

∂B1

∂t
= −h1

J

{
∂

∂x2
(h0h3E3)

}
(17)

∂B2

∂t
= −h2

J

{
− ∂

∂x1
(h0h3E3)

}
(18)

∂B3

∂t
= −h3

J

{
∂

∂x1
(h0h2E2)− ∂

∂x2
(h0h1E1)

}
(19)

Source Terms:

S2 = h0

{
(ε+D)G01 +G12T

21 +G13T
31
}
+

−h0

{
G21T

22 +G31T
33
} (20)

S3 = h0

{
(ε+D)G02 +G23T

32 +G21T
12+

}
−h0

{
G32T

33 +G12T
11
} (21)

S4 = h0

{
(ε+D)G03 +G31T

13 +G32T
23
}
+

−h0

{
G13T

11 +G23T
22
} (22)

S5 = h0 {G01P1 +G02P2 +G03P3} (23)

On (1)-(4), gravitation is added through the source term
and the metric components, hμ, μ = 0, 1, 2, 3, are
represented by componets Gμν defined by

Gμν = − 1

hμhν

(
∂hμ

∂xν

)
, (24)

where μ, ν = 0, 1, 2, 3.
The fluid is considered free of electromagnetic forces and

this restriction is known as frozen-in condition, given by the
following relationship,

E = −v × B . (25)

We note that the spatial and temporal derivatives are
separated, which defines the formalism (2 + 1) of equations
GRMHD. As the intention is to use these equations to model
the formation of jets, initially the model should begin from
an accretion disk rotation and in fall with respect to a
central compact object, which on this work it was considered
a Schwarzschild black hole represented by Schwarzschild
metric.

B. Schwarzschild Metric

The problem proposed of relativistic jets is modeled by
flow of magnetic fluid in the Schwarzschild spacetime whose
metric is static. This means that the central black hole
is responsible for all gravitation involved on the problem.
Therefore, on this model, the fluid has no self-gravitation and
so the gravitation is fully pre-determined by the following
Schwarzschild metric,

ds2 = −α2dt2 +
1

α2
dr2 + r2dθ2 + r2 sin2 θdφ2 (26)

in which

α =

√
1− rs

r
, with c = G = 1 , M =

1

2
rs (BH mass) ,

h0 = α, h1 =
1

α
, h2 = r , h3 = r sin θ ,

where α is the lapse function and rs is the Schwarzschild
radius used as reference unit. The constants c and G
are the light velocity and universal gravitational constant.
The coordinates (t, r, θ, φ) are respectively time, the radial
coordinate, the azimuthal and polar coordinate.

C. Accretion Disk

Simulations with stable jets formations is obtained through
a initial accretion disk whose thickness is geometrically fine
[18], [20]. The initial matter of the disk has a rotation
velocity on azimuthal direction and this component of the
velocity vector coincides with the Keplerian velocity [4], that
is,

vφ = vK =
c√

2

(
r

rs
− 1

) . (27)
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The accretion disk is a magnetized fluid, which is initially
localized on

| cot θ| ≤ δ and r ≥ rD = dinrs (28)

where din > 1 is the position of the internal edge whose
rotation velocity is

vK =
c√

2(din − 1)
.

A value studied for the opening of the disk is δ = 0.125,
i.e., if θ is the angle with respect to the equator belonging
to the interval ]0, π/2[ radians, then δ = 0.125 implies that
the disk occupies a sector of one-eighth of the corresponding

IV.
The magnetosphere that surrounds the system compound

of the accretion disk and the black hole is less dense than
the fluid that makes up the disc and, initially, it is in falling
toward the black hole containing only the radial component
of the speed non-zero. Thus, the initial conditions on the
density and velocity of matter around the black hole are given
by

Density:

ρ = ρmag + ρdisk (29)

where ρmag is density of fluid in the magnetosphere and
ρdisk is disk density. For the delimitation of the disk has
been

ρdisk =

{
κρρmag, if r > rD and | cot θ| < δ
0, if r ≤ rD or | cot θ| ≥ δ

,

(30)
in which κρ is ratio between disk density and magnetosphere
density.

