
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2580

Building the Reliability Prediction Model of 
Component-Based Software Architectures 

Pham Thanh Trung, Huynh Quyet Thang 

Abstract—Reliability is one of the most important quality 
attributes of software. Based on the approach of Reussner and the 
approach of Cheung, we proposed the reliability prediction model of 
component-based software architectures. Also, the value of the 
model is shown through the experimental evaluation on a web server 
system.   

Keywords—component-based architecture, reliability prediction 
model, software reliability engineering.

I. INTRODUCTION

ELIABILITY is one of the most important quality 
attributes of software. The approach of Reussner [1] 
provides a way to predict the reliability on the basic of 

parametric contracts and Markov models. A clear 
understanding of the reliability from users’ point of view has 
been introduced by Cheung [6]. He states that the fact that 
users rarely request a faulty service or users often request a 
faulty service must be considered in calculating the reliability.  

In this paper, we present the research result about 
predicting the reliability of component-based software 
architectures that depends on reliabilities of components and 
operational profiles of use case packages. Developed mainly 
from [1, 6, 11, 12, 13], we proposed to build the reliability 
prediction model of component-based software architectures 
and showed the value of the model. The content of this paper 
is presented as following: Section 2 presents the component-
based software reliability based on the reliabilities of 
resources and components. Section 3 presents the component-
based software reliability based on operational profiles. 
Section 4 presents the reliability prediction model based on 
the combination of the two models above. Section 5 presents 
the experimental evaluation. 
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II. RESOURCE-DEPENDENT RELIABILITY

A. The differences in reliability behaviors between 
resources and components 

A software component can only fail during its execution 
because a fault procedure of a component needs to be 
executed to cause a failure. From that, the reliability of a 
software component is a function of usage profiles. On the 
other hand, a resource can fail at any time independent of its 
usages, that is, the reliability of a resource is a function of 
time. 

Thus, we must consider this difference when calculating the 
reliability. A resource must be available until the last usage is 
finished. Therefore, we need to determine the time a resource 
must be available, that is, the time until the last usage is 
finished.

The approach of Reussner [1] provides a way to predict the 
reliability on the basic of parametric contracts and Markov 
models. There, the entry R(i, j) of the potential matrix of a 
Markov model is the expected number of visits to the state sj
from the state si. The fact that the potential matrix contains the 
expected numbers brings us an idea to use these values to 
calculate the execution time of  a service. 

A clear understanding of the reliability from users’ point of 
view has been introduced by Cheung [6]. He states that the 
fact that users rarely request a faulty service or users often 
request a faulty service must be considered in calculating the 
reliability. Therefore, we can extend his view of reliability: if 
a faulty resource is not used, it will not influence the 
reliability from users’ point of view. 

B. Calculating the time consumption of a service 
The only entities that consume time in a Markov model are 

states (if not, it can be easily transformed into this form). 
Therefore, if we have number of visits to each state on an 
arbitrary path through the model, we can calculate the 
expected time consumption of a service. 

Assume that we have a Markov model 

0( , , , , , )dMM S F s u  for a service d and that we have the 
expected number of visits to each state in MMd and its 
expected time consumption. From that, we can calculate the 
total time consumption of the service d. 

We have: 
*d s

s S
E X v E Xs

where vS is the expected number of visits to state s, the 

R
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E[XS] is the expected time consumption of state s and E[Xd] is 
the total time consumption of the service d. 

C. Calculating the usage period of a resource 
As above, in order to have a more accurate reliability 

prediction, we need to determine the last time the service uses 
the resource. 

1) The simplest case (one resource – one state) 
In this case, each state is associated with a single and 

unique resource that is always used during the visit to the 
state.

Assume that we have the service effect specification of 
service d as Markov model MMd. Each state sj of MMd uses a 
single and unique resource rj and use this resource during the 
whole execution.

The time that resource rj must be available is equal to the 
time consumption of the service until the last visit to the state 
sj. Assume that we have an arbitrary path from the start state 
to the final state: 

s0si1…sj…siksik+1…sj…sf

Let V(i, j) be the expected number of visits to each state si

before the last visit to the state sj and let E[Xj] be the expected 
execution time of state sj. After that, the total time 
consumption until the last visit to sj is: 

( , ) *
j

i

r i
s S

E X V i j E X

In this case, the last usage of the associated resource rj is 
equivalent to the last visit to sj From that, 

jrE X  is the time 

that the resource rj must be available. 
Now, we need to determine V(i, j). Let ja  be the beginning 

part of the path until the last visit to sj. From that, we have: 
V(j, j) = R(1, j) 

where R is the potential matrix of the Markov model MMd

because all the visits to sj must be in ja .
For each other state si, we need to determine the fraction of 

the expected number of visits R(1, i) that is in the beginning 
part ja . Let take a look at the definition of the matrix F of the 
Markov model: each entry F(i, j) is the probability to visit the 
state sj from the state si on an arbitrary path. The entry F(i, j) 
is calculated as following: 

( , )    
( , )

( , )
11
( , )

i j
R i j if s s
R j j

F i j
otherwise

R i i
Therefore, the expected number of visits to si until the last 

visit to sj is 
V(i, j) = R(1, i) * F(i, j). 

for all states si with i j. Then, the product R(1, i) * F(i, j) 
is the fraction of the expected number of visits to the state si

before the state sj is visited. 
2) The extended case (one resource – several states) 
In this case, several states are associated with the same 

resource r. Assume that we have the service effect 

specification of service d as Markov model MMd and that we 
have Sr as the set of states associated with resource r.

