
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2580

Building the Reliability Prediction Model of
Component-Based Software Architectures

Pham Thanh Trung, Huynh Quyet Thang

Abstract—Reliability is one of the most important quality
attributes of software. Based on the approach of Reussner and the
approach of Cheung, we proposed the reliability prediction model of
component-based software architectures. Also, the value of the
model is shown through the experimental evaluation on a web server
system.

Keywords—component-based architecture, reliability prediction
model, software reliability engineering.

I. INTRODUCTION

ELIABILITY is one of the most important quality
attributes of software. The approach of Reussner [1]
provides a way to predict the reliability on the basic of

parametric contracts and Markov models. A clear
understanding of the reliability from users’ point of view has
been introduced by Cheung [6]. He states that the fact that
users rarely request a faulty service or users often request a
faulty service must be considered in calculating the reliability.

In this paper, we present the research result about
predicting the reliability of component-based software
architectures that depends on reliabilities of components and
operational profiles of use case packages. Developed mainly
from [1, 6, 11, 12, 13], we proposed to build the reliability
prediction model of component-based software architectures
and showed the value of the model. The content of this paper
is presented as following: Section 2 presents the component-
based software reliability based on the reliabilities of
resources and components. Section 3 presents the component-
based software reliability based on operational profiles.
Section 4 presents the reliability prediction model based on
the combination of the two models above. Section 5 presents
the experimental evaluation.

Manuscript received January 20, 2009. This work was supported in part by
the Vietnam's Ministry of Science and Technology under Grant
KHCB2.034.06.

Pham Thanh Trung is system software engineerer in Dicom Vietnam
Corpration. (E-mail: pthanhtrung82@yahoo.com).

Huynh Quyet Thang is the Associate Professor at Software Engineering
Department, Faculty of Information Technology, Hanoi University of
Technology, Hanoi, Vietnam (E-mail: thanghq@it-hut.edu.vn).

II. RESOURCE-DEPENDENT RELIABILITY

A. The differences in reliability behaviors between
resources and components

A software component can only fail during its execution
because a fault procedure of a component needs to be
executed to cause a failure. From that, the reliability of a
software component is a function of usage profiles. On the
other hand, a resource can fail at any time independent of its
usages, that is, the reliability of a resource is a function of
time.

Thus, we must consider this difference when calculating the
reliability. A resource must be available until the last usage is
finished. Therefore, we need to determine the time a resource
must be available, that is, the time until the last usage is
finished.

The approach of Reussner [1] provides a way to predict the
reliability on the basic of parametric contracts and Markov
models. There, the entry R(i, j) of the potential matrix of a
Markov model is the expected number of visits to the state sj
from the state si. The fact that the potential matrix contains the
expected numbers brings us an idea to use these values to
calculate the execution time of a service.

A clear understanding of the reliability from users’ point of
view has been introduced by Cheung [6]. He states that the
fact that users rarely request a faulty service or users often
request a faulty service must be considered in calculating the
reliability. Therefore, we can extend his view of reliability: if
a faulty resource is not used, it will not influence the
reliability from users’ point of view.

B. Calculating the time consumption of a service
The only entities that consume time in a Markov model are

states (if not, it can be easily transformed into this form).
Therefore, if we have number of visits to each state on an
arbitrary path through the model, we can calculate the
expected time consumption of a service.

Assume that we have a Markov model

0(, , , , ,)dMM S F s u for a service d and that we have the
expected number of visits to each state in MMd and its
expected time consumption. From that, we can calculate the
total time consumption of the service d.

We have:
*d s

s S
E X v E Xs

where vS is the expected number of visits to state s, the

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2581

E[XS] is the expected time consumption of state s and E[Xd] is
the total time consumption of the service d.

C. Calculating the usage period of a resource
As above, in order to have a more accurate reliability

prediction, we need to determine the last time the service uses
the resource.

1) The simplest case (one resource – one state)
In this case, each state is associated with a single and

unique resource that is always used during the visit to the
state.

Assume that we have the service effect specification of
service d as Markov model MMd. Each state sj of MMd uses a
single and unique resource rj and use this resource during the
whole execution.