Velocity:

(vr, vθ, vφ) =

{
(0, 0, vK), if r > rD and | cot θ| < δ
(−vmag, 0, 0), if r ≤ rD or | cot θ| ≥ δ

(31)
where vK is the Keplerian velocity, vmag is the infalling
velocity localized in magnetosphere, rD is the inner edge of
the disk and δ is related with opening angle of the disk.

Initially the disk is magnetized and for additional property,
we use the solution Wald whose components are given by

Magnetic Field: ⎧⎨
⎩

Br = B0 cos θ
Bθ = −αB0 sin θ
Bφ = 0

, (32)

in which B0 = κB

√
ρDc2 and ρD is the density at the inner

edge of the disk [33].
One way to determine vmag is through the following

equation [16],

α =
H(γ−2 + Γ− 2)

(Γ− 1)γ
, (33)

where H is the constant related to the enthalpy of the fluid,
Γ is a constant related to the specific heat, α is the lapse
function and γ is the Lorentz factor function. Equation (33)
ensures that there is a sonic point between the values of
γ satisfying the equality. This point separates regions where
the fluid has transonic and subsonic speeds, and this property
makes accretion disk more realistic [4].

The magnetosphere region has only the radial component
of velocity vr = −vmag . Thus, solving (33) by
Newton-Raphson method we find values of γ to each α
and, therefore vmag is determined for Lorentz factor, that
is, γ = 1/

√
1− β2 where β = vmag/c.

With the assumption that the gas (plasm) is polytropic, that
is, p = ρΓ and that the ratio between density and pressure
is given by [4], [16],

a =
p

ρ
=

Γ− 1

Γ

(
H

αγ
− 1

)
c2 . (34)

This information is sufficient to make the initial setting
of the magnetized accretion disk on rotating, surrounded
by a magnetosphere, both influenced by the Schwarzschild
black hole. However, to determine the expressions found,
the GRMHD differential equations that model the temporal
evolution of the phenomenon, require an expression that
relates density, pressure, magnetic field and energy, that is,
it will be required an equation of state.

D. Equation of State

The system of algebraic equations which relate the
quantities of equations used in formation problems
relativistic jets is represented by the following equations

x(x+ 1)
[
Γax2 + (2Γa− b)x+ Γa− b+ dΓ

2 y
2
]2

=

=
(
Γx2 + 2Γx+ 1

)2 [
τ2(x+ 1)2 + 2σy + 2σxy + β2y2

]
[
Γ(a− β2)x2 + (2Γa− 2Γβ2 − b)x+ Γa− b+ d− β2

]
y

+Γ
2 y

2 = σ(x+ 1)(Γx2 + 2Γx+ 1) ,
(35)

where

x = γ − 1 , y = γ(v · B) , a = D + ε , b = (Γ− 1)D ,

d = (1− 0, 5Γ)B2 , τ = P , β = B and σ = B · P.

In (35), the values x and y are unknown and the way
chosen to solve it was through the Newton-Raphson method
[26], [25]. As at each time step, the GRMHD equations
require to resolution of such system, thus the initial approach
required by the Newton-Raphson method is chosen as the
solutions x and y found in the previous time step. Details on
the equation of state are in [21] e and initial studies in [27].

sector to interval ]0, π/2[ . See the simulations of the Section
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E. Initial and Boundary Conditions

The initial conditions must model the accretion disk along
with the magnetosphere and the central black hole. Thus, we
implemented a modular structure in Fortran 90 specifically
to deal with such stage, which is the construction of the

In the case of boundary conditions on the magnetosphere
region between the inner and outer radii, the matter should
continue with their dynamic beyond the domain. Therefore,
in this region we used radiation conditions.

