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Abstract—Stochastic modeling of network traffic is an area of 

significant research activity for current and future broadband 
communication networks. Multimedia traffic is statistically 
characterized by a bursty variable bit rate (VBR) profile. In this 
paper, we develop an improved model for uniform activity level 
video sources in ATM using a doubly stochastic autoregressive 
model driven by an underlying spatial point process. We then 
examine a number of burstiness metrics such as the peak-to-average 
ratio (PAR), the temporal autocovariance function (ACF) and the 
traffic measurements histogram. We found that the former measure is 
most suitable for capturing the burstiness of single scene video 
traffic. In the last phase of this work, we analyse statistical 
multiplexing of several constant scene video sources. This proved, 
expectedly, to be advantageous with respect to reducing the 
burstiness of the traffic, as long as the sources are statistically 
independent. We observed that the burstiness was rapidly 
diminishing, with the largest gain occuring when only around 5 
sources are multiplexed. The novel model used in this paper for 
characterizing uniform activity video was thus found to be an 
accurate model. 
 

Keywords—AR, ATM, burstiness, doubly stochastic, statistical 
multiplexing.  

I. INTRODUCTION 
OURCE modeling and traffic characterization is rapidly 
gaining importance in broadband network analysis. Such 

networks are designed to carry traffic that are heterogeneous, 
statistically bursty, and with very large bit rates [1]. While 
large bit rates can be compressed using modern source coding 
techniques, it is the burstiness of the traffic that poses a 
serious challenge to the efficient operation of broadband 
networks. An accurate source model is thus indispensable for 
network optimization, design, and resource allocation, for 
performance evaluation and quality of service (QoS) 
provisioning, and for congestion avoidance and control. 

In this work, we study a class of traffic known as video 
streaming. We chose this particular type of traffic because it is 
known to pose a serious challenge to the optimal performance 
of broadband multimedia networks because of its burstiness 
and variable bit rate statistical characteristics. To better 
support video services on high speed and integrated networks, 
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an understanding of the characteristics of VBR video traffic is 
thus required.  

Video traces with low levels of scene activity have 
exponentially decaying temporal correlations with respect to 
time-lag, whereas video traces with non-uniform scene 
activity have frame sizes that change slowly over long time 
intervals [2]. The autocorrelation function for these types of 
video traces decays slowly or does not reach zero even for 
long lag intervals. VBR video traffic with uniform scene 
activity can also exhibit long-term correlation. To model video 
traffic, methods that efficiently capture the switching between 
these levels of activity are required [3].  

II. A STOCHASTIC MODEL FOR UNIFORM ACTIVITY VIDEO 
In this section, we first survey stochastic models for 

uniform activity level video sources in ATM networks, then 
we propose a new model and stochastically analyze it by 
deriving its probability density function (pdf) and ACF.  

A. A Literature Survey of Video Models 
The autoregressive (AR) model has been widely used to 

model broadcast-video traces generated by a DPCM-based 
coding algorithm without motion compensation. In the AR(1) 
model (of order 1), a finite-state Markov chain is used to 
generate a sequence of states. These states are used to 
determine the frame sizes [4]. This model requires only that 
the mean, variance, and autocorrelation coefficient of intra-
scene frames be determined. However, the AR(1) model was 
not found to be accurate for all video traces tested, however. 
For the video conference traces, the AR(1) proved to be a 
good source model, mainly because video conferencing data 
belongs to the same scene. This is referred to as uniform 
activity level video [5]. 

A time-varying AR process was applied to model 
DPCM/DCT-coded full motion video. The number of frames 
used to generate the model was 500 frames and 2 arbitrary 
thresholds were selected from bit-rate histogram of the video 
trace. An enhanced Markov chain (MC) based approach has 
also been successfully used to analyze traffic from single and 
2 layer MPEG-2 coders. 

A scenic model based on the AR(1) model has also been 
used in the literature to model VBR traffic. Scene changes 
were estimated using differences in the number of bits 
between consecutive frames rather than by using MC. To 
discern the scene changes, the VBR video trace was first 
passed through a median filter having a length of 0.5 secs. 
Using the output, the short-time mean was calculated using 
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the 5 frame average filter. The short-time average value 
exhibited a significant change in the value at a scene 
boundary. Tests of the model using full-motion video showed 
that for large buffers, the scenic model estimated cell-loss rate 
more accurately than AR(1) [6].  

Research was also conducted on self-similar (SS) models, 
which were developed to estimate the long-range dependence 
(LRD) and were used in conjunction with short range 
dependence (SRD) for VBR full-motion video traces. In such 
work, SS traffic models were used to match the LRD, SRD, 
and PDF. In queueing simulations, the model underestimated 
ATM cell-loss rates when compared to the actual trace. The 
presence of a scene change in an MPEG video was determined 
using the difference in the frame bit count between 2 
consecutive I-frames. Two thresholds were used as a measure 
of the scene activity. Intra-scene fluctuations for I-frames 
were estimated using an AR(2) process. Each frame type was 
fit to a lognormal distribution using the histogram. 
Composition of each frame type according to group of picture 
(GOP) format generated a video trace possessing the 
characteristics of VBR video traffic [7 - 9]. 

