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 
Abstract—The rapid generation of high volume and a broad 

variety of data from the application of new technologies pose 
challenges for the generation of business-intelligence. Most 
organizations and business owners need to extract data from multiple 
sources and apply analytical methods for the purposes of developing 
their business. Therefore, the recently decentralized data management 
environment is relying on a distributed computing paradigm. While 
data are stored in highly distributed systems, the implementation of 
distributed data-mining techniques is a challenge. The aim of this 
technique is to gather knowledge from every domain and all the 
datasets stemming from distributed resources. As agent technologies 
offer significant contributions for managing the complexity of 
distributed systems, we consider this for next-generation data-mining 
processes. To demonstrate agent-based business intelligence 
operations, we use agent-oriented modeling techniques to develop a 
new artifact for mining massive datasets.  

 
Keywords—Agent-oriented modeling, business Intelligence 

management, distributed data mining, multi-agent system. 

I. INTRODUCTION 

HE most commonly used applications of new content-
generation technologies for discussion forums, news sites, 

social networks, weather reports, wikis, tweets and transaction,                                                                
are generating petabytes of data in daily usage [1], [2]. The 
main challenges are increasing rapidly and becoming more 
complex due to the handling, storage and analysis of such big 
quantities of data. Big data [3], [4] comprise of video, texts, 
sensor logs, etc., for which transactions are composed records 
that require an intelligent mechanisms and tools to manage 
very large datasets. Business analysts face the challenges of 
moving big data to central locations in order to merge them 
and apply sequential data mining algorithms. Distributed data 
mining (DDM) [5], [6] originates from the need of mining 
over decentralized data sources and applying knowledge 
discovery to heterogeneous data environments. Multi-agent 
systems (MAS) [7] can manage complex and distributed 
computing scenarios. Therefore, designing and developing 
highly distributed systems on a large scale requires a 
conceptual architecture using agent-based technologies. In this 
context, several architectures and frameworks [2], [8], [9], 
have been designed by using MAS in DDM algorithms. Each 
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of them focuses on different problem domains while the 
respective architectures do not comprise any specific roles and 
responsibilities for agents. 

Developing a distributed Business Intelligence (BI) 
generation system that comprises different types of agents with 
the ability to communicate, discover and access knowledge 
from multiple information sources, poses big challenges for 
researchers. There is no exact architecture and methodology 
for designing MAS that show each agent’s function, 
communication and cooperation work in such system 
structures. Therefore, to design such complex systems 
including MAS for DDM processes, we use an Agent-Oriented 
Modelling (AOM) [10] methodology to specify the system 
scenarios by developing various models. Such an approach 
aims at the integration, interaction and interoperability for the 
MAS development [11].  

In this paper, we fill the gap by answering the research 
question of how to design an architecture that emerges for 
managing business-intelligence generation with highly 
distributed, large data sets. To establish a separation of 
concerns, we elicit the following sub-questions. What kind of 
methodology is required for developing such a Business 
Intelligence Management (BIM) system? What is the 
conceptual BIM-architecture model? What is the purpose of 
AOM for assigning the roles and behavior of agents? What 
type of communication protocol is required for the interaction 
of agents? The resulting architecture introduces a composite 
system of a MAS for DDM to discover knowledge from 
different distributed storage locations to analyze high volume, 
velocity, complexity and a variety of sensitive big-data 
environments. 

The rest of the paper is structured as follows: Section II 
presents the background and the challenges for designing a 
multi-agent based distributed data-mining architecture. Section 
III provides an overview of the AOM methodology and related 
methodologies that are used for the analysis and design phase 
of our proposed architecture. Section IV presents the domain 
analysis and detailed design of the proposed architecture for 
using AOM by specifying goal-, domain-, and knowledge-
models. Section V describes the general architecture and the 
roles and behavior of various agents. Section VI focuses on 
agent-based communication standards and protocols that are 
useful in agent interactions. This section presents our proposed 
model that has been designed based on agent interaction and 
communication protocols. Section VII includes an evaluation 
and outlines trends for methodologies of agent-oriented 
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engineering and the design of processes of MAS in DDM. 
Finally, in Section VIII, we conclude our paper with a 
summary and suggestions for the future development of our 
research. 