In outer edge, the disk is fed through matter, thus in this
region we applied Rodin condition. To the boundaries θ = 0
e θ = π

2 , we used mirror symmetry.
These conditions are fundamentals at applied numerical

methods to obtain approximate solutions of differential
equations.

III. NUMERICAL METHODS

A. Comparisons

We implemented codes of the following
methods: Lax-Friedrichs (L-F) without staggered
mesh [19]; Lax-Wendroff-Richtmyer (LWR) [19];
Lax-Wendroff-Richtmyer for spatial discretization and
Runge-Kutta 3 TVD for temporal discretization (LWR-RK3)
[15]; Nessyahu-Tadmor with staggered grid (NT-ST) [23]
and Godunov with Riemann Solver of Harten-Lax-Leer
(G-HLL) [13], [14]. All these to find approximate solutions
of the Euler equations and to compare them. The codes
to Euler Equations were written in Octave, executed with
octave version 3.6.4 in Linux/GNU (kernel 3.8.0-30).

The one-dimensional Euler equations are

∂

∂t
ρ+

∂

∂x
(ρv) = 0 (mass equation) (36)

∂

∂t
ρv +

∂

∂x

(
ρv2 + p

)
= 0 (motion equation) (37)

∂

∂t
E +

∂

∂x
(v (E + p)) = 0 (energy equation) (38)

where

ρ = ρ(x, t) (mass density of fluid)
v = v(x, t) (velocity)
p = p(x, t) (pressure)
E = E(x, t) (total energy of the fluid)
ε = ε(x, t) (internal energy)
γ (specific heat of fluid)

with

E =
1

2

(
ρv2 + ε

)
and ε =

p

(γ − 1)ρ
.

Consider the following initial conditions (known as
Woodward & Colella problem [34]):

ρ(x, 0) =

{
1.0 if x < 2
1.0 if x > 2

, v(x, 0) =

{
0.0 if x < 2
0.0 if x > 2

and
p(x, 0) =

{
0.01 if x < 2
1, 000.00 if x > 2

. (39)

With γ = 1.4, x ∈ [0, 4], Δx = 0.005 and final time
tf = 0.4 we obtained the Table I and the Figs. 1-6. For all
methods we used Δt = CFL.Δx

TABLE I
INFORMATION ON THE COMPUTATIONAL PERFORMANCE OF EACH

NUMERICAL METHOD

Methods CFL time steps CPU time (s)
L-F 0.02 400 4.01

G-HLL 0.02 400 10.06
NT-ST 0.008 1,000 17.37

LWR-RK3(∗) 0.02 400 20.85
LWR (∗∗) 0.0001-0.04 - -

(∗) stable between 0.01 and 0.02, unstable to 0.005 and 0.04.
(∗∗) unstable method between 0.0001 and 0.04.

Fig. 1 Density evolution: This graph is the reference exact

Fig. 2 Density evolution: In this graph we plotted the aproximate
solution obtained by Godunov method with Riemann Solver HLL.

The graph of Fig. 3 shows the solution found by the
Lax-Friedrichs method. In compared to other methods, the
solution obtained at the density showed the dissipative
character of the L-F method.

In the Fig. 4, we have the solution obtained by
Nessyahu-Tadmor method and this remained less dissipative
than L-F method, even needing more iterations when
compared to Lax-Friedrichs, see Table I.

equations of Sections II-A,B and C.

solution obtained by [32]
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Fig. 3 Density evolution: The solution obtained by the
Lax-Friedrichs method

Fig. 4 Density evolution: In this graph we have the solution

Fig. 5 Density evolution: The solution obtained by the LWR

Fig. 6 Density evolution: The solution obtained by

Comparing the methods NT-ST and G-HLL, Figs. 2, 4, the
approximate solutions have similar behaviors. However, there
are differences between the methods. For example, NT-ST
method needed CPU time longer than the G-HLL method,
see Table I, and G-HLL requires that the eigenvalues of the
Jacobian matrix are known (analytically or numerically).

