
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:9, 2014

2872
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Abstract—Collateralized Debt Obligations are not as widely used
nowadays as they were before 2007 Subprime crisis. Nonetheless
there remains an enthralling challenge to optimize cash flows
associated with synthetic CDOs. A Gaussian-based model is used
here in which default correlation and unconditional probabilities of
default are highlighted. Then numerous simulations are performed
based on this model for different scenarios in order to evaluate the
associated cash flows given a specific number of defaults at different
periods of time. Cash flows are not solely calculated on a single
bought or sold tranche but rather on a combination of bought and
sold tranches. With some assumptions, the simplex algorithm gives
a way to find the maximum cash flow according to correlation of
defaults and maturities. The used Gaussian model is not realistic in
crisis situations. Besides present system does not handle buying or
selling a portion of a tranche but only the whole tranche. However the
work provides the investor with relevant elements on how to know
what and when to buy and sell.

Keywords—Synthetic Collateralized Debt Obligation (CDO),
Credit Default Swap (CDS), Cash Flow Optimization, Probability

I. INTRODUCTION

COLLATERALIZED Debt Obligations have been playing a
substantial role since 2007 economic crisis. The whole

banking world collapsed when the number of defaults, due
to unpaid mortgages, impacted CDO tranches and caused
protection sellers to pay their default legs. Thus, it is important
to know how the number of defaults influences the resulting
cash flow.

The main difficulties to be considered for doing so are 1)
choosing the model to be retained for estimating probabilities
of default, 2) finding correlations between them and 3)
acquiring relevant data and physical hardware limitations.
These concerns should however not be a problem to make
a point as the main focus here concerns the methodology and
the approach rather than the accuracy of presented data.

Amongst the various existing financial instruments, CDOs
are exotic derivatives [7], which were created in order to
perform securitization, i.e. to transform illiquid assets such as
real estate (mortgages), significant blocks of stock etc. into
easily tradable products. So, CDOs tend to gather illiquid
assets and to normalize the way they are built and handled,
which enables comparison between products of different kinds.
Synthetic CDOs, the ones being dealt with, are described as
CDOs made out of Credit Default Swaps (CDSs). Fig. 1
briefly describes the relation between protection buyer and
protection seller when synthetic CDOs are used to manage
defaults. Synthetic CDOs can be considered as a contract
between stakeholders transferring part of the risks from one
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to the other as individuals would do when subscribing to an
insurance contract.
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Fig. 1: Relation between Protection Buyer and Protection
Seller.

If CDOs have the major advantage of being relatively liquid,
they also have the disadvantage of hiding the underlying assets.
Therefore, they are split into tranches rated into different
categories according to the amount of risk they include. As
an example, Fig. 2 displays the standardized iTraxx CDOs.
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Fig. 2: CDO tranches with iTraxx Standardization. Top
Tranches are safest while Bottom ones are riskiest.

Numerous models exist to represent default probabilities
such as the Gaussian copula model [8], the bottom-up
affine jump-diffusion model, a local intensity model [1] or
the top-down bivariate spread-loss model [4], [6]. Because
theoretical aspect of this model is complex, the aim of this
paper is to pick one of them and consider it as if it were
correct.

of Default, Default Correlation, Strategies, Simulation, Simplex.
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A. Pricing CDOs

A CDO pricer is implemented in [9] based on the general
structure of credit risk developed in [12].

Kn,t,T =
ln(Dn)− ln(An,t)− (μn − σ2

n

2 )(T − t)

σ
√
T − t

(1)

Where
• Dn the face value
• An,t the sum of equity and debt values
• μn the total expected return
• σn the asset relative instantaneous volatility
• T the maturity
• pn,t,T is the probability of default at maturity T evaluated

at time t < T
• pn,t,T = Φ(Kn,t,T )

with Φ(u) =
∫ u

−∞
1√
2π

exp[− 1
2z

2]dz
CDO quotes that had already been priced using this model

have been taken for granted in present study [3], [17].
In order to describe the probabilities of default, the single

factor asymptotic Vasicek model is applied, but this leads
directly to formulate several hypotheses concerning an infinite
amount of credits or a correlation between identical defaults.
Thus, when applying the model to CDO pricing [9], the
various hypotheses restrain the study to an artificial type of
CDO but nevertheless useful for testing the validity of such
financial product over time. The main used parameters are:

• The lower and higher strike price in relation with the
chosen CDO tranche

• The payment frequency
• The default probabilities
• The default correlation
• The losses associated to each default

The type of considered CDO (synthetic or cash) alongside
tranche choice of the same CDO can influence significantly
the parameters as for example the default correlation and
associated losses. With an extended version of the Vasicek
model the default probability can be formulated as:

P (Lt = x | Yt) =

(
N
x

)
p(Yt)

x(1− p(Yt))
N−x (2)

Where:
• Lt designates the number of defaults
• Yt is the common factor
• N is the total number of CDSs
It is important to correctly calibrate parameters and to define

the context in which they are used [9], [17].The pricer based
on Vasicek’s method enables to approach the relation existing
between several parameters and the capacity to get rid of some
of them.