II. BACKGROUND AND CHALLENGES 

Recent research has demonstrated that the DDM area 
employs MAS to reduce the complexities of distributed, 
parallel processing in heterogonous environments [8], [12]. 
Section II A provides details about Data Mining (DM) 
algorithms and the agents’ impact on the mining processes. 
Section II B describes several researcher efforts and challenges 
related to designing and developing DDM systems by using 
MAS techniques. 

A. DDM and Agents 

Data mining [13], [5] traditionally focuses on the extraction 
of implicit knowledge and useful information from centralized 
data sets. Data mining involves the use of sophisticated data 
analysis methods and tools to discover previously unknown, 
valid patterns and relationships in large data sets. For example, 
DDM applications include credit card fraud detection, health 
insurance decisions, security related real-time applications, 
sensor networks, distributed clustering, etc., that deal with 
time-critical distributed data over networks. For the data 
analysis of such applications, all the data are first transferred to 
a local storage location and then the DM algorithms are 
applied on the required data. Furthermore, the conveyancing of 
critical and large-scale data to a central location is a challenge 
due to many potential privacy issues. With the growth of 
massive distributed datasets, centralized data-mining 
algorithms are no longer feasible [6]. Therefore, DDM 
together with the Knowledge Integration (KI) [13] approach is 
used to identify, acquire, and utilize knowledge from external 
distributed sources. In heterogeneous environments, 
distributed and parallel processing are applied to explore 
useful information and patterns from massive datasets [14]. 
The collaborative work of DDM with parallel processing to 
solve many synchronization problems requires a special 
approach as well as tools that can intelligently manage the 
integration and aggregation of tasks [7]. MAS is a promising 
approach for solving complicated data mining tasks in parallel 
processing in decentralized environments [15]. 

With respect to DDM techniques, many researchers explore 
the use of agents [7], [16] to improve the integration process, 
adaptability, reusability and interoperability in distributed 
environments. For example, [14] describes several aspects of 
DDM that can be improved by agent technology. These 
features are as follows: enterprise data mining infrastructure, 
involving domain, and human intelligence, supporting parallel- 
and distributed mining, data fusion, adaptive learning, and 
interactive mining. The authors in [17] use a MAS architecture 
for both DDM and Distributed Classification (DC) systems. In 
[2], [7]-[9], [13], the authors focus on multi-agent based DDM 
systems that are a model of MAS based mining used for the 
improvement of KI in distributed heterogeneous and 
homogenous data-mining. 

B. Challenges Related to Agent-Based DDM 

Latest research involves many contributions for developing 
agent-based models by combining the DDM framework and 
MAS technologies [13] for the improvement of DDM 
performance. Here we address some papers as follows: 

In [14], the authors address the infrastructural and 
architectural weakness of the existing DDM systems that 
require more flexible, intelligent and scalable support. 
Differently to this paper, the authors do not solve the DDM 
issues by developing a MAS architecture that also specifies 
agent activities. In [18], the author applies MAS and proposes 
a methodology to determine, clarify and differentiate among 
agents during the development of MAS by using goals and a 
functionalities-grouping approach. The author implements 
three agents: a members-manager agent, decision-assistant 
agent and reporter-agent on Web-applications to demonstrate 
the feasibility of the methodology. The author does not address 
a clear architecture or developing methods for agent 
communication and interaction. The authors in [12] focus on 
the design and development of a multi-agent based framework 
for distributed BI systems. Their aim for using agent 
technology in this framework is to address issues in the field of 
BI including the integration into business processes, reduced 
latencies, and decision automation. Differently from this paper, 
the authors do not address any agent-based methods to design 
the architecture and there is also no clear view of architectures 
that show the multi-agent functions and activities. In [8], the 
authors develop an agent-based parallel DM system 
architecture that comprises three modules: a parallel data-
accessing operation, parallel hierarchical clustering, and web-
based data visualization. In this architecture, the authors 
employ two intelligent agents that are capable of analyzing 
unstructured textual data. However, for novel business-
intelligence applications that generate massive and varied data 
in highly distributed systems, it is challenging to analyze and 
mine useful data with merely agents. 