Although the solutions show great similarities, the
solutions obtained by the Nessyahu-Tadmor method stood
out because it is possible to see a better representation
of the peak that appears in the density-graph and a better
representation of internal energy graph.

The solutions obtained by the Lax-Wendroff’s methods
are in Figs. 5 and 6. In the graphs of Fig. 5, we have the
solution obtained by the Lax-Wendroff-Richtmyer method,
whose evolution has not reached the final time due to large
oscillations (numerical dispersions). In an attempt to stabilize
it , we ranged the CFL values from 0.0001 until 0.04,
however it was not possible to obtain a stable solutions.

Fig. 5 has plotted the solution to the values CFL =
0.0001, 1, 200 iterations and for the final time of 6.10−4,
we had an overflow with a little more of iterations.

We notice that same the Lax-Wendroff-Richtmyer method
being consistent and conditionally stable [30], it was unable
to get a stable solution due to spread of large oscillations near
the discontinuity of the initial pressure, that were begun from
the firsts time steps.

The modifications made on the Lax-Wendroff method
through the Runge-Kutta 3 TVD for the temporal
discretization were able to control the large initial oscillation
and stabilize the numerical solution, see Fig. 6.

The computational cost of these methods are shown
in Table I. The Nessyahu-Tadmor method delayed 4.3
times longer to execute the same final time realized by
Lax-Friedrichs method and LWR-RK3TVD method spent
nearly 4 times more to achieve the developments obtained by
the Lax-Friedrichs. On the other hand, Nessyahu-Tadmor was
the best method that represented the evolution of the initial
discontinuity of pressure and other discontinuities subsequent
to initial conditions. Other tests and comparisons between
methods are exposed in [11].

With these comparisons we choose to apply the
Nessyahu-Tadmor method on (12)-(19). In the next
subsection we’re presenting the expression of the
Nessyahu-Tadmor method and next section IV, we
exposed the numerical solutions obtained for a problem of
jets formation.

B. Bidimensional Nessyahu-Tadmor Method
By it is a natural extension of the Lax-Friedrichs scheme,

Nessyahu-Tadmor method keeps the robustness of the
Lax-Friedrichs, providing stable solutions without spurious
oscillations and excessive numerical dissipation [23]. This
method starts of a law of conservation and considers each
finite volume in a staggered mesh. With a stability condition
(CFL condition), the method keeps the discontinuities into
of the finite volumes and avoids of solvering a Riemann
problem at each edge of the finite volumes.

obtained by the Nessyahu-Tadmor method

method with excessive dispersion (numerical oscillation)

LWR-RK3TVD method
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we get the bidimensional Nessyahu-Tadmor method on
staggered mesh,

wn+1
i+1/2,j+1/2

=
1

4

(
wn

i,j + wn
i+1,j + wn

i,j+1 + wn
i+1,j+1

)
+

+
1

16
[(Dxwi,j −Dxwi+1,j) + (Dxwi,j+1 −Dxwi+1,j+1)] +

+
1

16
[(Dywi,j −Dywi,j+1) + (Dywi+1,j −Dywi+1,j+1)] +

−λx

[
f
(
w

n+1/2
i+1,j

)
− f

(
w

n+1/2
i,j

)
− f

(
w

n+1/2
i+1,j+1

)
+ f

(
w

n+1/2
i,j+1

)]

−λy

[
g
(
w

n+1/2
i,j+1

)
− g

(
w

n+1/2
i,j

)
− g

(
w

n+1/2
i+1,j+1

)
+ g

(
w

n+1/2
i+1,j

)]

(40)
where

Dxwi,j = MM
{
Δxw

n
i+1/2,j , Δxw

n
i−1/2,j

}
with

Δxw
n
i+1/2,j = wn

i+1,j − wn
i,j

and

Dywi,j = MM
{
Δyw

n
i,j+1/2 , Δyw

n
i,j−1/2

}
with

Δyw
n
i,j+1/2 = wn

i,j+1 − wn
i,j .