The time that resource rj must be available is equal to the
time consumption of the service until the last visit to the state
sj. Assume that we have an arbitrary path from the start state
to the final state:

s0si1…sj…siksik+1…sj…sf

Let V(i, j) be the expected number of visits to each state si

before the last visit to the state sj and let E[Xj] be the expected
execution time of state sj. After that, the total time
consumption until the last visit to sj is:

(,) *
j

i

r i
s S

E X V i j E X

In this case, the last usage of the associated resource rj is
equivalent to the last visit to sj From that,

jrE X is the time

that the resource rj must be available.
Now, we need to determine V(i, j). Let ja be the beginning

part of the path until the last visit to sj. From that, we have:
V(j, j) = R(1, j)

where R is the potential matrix of the Markov model MMd

because all the visits to sj must be in ja .
For each other state si, we need to determine the fraction of

the expected number of visits R(1, i) that is in the beginning
part ja . Let take a look at the definition of the matrix F of the
Markov model: each entry F(i, j) is the probability to visit the
state sj from the state si on an arbitrary path. The entry F(i, j)
is calculated as following:

(,)
(,)

(,)
11
(,)

i j
R i j if s s
R j j

F i j
otherwise

R i i
Therefore, the expected number of visits to si until the last

visit to sj is
V(i, j) = R(1, i) * F(i, j).

for all states si with i j. Then, the product R(1, i) * F(i, j)
is the fraction of the expected number of visits to the state si

before the state sj is visited.
2) The extended case (one resource – several states)
In this case, several states are associated with the same

resource r. Assume that we have the service effect

specification of service d as Markov model MMd and that we
have Sr as the set of states associated with resource r.

 We want the Markov model MMr,d to stop its execution
whenever the resource r is used. To do this, a new Markov
model MMr,d in which the states sj in Sr are the final states is
formed from MMd by removing all the outgoing transitions
from each state in Sr, that is, the transition matrix Pr of MMr,d

contains a row of zeros for every state in Sr. Also, all the final
states of MMr,d form a probability distribution. Because the
execution must reach exactly one final state, the sum of the
number of visits to all final states must be one. The value Rr(i,
j) for the state sj in Sr is the probability to visit sj from the state
si. Moreover, the values Rr(i, n) are the probabilities of going
from the state si to the final state sn without using the resource
r. The probability ()r i of using the resource r after or during
the visit to the state si is given as following:

() (,)
j r

r r
s S

i R i j

n

Because the final states form a probability distribution, we
have:

() 1 (,)r ri R i
After that, the expected number of visits to the state si

before the last usage of the resource r is:
(1,)

()
(1,)* ()

i r
r

r

R i if s in S
i

R i i otherwise

Moreover, the expected time the resource r must be
available is:

i

r i
s

[X]= ()* [X]r
S

E i E

3) The general case
In this case, a state requires the associated resources only

for a part of its execution. Let ur(i) be the probability of using
resource r during the execution of state si, let Xr,i be the
expected time of using resource r in state si and let qr(i) be the

probability of using resource r after leaving state si. Figure 1
shows the relationship between the probabilities ur(i) and qr(i).

Now, we can calculate ()r i - the probability of using r on
the path from the start state si to the final state of the superior
Markov model or the probability of using r in si or after
leaving si.

() 1 (1 ())(1 ())r ri u i q

Fig. 1: The probabilities ur(i) and qr(i)

r i (1)
Next, we transform the equation (1) into:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2582

() ()* ()r r ri u i q i
Where

() 1 ()r ru i u i , () 1 ()rrq i q i

and
() 1 ()r ri i

As above, we want the execution to stop when r is used,
that is, the final state of MMd is reached if and only if the
resource is not used. Because there is a certain probability that
the resource is not required, we cannot remove all outgoing
transitions of states using r. That is , the execution must
continue with probability ()ru i and terminate with probability
ur(i).

Next, we simplify the internal service effect specification of
a state si to a single transition between the start and the final
state with the probability ()ru i , that is, the execution stops in
the internal start state of state si if the resource r is used and
continues otherwise. Figure 2 shows the simplified Markov
model.

Let MMr,d be the composed Markov model using the
simplified service effect specifications. Then the entry Rr(i, n)
of the potential matrix of MMr,d is the probability of going to
the final state without using resource r. Because the final state
can only be reached if the internal transition of si is taken and
the resource is not used after leaving si, the entry associated
with the internal start state of si corresponds to the probability

()r i . Moreover, because the superior final state can only be
reached if the resource is not used after leaving si, the entry
associated with the internal final state corresponds to the
probability ()rq i .

The insertion of the simplified version of si into the superior
Markov model is equivalent to a multiplication of every path
through si by the factor ()ru i . Therefore, instead of inserting

an additional state and transition, we can integrate ()ru i into
the superior service effect specification by multiplying either
every ingoing or outgoing transition of si by ()ru i .