Hedging strategies consist in fitting operator positions with
regard to market evolution [11]. In other words, he is buying
or selling parts of his portfolio, whose prices are regularly
and frequently re-assessed in order to prevent losses. Even
though it is not the focus of this paper, it is a step that cannot
be neglected for the same reasons that one cannot avoid the

implementation of a model: they are prerequisites to base work
hypothesis upon [4].

The goal of present study is to analyze CDO cash flows.
Their mechanism are taken from [4], [5], [6]. Corresponding
formulae are the starting point of this paper in simplified form
with changes in parameters.

General formulae to calculate cash flows are given by [4]
(3) represents the value of default leg protection received

by the buyer at time t.∑
t<Tm

B(t, Tm)(1−R)P (Tm−1 < τi < Tm | Ft) (3)

Where:
• B(t, Tm) represents the discount factor from time Tm to

t
• P is a risk neutral probability
• Each Tm represents the different deadline payments
• R is the recovery rate
• Ft represents the flow of information
And (4) represents the value of premium leg received by

the investor.

sio
∑
t<Tm

B(t, Tm)(Tm − Tm−1)P (Ti > Tm | Ft) (4)

Consider the tranche Tr ≡ [Kd — Ku] of a CDO
[16], whose underlying portfolio is supposed to be made
of N CDSs, each with an identical nominal value P . Thus
the underlying portfolio is supposed homogeneous and the
recovery rate associated to each entity is R.

It is assumed that the purchase and sale operations
associated to hedging on tranche Tr are made for maturity
tm at rate π [14].

Let tk be the payment moments with k = 1, ..,m, and
δ = tk − tk−1 the time lapse between two payments. Let
nk be the number of CDSs, which default at time tk [14].

For each moment tk, the seller and the buyer must pay
respectively the amounts DLk et PLk [14] such that:

DLk = Lk − Lk−1 (5)
PLk = 1

2 × π × (Nk +Nk−1)× δ (6)

Where:
• Lk the associated loss to tranche Tr at time tk
• Nk the reference nominal for the premium payment at

time tk
The legs in (5) and (6) depend on nk. Thus it is essential

to determine bounds for nk with respect to those of Tr: Kd

and Ku.
Introduce two threshold values:

xd = N ×Kd (7)
xu = N ×Ku (8)

and

K = (1−R)× P (9)
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Lk is linked to Nk by the following relation:

Nk = K × (xu − xd)− Lk (10)

Besides, note that k ∈ [1,m], nk ∈ N, which is not
necessarily the case of xd and xu. Therefore two integers nd

and nu are built such that:

nd = �xd� �xd� is the integer part of xd (11)

nu =

{ �xu� − 1 if xu ∈ N

�xu� otherwise (12)

Express Lk with respect to the number of defaults nk:

Lk =

⎧⎨
⎩

0 if 0 ≤ nk ≤ nd

K × (nk − xd) if 1 + nd ≤ nk ≤ nu

K × (xu − xd) otherwise
(13)

(14)

Finally, thanks to (10) the following expression of Nk with
respect to nk is deduced:

Nk =

⎧⎨
⎩

K × (xu − xd) if 0 ≤ nk ≤ nd

K × (xu − nk) if 1 + nd ≤ nk ≤ nu

0 otherwise
(15)

In this way the cash flow increase associated to the sale and
purchase of hedging at each time tk of payment is described
with respect to the number of defaults nk [16].

II. METHODOLOGY

In order to determine the default probability curve for later
calculations, existing synthetic CDO market quotes are used
to bootstrap the curve (see Fig. 3). The market quotes are
expressed as a list of maturity dates with their corresponding
CDS market spreads. The estimation uses the standard model
of the survival probability [2], [10], [13].

Inputs for bootstrapping the curve are:
• Market dates and their associated market spreads
• Settlement dates that are earlier than or equal to the

aforementioned market dates
• Zero dates and Zero Rates corresponding to zero coupon

bonds
To calculate the probability of having N defaults at time t,

(16) is used [15], [16]:

P[Nt(·) = j ] =

Cj
N

∫ ∞

−∞
[f(p̄t, ρt; z)]

j [1− f(p̄t, ρt; z)]
N−jϕ (z) dz (16)

Where:
• Nt(·) is a random variable, which represents the number

of defaults at time t
• ρt is a real number such that −1 ≤ ρ < 1 and corresponds

to a correlation of default
• p̄t is is a real number such that −1 < p̄t < 1

and represents the unconditional probability that a CDS
defaults

• ϕ(z) = 1√
2π

exp[− 1
2z

2]
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Fig. 3: Cumulative density function of the bootstrapped default
probability curve.

• f(p̄t, ρt; z) = Φ(
Φ−1(p̄t)−√

ρtz√
1−ρt

)

• Φ(u) =
∫ u

−∞ ϕ(z)dz

• Cj
N = N !

j!(N−j)!