B. A Doubly Stochastic Autoregressive Model 
The autoregressive model describes the average cell as a 

function of the frame number. This function is a linear 
combination that consists of an addition between the delayed 
average cell rate and a white Gaussian noise. This leads to a 
model which is jointly Gaussian distributed. 

The classical 1st order AR model describing the average cell 
rate as a function of the frame number is  

 
 ( ) ( 1) ( )n a n bw nλ λ= − + . (1) 

 
Higher order AR models have been successfully tested in the 
literature for different video traces with different types of 
activities. Since the chosen order number depends on the 
statistical nature of the video source, we propose a doubly 
stochastic AR model where the order is allowed to be random. 
This model is described by  

 

 ( )
1

( ) ( ) ( )
m

k
k

n M m a n k bw nλ λ
=

= = − +∑ , (2) 

 

 

( )

1 1

( ) ( )

( ) ( ) ( ),

M

m

k M
m k

n E n M

a n k bw n p m

λ λ

λ
∞

= =

=

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

 (3) 

 
where the order M is randomized and drawn from the negative 
binomial distribution with parameters (1, ρ ) 
 

 1,( ) (1 ) 0 1mp mM ρ ρ ρ−= − ≤ ≤ . (4) 
 
Such a probability mass function (pmf) for the AR model M is 
consistent with stochastic modeling of random point processes 
[10, 11] in time and is reasonable if video frames are 

conceived as “points” randomly occurring in time (known as 
time epochs or occurance times). 

Under this doubly stochastic model, the conditional 
distribution is Gaussian since M is fixed (yielding a simple 
AR(M) model) and the joint frame rate distribution is 
Gaussian averaged over a Pascal distribution. 

III. SIMULATION AND RESULTS 

A. Single Video Source 
Simulations have been conducted using Matlab. When 

using simulations, it is important to determine the sample size 
and number of repetitions over which to average estimates. In 
our simulation, the sample size was determined to be 4096 by 
starting out with a fairly small number, calculating the mean, 
doubling the number, recalculating the mean, and repeating 
the process until the change in the mean was less than about 
1%. The number of repetitions or realizations used to average 
estimates was calculated to be about 1000 by taking the 
cumulative average of the mean and peak as a function of the 
number of realizations. The results are plotted in Figs. 1 and 2. 

 

 
Fig. 1 Averaged peak values of frame rates as a function of the 

number of simulated realizations 
 
We observe from the graphs of Figs. 1 and 2 that about 

1000 realisations, with the number of points in each 
realization equal to 4096, will produce a fairly accurate result. 
We also note that both the mean and peak converge as the 
number of realizations becomes large. For the case of a single 
video source, the plot of  λ(n) as a function of the number of 
frames appear to follow a profile that is peaky. Fig. 3 
highlights the different peaks. Theoretically, the nature of 
uniform activity video sources is bursty, which jusitifes the 
domination of the bursty peaks of the video data. λ(n) is in a 
linear relation with the white Gaussian noise, so it has the 
same statistical properties (conditionally). 

From the graph in Fig. 3, we can calculate the burstiness 
coefficient, characterized by the PAR (peak-to-average ratio) 
metric, as PAR = 1.1588/0.4537 = 2.554. The fact that the 
PAR is greater than 1 verifies that the uniform activity video 
source produces bursty data. 
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Fig. 2 Averaged mean values of frame rates as a function of the 

number of simulated realizations 
 

 
Fig. 3 Cell rate in terms of the frame number for a single source 

based on a doubly stochastic AR model 
 

The histogram (representative of the pdf) of λ(n) was 
calculated using the histogram function built-in Matlab from 
1025 representative points of a single realization. The results 
are shown in Fig. 4. We note that the “envelope” of the pdf 
appears to be Gaussian. The actual pdf, however, is not 
exactly Gaussian since it is not perfectly symmetric about the 
mean. This is caused by the averaging of a number of 
Gaussian curves over a Pascal-negative binomial distribution 
as dictated by the doubly stochastic model of λ(n). 

 The autocovariance function ACF of λ(n) is a good 
measure of burstiness as it captures and follows the  
variation of the peakedness in the signal and can support a 
high volume of traffic which cannot be handled  by the PAR 
metric. Therefore the variation between the samples is well 
captured. The estimated autocovariance curve of λ(n) is 
depicted in Fig. 5. We observe that the ACF has a maximum 
at n = 10000 which is the maximum number of frames.  