III. OVERVIEW AND SELECTION OF A SUITABLE 

METHODOLOGY 

Developing a MAS-based complex system requires a high-
level agent-oriented methodology. Several methodologies exist 
for analyzing and designing MAS-based applications in AOM 
[10]. These methodologies provide a common framework of 
system features for specifying, designing, developing, and 
implementing intelligent agent systems in different domains.  
In the analysis phase of our proposed architecture, each agent 
role must be identified and their interaction models 
constructed. The Gaia methodology [19], [20], is known as the 
first complete methodology for the analysis and design of 
MAS. We select this methodology to model the macro (social) 
aspect and the micro (agent internals) aspect [21] of the MAS 
architecture. To capture all properties of agents in distributed 
systems together with their relationships to the environment in 
our proposed architecture, we need to define all system 
characteristics during the analysis and design phases. 
According to literature [10], based on the Gaia methodology, 
two other extended agent-oriented methodologies exist: 
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ROADMAP (Role-Oriented Analysis and Design for Multi-
agent Programming) and RAP/AOR (Radical Agent-Oriented 
Process/Agent-Object Relationship). These two methodologies 
focus on the analysis of the domain and design of the models 
for distributed systems and support the engineering of large-
scale open systems [19], [22]. 

The roles of agents in ROADMAP encapsulate regulations, 
processes, and team responsibilities in which it is possible to 
specify, support and constrain the behaviors of agents in 
systems [21]. Therefore, we use the ROADMAP methodology 
to assign different responsibilities to different groups of agents 
in our architecture. This methodology has the property to 
design a role model in a hierarchical style that defines each 
team’s tasks and it describes the characteristics of individual 
agents in relation to the entire system. We use this property to 
design the role model and then the latter is input for designing 
the goal model of our system with related quality goals. 
Furthermore, the knowledge model of this methodology 
connects the role models with the agents’ environment. By 
using this characteristic, the knowledge belonging to an 
agent’s role can be revised when the expected behavior of the 
system or the environment changes. Additionally, we focus on 
designing a domain model derived from the environment and a 
knowledge model in the ROADMAP methodology. This 
methodology represents the entities of the problem domain that 
are relevant for the system.  

The ROADMAP together with the AOR methodology allow 
role information to be preserved and represented at run time, 
since several agents can apply the same role activity 
simultaneously [10]. Knowledge sharing between agents that 
are included in the system, involves very important processes 
during runtime. For this reason, we use the RAP/AOR 
methodology that provides means for representing the partially 
or fully shared knowledge environment. Furthermore, 
RAP/AOR we apply to the automation processes of agent 
interactions [10], [22]. In our proposed system, the agents 
communicate automatically without human interaction. This 
methodology offers the best option to deploy automation 
processes between different groups of agents at different layers 
[10]. 

In summary, the discussed methodologies are more 
concerned with graphical descriptions of work products for the 
design phase. We use the descriptions as a prelude to consider 
the conceptual modeling of our proposed system. At the level 
of computational design and implementation of these 
methodologies, we focus on different kinds of models from 
various aspects. For example, a goal model to define actors in 
the intended system, a domain model to identify related objects 
in the system domain and a knowledge model to indicate the 
properties of objects in their respective contexts.  

Based on the analysis and design phase, we next introduce 
the following models: the goal model, the domain model, and 
the knowledge models. 

IV. DOMAIN ANALYSIS AND DETAIL DESIGN 

We start the development of our system architecture by 
using the ROADMAP and RAP/AOR methodologies. Our 

objective in developing the models based on a multi-layered 
design is to explain in detail the important terms of the agents’ 
functions and behaviors pertaining to respective system 
scenarios. Each role is a specific agent behavior defined in 
terms of permissions, responsibilities, activities and 
interactions. 

To demonstrate the problem domain by focusing on an 
agent-oriented approach, we describe the functional 
requirement of a BIM-architecture using concepts such as 
goal-, domain-, and knowledge models. In our analysis and 
design phase, we elicit these models by considering the agents’ 
interactions and the agents’ performing effects with other 
agents via shared resources. To understand in detail the system 
context, we present each model type separately in subsections. 
Section IV A comprises the goal model that captures the 
functional requirements, quality goals and roles of each agent. 
Section IV B gives an overview of the domain model that 
represents the context in which the BI-MAS operates. Finally, 
Section IV C illustrates the knowledge model that reflects the 
agents’ activities, parallel operations and a specification of 
various data elements from the DDM environment.  