Parameters ρt and p̄t are defined as follows:
1) ρt is the same for each firm and each time horizon.

Therefore ρt = ρ. Besides the fair assumption is made
that its value varies between 0 and 30% based on
historical data [16]. This parameter is set to different
reasonable values due to lack of data.

2) p̄t varies at each period of time and is determined with
market data. Concretely its value is determined from the
bootstraping operation described above.

Letting πj = P [Nt(·) = j ], it becomes possible to draw
the Probability and Cumulative Density Functions for a given
set of ρt and p̄t values as can be seen in Fig. 4.
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Fig. 4: PDF and CDF of Number of Defaults for Different
Parameters.
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The CDF of Nt(·) drawn in red in Fig. 4 is derived from
Equation 17:

qj =
∑d

j=0 πj (17)
0 < q0 < q1 < · · · < qd−1 < qd = 1 (18)

Thanks to a random variable u, which follows a uniform
probability such that u ∼ uniform(0, 1), the values of Nt(·)
are determined by following the following rule:

When qi ≤ u < qi+1 ⇒ Nt(·) = i+ 1

This simulation is performed as long as scenarios are
needed, and for each period of time. Notice that p̄t is
empirically changed at each period of time t.

One then ends up with a graph where X-axis represents the
time and Y -axis the number of defaults. However one does
not obtain a single curve but a scatter of points as (16) will be
simulated many times (see Fig. 6). Thus, there is a consequent
number of ways to link each point and this will give multiple
paths. The following hypothesis is assumed from this point:
there cannot be a strictly inferior number of defaults from one
time to another.
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Fig. 5: Evolution of the number of defaults at each period of
time for different simulations.
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Fig. 6: Number of defaults for 10 simulations.

For example, if Equation 16 simulated only once, at time
t1, one will choose the first number of the matrix. At time t2,
if the second number of the matrix is not strictly inferior, it
will be selected. Otherwise, the third number will be used, or
the fourth etc. At the end there will be one path and (16) will
be simulated again (see. Fig. 5).

To proceed two additional simplifying assumptions will be
made. First p̄t and ρt are not recomputed at each time t and
they stay the same for all maturities T . Then it is assumed that
cash flows at each payment date are independent from previous
cash flows. They are only dependent on the occurring number
of defaults when they are considered. The simplex enables
determine the best strategy and the associated cash flow with
regard to ρ and T . Once ρ is fixed one is able to compute
default scenarios and the cash flows, whether sold or bought,
cause in each slice.

Denote:
• P i

k is the protection i bought at time k, (0 < i ≤ 6)
• P i+6

k is the protection i+ d sold at time k
• φ i

k = 0, 1 is the quantity of each P i
k at time k

It is important to notice that each P i
k can be computed at

time k if the number of defaults nk is known at time k.
Now consider the cash flows of period k:

Vk =
2d∑
i=0

φ i
kP

i
k

max(Vk) can now be found by Simplex method:

max(Vk) =
∑2d

i=0 φ
i
kP

i
k (19)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ 1
k + φ 7

k ≤ 1

...

φ i
k + φ i+6

k ≤ 1

...

φ 6
k + φ 12

k ≤ 1

∀i φ i
k ≥ 0

(20)

Conditions from (20) express the fact that it is not possible
to buy and sell the same protection at the same time. Simplex
method is used at each time k and outputs each φ i

k and
max(Vk).

The final output is a vector containing the best cash flow at
each time. It is repeated for each simulation generated by a
fixed value of ρ. Then the vector values are averaged and one
ends up with a matrix of maximum cash flows for each pair
of (T ,ρ).

Now it is interesting to determine the best sets of (T ,ρ)
leading to best cash flows. They are located on the steepest
slope of the curve corresponding to Max(∂V∂T ) and Max(∂V∂ρ ).

The surface obtained with the simplex is plotted on Fig. 7.
As understandable the expected gain decreases when

the maturity time and correlation of default increase. The
equi-gain lines on the surface are giving the investor the
possibility to trade between maturity and correlation of default
for fixed return.
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Fig. 7: Cash Flow Distribution

III. CONCLUSION AND FURTHER PERSPECTIVES

To achieve proposed goal – to represent the behavior of a
CDO in order to help the investor take decisions – several
simplifications have been made. First the CDO is considered
as synthetic and each CDS has the same nominal. Then a
Gaussian model is used to determine the default probabilities
instead of an intensity model. Moreover it is assumed that an
investor can only buy or sell protection on the whole tranche of
the CDO whereas it is possible to operate it on a fraction of a
tranche in real market. Finally the correlation coefficient which
distinguisheing the different scenarios is randomly determined.
From technical point of view, a common linear optimization
method – the Simplex algorithm – is used to evaluate the
best cash flow projections with regard to several parameters.
Despite the assumptions made throughout present work, this
paper points out a way to represent the P&L of a synthetic
CDO regarding several market configurations.
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