B. Statistical Multiplexing of Doubly Stochastic AR Videos 
By multiplexing many sources together (superposition) and 

repeating the analysis, we find that the pdf becomes narrower 
and the burstiness coefficient decreases as the number of 
sources is increased. Fig. 6 shows an example simulation run 
where λ(n) versus n is plotted between 1 and 10 multiplexed 
sources. More insight can be gained if we normalize the cell 
rate by dividing by the number of sources for each line in the 
graph. This is shown in Fig. 7. 

Figs. 6 and 7 clearly indicate that the burstiness coefficient 
reduces dramatically as the number of sources increases. 
Averaged data from 1024 realisations is tabulated in Table I 
and graphed in Fig. 8. 

 
Fig. 4 Estimated pdf of λ(n) for a single video source 

 

 
Fig. 5 Simulated ACF of a single video source 

 

 
Fig. 6 Multiplexed cell rate for a different no. of sources 

 
It is clear from Fig. 8 that as the number of sources is 

increased beyond 5, a law of diminishing return takes place 
since the improvement of the burstiness coefficient is almost 
stagnant. The optimum number of sources to multiplex can 
thus be considered to be 5. The effect of statistical 
multiplexing is also illustrated in Fig. 9 by showing the means 
and peaks separately and as a ratio. 

Fig. 10 shows the normalized histogram for 10 multiplexed 
sources from a representative sample of 1025 points. The pdf 
is consistent with a Gaussian distribution. This is a result of 
the central limit theorem where the individual statistics of the 
random variables (rvs) do not affect the final statistics of the 
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summed rvs, especially when the rvs are independent and their 
number is large. This means that the averaging effect of the 
binomial distribution of the AR order is transparent to the 
multiplexing statistics for a relatively large number of sources. 
Clearly, the width of the pdf has been considerably reduced as 
shown in Fig. 10. This is yet another way of indicating that the 
burstiness of the process is much lower. The width of the pdf 
can also serve a burstiness measure. 

 

 
 

Fig. 7 normalized multiplexed cell rate as a function of the frame 
number for a different number of sources 

 
TABLE I 

PAR VERSUS THE NUMBER OF MULTIPLEXED SOURCES 
Number of multiplexed sources B = peak/mean 

1 2.553705 
2 2.101162 
3 1.898157 
4 1.775751 
5 1.695251 
6 1.636071 
7 1.575440 
8 1.531043 
9 1.518870 

10 1.486915 
 

 
Fig. 8 Burstiness coefficient versus number of sources 

 
The histograms produced from a series of 4096 long sample 

functions for a number of multiplexed sources between 1 and 
10 are illustrated in Fig. 11. The trend is that the pdf becomes 
narrower as the number of mux-sources increases. The largest 
noticeable difference occurs between 1 and 5 sources.   

  
Fig. 9 Effect of statistical multiplexing as a function of the number of 

multiplexed sources 
 

 
Fig. 10 The histogram of ( )nλ  for 10 multiplexed sources 

 
 

 
Fig. 11 Simulated histograms for a number of multiplexed sources 

 
The autocovariance curves are plotted in Fig. 12 for 500 

sample functions and averaged for 100 realisations. 

 
Fig. 12 Simulated ACFs for a number of multiplexed sources 
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Fig. 12 shows that the width of the covariance function is 
reduced as the number of multiplexed sources increases, as 
does the peak (the variance). This is because as more sources 
are multiplexed, the correlation between samples is reduced. 
However, as the variance increases, the mean increases even 
faster so that the ratio of standard deviation-to-average ratio 
(SAR) is reduced. This is expected since the SAR also serves 
as a measure of burstiness. 

IV. CONCLUSION 
In this paper, we developed a model for uniform activity 

level video sources in ATM networks using a doubly 
stochastic autoregressive model. The model was consistent 
with statistical multiplexing theory and proved to be accurate. 
A number of burstiness metrics were studies, particularly the 
peak-to-average ratio (PAR), the temporal autocovariance 
function (ACF), and the traffic measurements histogram (in 
terms of its width). We found that the former measure is most 
suitable for capturing the burstiness of single scene video 
traffic.  

The results of multiplexing several constant scene video 
sources proved to be advantageous with respect to reducing 
the burstiness of the traffic, as long as the sources are 
statistically independent. Significant reduction in the 
burstiness rapidly diminished as the number of multiplexed 
sources was increased. The largest gain occured when around 
5 sources were multiplexed. 

One would expect that even higher reductions in burstiness 
would be possible if the ATM cells are multiplexed 
asynchronously, rather than just being added, that is, shifting 
cells associated with a highly active period from one source 
into a relatively passive period of another source. This is out 
of the scope of this paper and will be considered in future 
work. 

Also as future work, we propose to investigate a new 
approach to statistically demultiplex video sources using a 
novel “spectral queueing” theory and blind decomposition 
techniques. 
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