If we scale the outgoing transitions, ()ru i is considered
after visiting si. Then the entry Rr(i, n) of the potential
matrix contains the probability ()r i of not using r on a

path from the internal start state of si to the final state of
the superior Markov model.

Otherwise, if we use ()ru i to scale the ingoing transitions

of si, the multiplication by ()ru i is applied before visiting
si. Then the entry Rr(i,n) corresponds to the probability

()rq i .

Given the probabilities ()ru i and ()rq i , the time
consumption Xi and the usage period Xr,i of resource r for
each state si of the Markov model MMd, we can calculate Xr,d,
the expected time the resource r is used during the execution
of service d:

, ,(1,)(() ())
i

r d d r i r ir
s S

E X R i q i E X q i E X

D. Calculating the resource-dependent reliability
Until now, we can determine the usage period of a resource.

The system reliability can be calculated if we have the usage
period for each resource and their reliabilities. The reliability
of a resource is a function of time which is assumed to be an
exponential distribution. So, given the expected usage period
of a resource E[Yr], the reliability for this period is R(E[Yr]).

Fig. 2: The simplified service effect specification.

III. OPERATIONAL PROFILE-DEPENDENT
RELIABILITY

Using the Markov model as basic to give prediction of the
reliability accepts an assumption: the service executed next
depends only on the current state. So, the importance of the
path through the control flow of the program is neglected, that
is, the input data as well as the user behavior are neglected.
Motivated by this assumption is quite popular in Markov-
based reliability prediction, we have developed a way to build
operational profile which accounts for the influence of the
input data and the user behavior.

A use case with many bugs can seem reliable if the user
spends so little time running it that none of the many bugs are
found. Conversely, a use case that has few bugs can seem
unreliable if the user spends so much time running it that all
those few bugs are found.

Thus, we must consider this when calculating the reliability,
that is, we must build operational profiles for the scenarios
that make up a single use case and then operational profiles
for a package of use cases.

A. Building the operational profile of use case scenarios
The problem is to calculate probabilities of use case

scenarios. Figure 3 shows a use case with numbered blocks
representing steps in the use case. This use case is made of six
scenarios that represent different paths through the use case,
they are: 1, 2, 3, 4; 1, 2, 3, 1; 1, 2, 3a, 4; 1, 2, 3a, 4a; 1, 2, 3a,
4b; 1, 2, 3a, 4c. In this, each path outgoing each step in the use
case is assigned a probability. So for example, after a user has
executed step 2, we expect that 80% of the time the user will
go to step 3 next and 20% of the time they will go to step 3a.
After probabilities are assigned to each path, the probability of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2583

each scenario is calculated by taking the product of the
probabilities of paths in that scenario.

For example, the probability of scenario 1, 2, 3, 4 is 1 x 0.8
x 0.8 = 0.64

Ideally, we can conduct a usability study. Otherwise, we
can apply the Pareto principle to operational profiles: 20% of
the paths outgoing a use case step will carry 80% of the user
traffic. We take the number of paths exiting a use case step
and multiply by 20%; for most use cases this will yield 1 or 2

exit paths (e.g., 20% of 10 exit paths = 2). Distribute 80% of
the traffic across these 1 or 2 steps. For the remaining steps,
distribute 20% of the traffic across them.

Fig. 3: Scenarios of a use case

Figure 4 and Figure 5 show the two examples of successive
application of Pareto principle where the initial 80% of traffic
is allocated to 1 and 2 exit paths, respectively.

B. Building the operational profile of a use case package
Until now, we can build the operational profile of use case

scenarios. However, few projects deal with just a single use
case, so next we must build the operational profile for a
package of use cases with generalization relationship, extend
relationship and include relationship as defined in UML 2.0.
[4]. We'll proceed as the following:

First, we estimate the usage frequency of base use cases.
Next, we estimate the usage frequency of include and
extend use cases used stand-alone.
Finally, we estimate the usage frequency of include and
extend use cases used by the base use cases.

In these three steps, step 1 and step are quite simple, only
the step 3 need the probabilities that include use cases and
extend use cases are actually used.

Inclusions and extensions in UML both have the property
that flow of control returns to the base use case at the same
point where the inclusion/extension took place (i.e., the
inclusion point or extension point, respectively). [4]

Let's return to the graph of use case in Figure 3 and assume
that it is the graph of base use case. Then let's say that steps 3
and 4 of the graph are the inclusion and extension points for
an include use case and extend use case, respectively, as

Fig. 4: 80% is allocated to a single use case outgoing path.
Fig. 6: The graph of the base use case.