A. The Goal Model 

In the goal model of the BI-MAS that is depicted in Fig. 1, 
we first present the root functional goal of Run BI-system with 
the attached role of Stakeholder. In AOM, the root functional 
goal is called the value proposition that is too complex and 
must therefore be further refined into manageable functional 
sub-goals. In the first case, the quality goals Quick/Fast and 
Trustable ensure that the system has acceptable performance 
during knowledges exploration. The main goal includes roles 
and sub-goals that define capacities or positions with 
functionalities that are needed for the BI-MAS. To achieve the 
goal, the system requires a specific role for each agent and also 
sub-goals with quality goals to represent functional and 
nonfunctional requirements. Here we decompose the main goal 
that is associated with Present information into smaller related 
sub-goals such as Arrange schedules, Orchestrate selection 
processes, Dispatch to clouds, Mining data, Aggregate 
information, and Submit result.  

The Arrange schedules goal we decompose into four sub-
goals of Receive input data, Assign task for agents, Create 
assignment table, and Share assignment table. Additionally, 
this goal is attached to the role of Scheduler and the quality 
goal of Timely processing that represents the responsibility of 
the agent for setting an assignment to other single or a group of 
agents based on the received input data. 

The Orchestrate selection processes goal includes three sub-
goals Control processes associated with the quality goal of 
Up-to-date, Activate new agent, and Terminate nonfunctional 
agent. Furthermore, this goal is attached to the role of 
Facilitator together with the quality goal of Effective 
collaboration that represents the responsibility of activation 
and termination of agents. The Dispatch to clouds goal 
comprises also three sub-goals Confirm connection, Transfer 
agents to clouds and Collect agent knowledge. We attach the 
role of Dispatcher to this goal that follows DDM roles and 
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understanding of the model, we refer reader the reader to [10]. 
In addition, the abstraction layers of the viewpoint framework 
comprise a matrix of three rows termed conceptual domain 
models, platform-independent models and platform-specific 
models.  

 
TABLE I 

 THE VIEWPOINT FRAMEWORK [10] 
Viewpoint models Viewpoint aspect 

Abstraction layer Interaction Information Behavior 

Conceptual domain 
modeling 

Role models and 
organization 

models 

Domain models Goal models and 
motivational 

scenarios 
Platform-

independent 
computational 

design 

Agent models and 
acquaintance 

models, interaction 
models 

Knowledge 
models 

Scenarios and 
behavior models

Platform-specific 
design and 

implementation 

Agent interface and 
interaction 

specifications 

Data models and 
service models 

Agent behavior 
specifications 

 
TABLE II 

THE VIEWPOINT FRAMEWORK WITH THE MODELS OF THE ROADMAP- AND 

RAP/AOR-METHODOLOGY [10] 
Viewpoint 

models 
Viewpoint aspect 

Abstraction layer Interaction Information Behavior 

Conceptual 
domain 

modeling 

Role models 
(ROADMAP) and 
interaction-frame 

diagrams 
(RAP/AOR) 

Domain model 
(ROADMAP) 

Goal models  
(ROADMAP) 

Platform-
independent 

computational 
design 

Interaction-sequence 
diagrams  

(RAP/AOR) 

Agent diagram  
(RAP/AOR) 

Scenarios and 
AOR behavior 

diagrams 
(RAP/AOR) 

Platform-specific 
design and 

implementation 

UML class and 
sequence diagrams  

(RAP/AOR) 

UML class 
diagrams 

(RAP/AOR) 

UML class and 
sequence 
diagrams 

(RAP/AOR) 

 
We summarize that all existing agent-oriented 

methodologies and evaluation frameworks provide a valuable 
contribution to develop MAS-systems. While evaluating the 
Gaia process with the viewpoint framework [19], we discover 
that by applying this methodology, the analyst moves from an 
abstract to an increasingly concrete BI-MAS. This 
methodology is applied when the requirements of the BI-MAS 
are gathered and support the analysis and design phases. In 
Gaia, roles of agents are atomic and a construct to provide 
conceptual features for understanding a complex system. In 
this methodology, the roles are defined by specific attributes of 
responsibilities, permissions, activities and protocols. In 
addition, some specific extended features of Gaia include the 
ROADMAP- and RAP/AOR-methodologies that are 
applicable to the design of a BI-MAS. These two MAS-based 
methodologies enable the designer to develop an architecture 
with four improvements and formal models: the knowledge 
model with the environment, role hierarchies, an explicit 
representation of social structures with relationships, and an 
incorporation of dynamic changes [10], [21]. The combined 
evaluation process of Table II represents the goal-, role-, and 
domain models that are generated by the AOR/RAP-
methodologies. Consequently, the ROADMAP focuses on 

application-specific domain modeling and the AOR/RAP-
methodology uses certain types of UML-models during the 
development of the BI-MAS. 