For (40) we have

λx =
Δt

2Δx
and λy =

Δt

2Δy
.

The symbol MM {·, ·} is the minmod function defined by

MM{a, b} =
1

2
[sign(a) + sign(b)]min {|a|, |b|} , (41)

with sign(a) being the signal of number a, and the
expressions with n+ 1/2 are given by

w
n+1/2
i,j = wn

i,j −
Δt

2Δx
Dxfi,j − Δt

2Δy
Dygi,j , (42)

with

Dxfi,j = MM{Δxfi+1/2,j ,Δxfi−1/2,j},
in which Δxfi+1/2,j = fi+1,j − fi,j and

Dygi,j = MM{Δygi,j+1/2,Δygi,j−1/2},
with Δygi,j+1/2 = gi,j+1 − gi,j .

Remark, if

Dxw = Dyw = Dxf = Dyg = 0,

then (40) reduces to bidimensional Lax-Friedrichs method
on staggered mesh. These methods may also be obtained
in a non-staggered mesh [19], [23], [30]. On the (40) and
its subsequent definitions, wn

i,j represents the approximate
solution on time step n, at each (xi, yj) point of the
discretized mesh.

Following these same ideas, we applied the

Nessyahu-Tadmor method to discretize and implement
the GRMHD equations described in subsection II-A. In the
next subsection, we will show as adding source term.

C. Decomposition of Source Term
The implemented (12)-(19) are the following form,

ut + f(u)x + g(u)y = s(u) .

Before applying the Nessyahu-Tadmor method, we
separate the Partial Differential Equation (PDE) with source
term at a PED homogeneous and an Ordinary Differential
Equation (ODE) involving the source term. Thus, between
the time tn and tn+1 we have the following problems{

ut + f(u)x + g(u)y = 0
u(x, y, tn) = un ⇒ un+1 (43)

and {
du

dt
= s(u)

u(x, y, tn) = un
⇒ un+1 . (44)

Therefore, to perform a time step from tn to tn+1, we obtain
an approximate solution to (43) and use this solution as the
initial condition of the ODE.

Equation (43) is solved by Nessyahu-Tadmor method [2]
and the solution is updated solving (44) for a four-stage
Runge-Kutta method [25].

IV. JETS SIMULATIONS

In the problem of formation of relativistic jets, we
implemented the two-dimensional Nessyahu-Tadmor method
without dimensional separation, described in section III-B,
through of modular structure of the Fortran 90. We used
Euler method of four stages to solve the ODE that adds
the source term III-C. The code was written completely
in Fortran 90 without the use of packages ready and it is
described in [11].

With Nessyahu-Tadmor method we got simulations of
formation jets since its accretion disk until the ejection of
matter. We obtain simulations without excessive dissipation
nor, spurious oscillations until the jet reach 14 times the
Schwarzschild radius without using additional techniques
computational. Furthermore, we could observe the formation
of substructures jet and for this we executed the code in a
simple computer. The values used were:

• Spatial domain: [1, 1 20] × [0, π/2], that is r ∈
[1, 1 20] and θ ∈ [0, π/2] radians;

• Subintervals: 630 × 630, thus Δr = 18, 9/630 and
Δθ = π/1260;

• Temporal increment: Δt = 401×0.005min{Δr,Δθ};
• Constants: constant related with specific heat Γ = 5/3

and enthalpy H = 1, 3;
• Opening of disk: δ = 0.125, that is, θ = cot−1 δ;
• Density disk: 401 times greater than the density of the

magnetosphere;
• Inner edge of disk: rD = 3rS , three times the black

hole radius;
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In this case, we were decided to normalize initial data with
respect to the value of 401 in order to make with that method
works with lower numerical values. This normalization is
called the scale factor and can be found in numerical methods
applied on dynamic fluids [32]. For a better view of the
graphs we use the logarithm to base 10 to the values of
density, pressure and total energy. On Figures we have the
z axis divided by Schwarzschild radius (z = z/rS) and
horizontal axis is the radius divided by rS (r = r/rS),
however the axes are dimensionless quantities.