Fig. 5: 80% is allocated to two use case outgoing paths

TABLE I
PROBABILITY OF EACH SCENARIO IN FIGURE 3

Scenario Probability

1, 2, 3, 4 0.64
1, 2, 3, 1 0.16
1, 2, 3a, 4 0.13
1, 2, 3a, 4a 0.03
1, 2, 3a, 4b 0.03
1, 2, 3a, 4c 0.01
Total 1.00

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2584

showed in Figure 6.
As above, we need the probability that the base use case

will actually invoke the inclusion or the extension in Figure 6.
Table I provides the probability of each scenario of Figure 3.

Because the inclusion is invoked in the step 3, that is, it’s
invoked in the scenarios 1, 2, 3, 4 and 1, 2, 3, 1, the
probability that the base use case invokes the inclusion is:

0.64 (probability of 1, 2, 3, 4) + 0.16 (probability of 1, 2, 3,
1) = 0.80.

Similarly, the probability of invoking the extension is:
0.64 (probability of 1, 2, 3, 4) + 0.13 (probability of 1, 2,

3a, 4) = 0.77

Fig. 7: The reliability prediction model of component-based software architectures

However, remember the UML definition of an extend use
case: the extension is "subject to specific conditions specified
in the extension." [4]. If the condition, specified as part of the
extend use case, is met, the extension is executed; otherwise,
the base use case flow resumes as is. Of course, the Pareto
principle says that 20% of the outgoing paths from a use case
step will account for 80% of the traffic. Because we've only
got two possible choices: extension or not, we take the
probability of no extension at 0.8, that is, the probability for
extension is 0.2.
 Therefore, the probability that the base use case invokes the
extension is the probability of the use case flow taking one of
the scenarios on which the extension lies (scenarios 1, 2, 3, 4
and 1, 2, 3a, 4 in Figure 3) times the probability that the users
actually wants an extension:
(0.64 + 0.13) * 0.2 = 0.15

C. Calculating the operational profile-dependent reliability
Assume that a use case j includes n scenarios numbered

from 1 to n, and then the reliability of the system with regard
to the use case j is given by:

1

n

j i i
i

r p r

Where pi is the probability of scenario i, ri is the reliability
of the system with regard to scenario i.

 Given the reliability of the system with regard to each use
case, the reliability of the system with regard to use cases can
be calculated. Assume that the system includes m use cases
numbered from 1 to m, and then the reliability of the system
with regard to the use cases is given by:

R =
1

m

j j
j

p r

Where pj is the probability of use case j, rj is the reliability
of the system with regard to the use case j.

IV. THE RELIABILITY PREDICTION MODEL OF
COMPONENT-BASED SOFTWARE ARCHITECTURES
Fig. 7 shows the reliability prediction model of component-

based software architectures:
1. Starting with use cases and use case scenarios, the results

of analyzing the system, the operational profile calculator
with two components which are a operational profile
calculator for use case scenarios and a operational profile
calculator for use cases gives the enhanced use cases with

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2585

the probabilities of use cases and the enhanced use case
scenarios with the probabilities of use case scenarios.

2. Next, each of the enhanced use case scenarios is entered
the reliability calculator. The principle of operation of the
reliability calculator is described as following:
The set of service effect specifications and the entered use
case scenario form the inputs of the profiler; the output is
a set of the enhanced service effect specifications with the
information about transition probabilities and the
execution times of each state. Basically, a profiler is a
performance analysis tool that allows measuring the
behavior of a program during execution, namely the
frequency and the period among function calls.
Nowadays, profilers are quite popular, for example
JProbe for Java of Quest Software, dotTrace Profiler of
JetBrains for .NET.

With the enhanced service effect specifications and the
component model [2], the component reliability calculator
gives the reliability of the system (not include the
resource-dependent reliability of the system). Basically,
the component reliability calculator starts with calculating
the reliability of the top level composition component and
then recourses until a basic component is reached [1].

Fig. 8. Use case diagram of the web server system

Concurrently, the resource-dependent reliability
calculator accepts the resource reliability formulas and the
enhanced service effect specifications as inputs and gives
the resource-dependent reliability of the system.
Basically, the resource-dependent reliability calculator
repeats the following for each resource:

o Calculate the usage period of each resource and
then use the corresponding resource reliability
formula to calculate the resource-dependent
reliability of the system with regard to each
resource.

o And the resource-dependent reliability of the
system is the product of all resource-dependent
reliabilities of all resources.