A MAS Analysis and Design Framework (MASADF) for 
the comparison and evaluation of agent methodologies is 
illustrated in [28]. The authors consider several factors during 
the evaluation of agent-oriented methodologies such as 
concepts, simplicity of visualizing a system, the models, agent 
attributes, the ability to represent agent interactions, agent 
behavior representation, and software development life-cycle 
points of views. In [29], the authors present an evaluation 
framework for agent-oriented methodologies that address six 
major areas: concepts, notation, processes, pragmatics, and 
support for software engineering. The agent-oriented techni-
ques and methodologies are potentially powerful and represent 
a new paradigm for developing a BI-MAS. Pre-existing 
literature [28], [29] demonstrates that none of the existing 
agent-oriented methodologies are accepted as a standard and 
none of the evaluation- and comparison frameworks are 
suitable as a standard during the evaluation processes. With 
our study and evaluation, we find that the selection of a proper 
agent-based methodology depends on the properties of a BI-
MAS and the developer’s consideration.  

Finally, in the next section we conclude this paper along 
with our research work and findings. 

VIII. CONCLUSIONS AND FUTURE WORK 

In this paper, we focus on developing a MAS for the 
generation of BI that employs the mining of large datasets in 
distributed locations by applying a compound of agent-
oriented methodologies. In this context, we use the 
ROADMAP- and RAP/AOR-methodologies of AOM that 
support the conceptual modeling, analysis and the design of a 
BI-MAS. Consequently, these two agent-oriented 
methodologies lead us to the identification of business-
intelligence management goals, -roles, -protocols, and 
behaviors that agents adhere to. To accomplish the analysis 
and design phase, we represent a scheme of the BI-MAS 
layout by developing goal-, domain-, and knowledge models. 
These models yield a holistic understanding of the overall BI-
MAS by including several delegated agent roles, 
communication- and interaction protocols in a distributed 
environment. 

The development of the BI-MAS requires an instantiation 
with agent-oriented methodologies. Based on the system 
requirements, Gaia and its extended methodologies termed 
ROAD-MAP and RAP/AOR are applicable for encompassing 
the problem-domain realization and requirement-analysis, 
architecture. Furthermore, these methodologies guide us to 
create a conceptual BIM-architecture. The targeted conceptual 
architecture provides essential goal hierarchies for the BIM-
architecture problem domain and the roles needed for 
achieving the goals.  

The role of AOM is to assists us in focusing on the 
evaluation of the core agent-oriented methodologies. We use 
the AOM comparison results related to agent-oriented 
methodologies with different evaluation frameworks. Out of 
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them, we consider the viewpoint framework to select a proper 
methodology to develop the BI-MAS architecture. For the 
latter, we assign specific agents to manage newly discovered 
knowledge from a distributed environment. We discover that 
in the communication and interaction of these agents, FIPA 
provides the basic- and network protocols, both of which cover 
different types of interaction, coordination, and cooperation for 
the BI-MAS. Additionally, the communication protocol of 
FIPA covers message encoding, -encryption, and the -
transportation between agents. 

As future work, the BI-MAS and the conceptual models 
illustrated in this paper must be further elaborated and 
extended by considering specific properties such as flexibility, 
adaptability, and robustness. Thus, in future research we focus 
on formalizing the conceptual models regarding access levels 
for newly discovered knowledge and the support of exception 
management and compensation mechanisms when a 
knowledge-sharing process fails. The validation process of our 
proposed BI-MAS architecture we plan to accomplish with 
simulating and verifying processes process using Color Petri 
Nets and the Java Agent Development Framework. 
Consequently, other research directions include developing 
advanced APN models and -patterns using the FIPA standard 
for BI-MAS interaction- and communication specifications.  
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