The following we have the initial graphs, Figs. 7, 8 , 9,
10 and 11.

Fig. 8 In this graph we plotted the magnitude initial of the

In these examples the reference unit is the radius of the
black hole (BH) and in the graphs, each unit in the vertical
and horizontal axes corresponds to the reference unit. The
BH is centered at the origin of the graphics and its radius is
exactly unity.

The Figs. 12-15 show the temporal evolution of the
density. Initially, we have only the accretion disk with
rotation surrounding of black hole, with the vertical axis
of rotation, and magnetosphere in falling toward the black

Fig. 7 We have the graph of the initial condition of the density

velocity

Fig. 9 The graph shows the initial total energy

Fig. 10 Initial condition of the magnitude of the pressure

Fig. 11 Initial condition of the magnitude of the magnetic field
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hole. Then the simulation passes by the transition between
accretion and ejection, from that moment realizes the ejection
of matter in the form of collimated jet along the vertical axis.
Finally, the jet extends to the distance of 14 times the radius
of the central hole black.

Within the jet stands out the formation of substructures,
see Fig. 15. These substructures are compatible with the
existing literature on jets [7], [20].

Figs. 16-19 show the temporal evolution of total energy.
By observing these figures, we noticed a structure is being
formed in the accretion disk on the horizontal axis between
the values of 2 and 3. This substructure is not permanent and
on Fig. 19 notes its disappearance. In connection with the
numerical solutions of the total energy also perceives such
substructure.

However, we managed to achieve objective of this work
to obtain stable approximate solutions for the formation of
relativistic jets from the accretion disk to the ejection of
matter. Also, we made videos of the approximate solutions
of each quantity. In the next section, we will show the
conclusions this paper.

Fig. 12 Density: Numerical solution after 500 iterations

Fig. 13 Density: Numerical solution after 1,000 iterations

Fig. 14 Density: Numerical solution after 1,500 iterations

Fig. 15 Density: Numerical solution after 2,000 iterations

Fig. 16 Total energy: Numerical solution after 500 iterations
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V. CONCLUSION

This paper we implemented methods Finite Volume
Centered , namely: Lax-Friedrichs and Nessyahu-Tadmor
applied to problems of formation of relativistic jets from the
fall of an accretion disk, rotating around a black hole central
(BH) given by the Schwarzschild metric,until the ejection of
fluid by the BH poles.

We model this problem through the equations GRMHD,
rewritten by Koide et al. formalism [17], with axial symmetry
and gravitation predetermined by Schwarzschild metric.

Before for all, we investigated the methods Lax-Friedrichs,
Lax-Wendroff’s, Godunov and Nessyahu-Tadmor applied to
a test problem of the Euler equations.

With the application of two-dimensional
Nessyahu-Tadmor method achieved the main objective
of this work, because we got simulations that goes through
the transition between accretion and ejection without
spurious oscillations and excessive numerical dissipation,
thus we obtained simulations that are more detailed. In
the simulated example, the jet was formed on the poloidal
region of the BH and remained stable until it reaches 14
times the radius of the central black hole, a record to this
kind of simulations.

With the new code , we could also simulate the formation
of substructures that appear in both on the disk and on
the jet. Such substructures show the good performance
of Nessyahu-Tadmor method by applying it in GRMHD
equations with axial symmetry. We made all this into a
simple personal computer, which shows the potential of the
development of this code to the study of more complete
systems and a future parallelism of the code.

Given the performance of the new code, the next step is to
exploit it on other Astrophysics examples and to add the third
spatial dimension. To this, an important step is to parallelize
the code. Finally, we intent of making it available for that
other researchers also contribute to the development of the
code and expand its applicability.

The continuity of this work can follow to some of the
following issues: exploring the Nessyahu-Tadmor method in
other astrophysical problems; add an option to run the code
in three spatial dimensions; adapt the problem to the Kerr
metric; among others.
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