Next, the reliability of the system with regard to the
entered use case scenario is the product of the resource-
dependent reliability of the system and the reliability of
the system (not include the resource-dependent
reliability).

3. Finally, the operational profile-dependent calculator is
used to calculate the total reliability of the system.

Not mentioned in this model is the way to build up the
service effect specifications, the component model and the
resource reliability:
o The service effect specifications can be provided by

component suppliers or can be generated from the source
code of components.

o The component model [2] can be taken out from
designing the system.

Fig. 9: The operational profile of use cases of the web server system.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2586

o The resource reliability is assumed to have an exponential
distribution where 1/ is the rate of failure occurrences.

V. EXPERIMENTAL EVALUATION
The evaluated system is a web server. Fig. 8 shows the use

case diagram of the web server system with relationships
between use cases.

Fig. 9 shows the operational profiles of use cases of the
web server system. Table 2 shows the logged information
during the execution of the web server by using a profiler.

The logged information from table 2 can be used in
conjunction with the service effect specifications to get the
enhanced service effect specifications with transition
probabilities and the execution times of each state. We use the
logged information to retrace each logged execution path of a
service in its specification, that is, the number of visits to each
state and transition is counted. The number of visits to a state
must be greater or equal than the number of visits to its
outgoing transitions, since the state must be visited before one
of these transitions is taken. Furthermore, if the state is a final
state, it might happen that the execution terminates in the state
and no further transitions are taken. So, the transition
probability from a state si to a state sj is: P(i, j) = Ti, j/Si

Figure 10 shows the enhanced service effect specification
of the service HandleRequest of StaticFileProvider.

VI. FUTURE WORK & FURTHER DEVELOPMENT
The modeling of different return values and errors of a

service enables the modeling of algorithms like fault tolerance
and load balancing in distributed systems. Both are common
methods to increase the reliability and performance of a
software system. However, it is important to notice that the
reliabilities of copies of the same software component are not
independent. This must be considered when determining the
overall system reliability.

The interdependency of components is limited to service
calls which are made from one component to the other, that is,
if one component fails, this has no influence on the other
components in the system as long as these not require any
services of this component. We also considered the
dependency of components that are deployed on the same
resource, that is, if two components are deployed on the same
resource, both depend on it and their reliability has a certain
dependency. However, there is still dependence between
successive software executions. This must be considered as
well.

Since a considerable uncertainty exists in the estimates of
the operational profile and components reliabilities then a
significant uncertainty exists in calculated software reliability.
Moreover, the way of estimating software reliability by
plugging point estimates of unknown parameters into the
model may not be appropriate since it discards any variance
due to uncertainty of the parameters. Therefore, a
methodology for uncertainty analysis of software reliability
suitable for large complex component based applications and
applicable throughout the software life cycle is needed.

The fact the components that are rarely executed usually
handle critical functionalities such as exception handling or
recovery. That is, components with small execution rates
might be the most sensitive components to the changes in the
operational profile. Therefore, a method for studying the
sensitivity of software usage to changes in the operational
profile is needed.

One important fact should not be overlooked - the quality
of the reliability predictions depends not only on the methods
used, but also on the quality of the failure data. One reason for
low data quality is due to the fact that in most cases problem
and change tracking repositories used today were not designed
with failure analysis. Another major reason of low data quality
is the lack of consistency and discipline in the process of

recording the data. Therefore, a method for improving the
process of collecting and recording the failure data, making
real failure data from variety of sources publicly available is
needed.

TABLE II
THE LOGGED INFORMATION OF THE WEB SERVER SYSTEM

C
al
l

Cal
ler Class Interface.Method Time

1 0 XMLConfigReader IConfigReader.Read
Configuration 3004320

2 0 WebserverConfig IWebserverConfig.ge
tConfigFilesPath 0

3 0 WebserverConfig IWebserverConfig.ge
tConfigFilesPath 0

4 0 WebserverMonitor IWebserverMonitor.I
nitializeWriteAccess 500720

5 4 WebserverConfig IWebserverConfig.ge
tDebugFile 400576

6 4 WebserverConfig IWebserverConfig.ge
tLogFile 0

7 0 DefaultDispatcher IDispatcher.Start 801152
… … … … …

Conducting a large software application requires to analyze
the adequacy, applicability, and the software reliability model.
For that purpose, an innovative approach to efficiently extract
and more accurately analyze a large amount of empirical data
is needed. Applying the theoretical results on a large scale
field study allows us to test how and when the model works,
to understand its limitations, and outline the issues that need
attention in the future research studies.

VII. CONCLUSION
The approach of Reussner [1] provides a way to predict the

reliability on the basic of parametric contracts and Markov
models. There, the entry R(i, j) of the potential matrix of a
Markov model is the expected number of visits to the state sj

from the state si. The fact that the potential matrix contains the
expected numbers brought us an idea to use these values to
calculate the execution time of a service.

A clear understanding of the reliability from users’ point of
view has been introduced by Cheung [6]. He states that the
fact that users rarely request a faulty service or users often
request a faulty service must be considered in calculating the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2587

reliability. Therefore, we extended his view of reliability: if a
faulty resource is not used, it will not influence the reliability
from users’ point of view.

Using the Markov model as basic to give prediction of the
reliability accepts an assumption: the service executed next
depends only on the current state. So, the importance of the
path through the control flow of the program is neglected, that
is, the input data as well as the user behavior are neglected.
Motivated by this assumption is quite popular in Markov-
based reliability prediction, we have developed a way to build
operational profile which accounts for the influence of the
input data and the user behavior.

REFERENCES

[1] R. H. Reussner, I. H. Poernomo, and H. W. Schmidt, “Reasoning on
software architectures with contractually specified components," in
Component-Based Software Quality: Methods and Techniques, ser.
LNCS, A. Cechich, M. Piattini, and A. Vallecillo, Eddition. Springer-
Verlag, Berlin, Germany, 2003, no. 2693, pp. 287-325.

[2] S. Becker, “The palladio component model," University of Oldenburg,
Tech. Rep., 2004, http://se.informatik.uni-
oldenburg.de/pubdbfiles/pdf/TechReport%20Component%20Model.pdf

[3] B. Meyer, “Applying “Design by Contract"," IEEE Computer, vol. 25,
no. 10, pp. 40-51, Oct. 1992.

[4] OMG, “UML 2 superstructure, final adopted specification,"
http://www.omg.org/docs/ptc/03-08-02.pdf, 27.12.2004.

[5] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability -
Measurement, prediction, application. New York: McGraw-Hill, 1987.

[6] R. C. Cheung, “A user-oriented software reliability model," IEEE

Transactions on Software Engineering, vol. 6, no. 2, pp. 118-125, Mar.
1980, special collection from COMPSAC '78.

[7] S. M. Ross, Introduction to Probability Models, 4th ed. Academic Press,
1989.

[8] A. Burns and A. Wellings, Real-Time Systems and Programming
Languages, 2nd Edition. Addison-Wesley, 1996.

[9] C. Cinlar, Introduction to Stochastic Processes. Englewood Cliffs, NJ:
Prentice-Hall, 1975.

[10] S. Mullender, Distributed Systems, 2nd Edition. Longman Publishing
Group, 1993

[11] S. Ozekici and R. Soyer, “Reliability of software with an operational
profile," European Journal of Operational Research, vol. 149 (2003), pp.
459-474, May 2002. [Online]. Available: www.sciencedirect.com

[12] D. Hamlet, D. Mason, and D. Woit, “Theory of software reliability based
on components," in Proceedings of the 23rd International Conference on
Software Engeneering (ICSE-01). Los Alamitos, California: IEEE
Computer Society, May12-19 2001, pp. 361-370.

[13] K. Goseva-Popstojanova and S. Kamavaram, Assessing Uncertainty in
Reliability of Component-Based Software Systems, 14th IEEE
International Symposium on Software Reliability Engineering (ISSRE
2003), Denver, CO, Nov. 2003, pp. 307-320.

[14] S. Kamavaram and K. Goseva-Popstojanova , Sensitivity of Software
Usage to Changes in the Operational Profile, 28th NASA/IEEE Software
Engineering Workshop, Greenbelt, MD, Dec. 2003, pp. 157-164.

[15] K. Goseva-Popstojanova, Quality of Failure Data - The Good, the Bad,
and the Ugly , Reliability Analysis of System Failure Data Workshop,
Cambridge, UK, March 2007.

[16] K. Goseva-Popstojanova and M. Hamill Architecture-Based Software
Reliability: Why only a Few Parameters Matter? , 31st Annual IEEE
International Computer Software and Applications Conference
(COMPSAC 2007), Beijing, July 2007.

Fig. 10: The enhanced service effect specification of the service HandleRequest of StaticFileProvider.