 We want the Markov model MMr,d to stop its execution 
whenever the resource r is used. To do this, a new Markov 
model MMr,d in which the states sj in Sr are the final states is 
formed from MMd by removing all the outgoing transitions 
from each state in Sr, that is,  the transition matrix Pr of MMr,d

contains a row of zeros for every state in Sr. Also, all the final 
states of MMr,d form a probability distribution. Because the 
execution must reach exactly one final state, the sum of the 
number of visits to all final states must be one. The value Rr(i,
j) for the state sj in Sr is the probability to visit sj from the state 
si. Moreover, the values Rr(i, n) are the probabilities of going 
from the state si to the final state sn without using the resource 
r. The probability ( )r i  of using the resource r after or during 
the visit to the state si is given as following: 

( ) ( , )
j r

r r
s S

i R i j

n

Because the final states form a probability distribution, we 
have: 

( ) 1 ( , )r ri R i
After that, the expected number of visits to the state si

before the last usage of the resource r is: 
(1, )      

( )
(1, )* ( )   

i r
r

r

R i if s in S
i

R i i otherwise

Moreover, the expected time the resource r must be 
available is: 

i

r i
s

[X ]= ( )* [X ]r
S

E i E

3) The general case 
In this case, a state requires the associated resources only 

for a part of its execution. Let ur(i) be the probability of using 
resource r during the execution of state si, let Xr,i be the 
expected time of using resource r in state si and let qr(i) be the 

probability of using resource r after leaving state si. Figure 1 
shows the relationship between the probabilities ur(i) and qr(i).

Now, we can calculate ( )r i - the probability of using r on 
the path from the start state si to the final state of the superior 
Markov model or the probability of using r in si or after 
leaving si.

( ) 1 (1 ( ))(1 ( ))r ri u i q

Fig. 1: The probabilities ur(i) and qr(i)

r i                           (1) 
Next, we transform the equation (1) into: 
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( ) ( )* ( )r r ri u i q i
Where 

( ) 1 ( )r ru i u i , ( ) 1 ( )rrq i q i

and
( ) 1 ( )r ri i

As above, we want the execution to stop when r is used, 
that is, the final state of MMd is reached if and only if the 
resource is not used. Because there is a certain probability that 
the resource is not required, we cannot remove all outgoing 
transitions of states using r. That is , the execution must 
continue with probability ( )ru i  and terminate with probability 
ur(i).

Next, we simplify the internal service effect specification of 
a state si to a single transition between the start and the final 
state with the probability ( )ru i , that is, the execution stops in 
the internal start state of state si if the resource r is used and 
continues otherwise.  Figure 2 shows the simplified Markov 
model. 

Let MMr,d be the composed Markov model using the 
simplified service effect specifications. Then the entry Rr(i, n) 
of the potential matrix of MMr,d is the probability of going to 
the final state without using resource r. Because the final state 
can only be reached if the internal transition of si is taken and 
the resource is not used after leaving si, the entry associated 
with the internal start state of si corresponds to the probability

( )r i . Moreover, because the superior final state can only be 
reached if the resource is not used after leaving si, the entry 
associated with the internal final state corresponds to the 
probability ( )rq i .

The insertion of the simplified version of si into the superior 
Markov model is equivalent to a multiplication of every path 
through si by the factor ( )ru i . Therefore, instead of inserting 

an additional state and transition, we can integrate ( )ru i into 
the superior service effect specification by multiplying either 
every ingoing or outgoing transition of si by ( )ru i .

If we scale the outgoing transitions, ( )ru i  is considered 
after visiting si. Then the entry Rr(i, n) of the potential 
matrix contains the probability ( )r i  of not using r on a 

path from the internal start state of si to the final state of 
the superior Markov model. 

Otherwise, if we use ( )ru i  to scale the ingoing transitions 

of si, the multiplication by ( )ru i  is applied before visiting 
si. Then the entry Rr(i,n) corresponds to the probability

( )rq i .

Given the probabilities ( )ru i  and ( )rq i , the time 
consumption Xi and the usage period Xr,i of resource r for 
each state si of the Markov model MMd, we can calculate Xr,d,
the expected time the resource r is used during the execution 
of service d: 

, ,(1, )( ( ) ( ) )
i

r d d r i r ir
s S

E X R i q i E X q i E X

D. Calculating the resource-dependent reliability 
Until now, we can determine the usage period of a resource. 

The system reliability can be calculated if we have the usage 
period for each resource and their reliabilities. The reliability 
of a resource is a function of time which is assumed to be an 
exponential distribution. So, given the expected usage period 
of a resource E[Yr], the reliability for this period is R(E[Yr]). 

Fig. 2: The simplified service effect specification. 

III. OPERATIONAL PROFILE-DEPENDENT
RELIABILITY

Using the Markov model as basic to give prediction of the 
reliability accepts an assumption: the service executed next 
depends only on the current state. So, the importance of the 
path through the control flow of the program is neglected, that 
is, the input data as well as the user behavior are neglected. 
Motivated by this assumption is quite popular in Markov-
based reliability prediction, we have developed a way to build 
operational profile which accounts for the influence of the 
input data and the user behavior. 

A use case with many bugs can seem reliable if the user 
spends so little time running it that none of the many bugs are 
found. Conversely, a use case that has few bugs can seem 
unreliable if the user spends so much time running it that all 
those few bugs are found.  

Thus, we must consider this when calculating the reliability, 
that is, we must build operational profiles for the scenarios 
that make up a single use case and then operational profiles 
for a package of use cases. 

A. Building the operational profile of use case scenarios 
The problem is to calculate probabilities of use case 

scenarios. Figure 3 shows a use case with numbered blocks 
representing steps in the use case. This use case is made of six 
scenarios that represent different paths through the use case, 
they are: 1, 2, 3, 4; 1, 2, 3, 1; 1, 2, 3a, 4; 1, 2, 3a, 4a; 1, 2, 3a, 
4b; 1, 2, 3a, 4c. In this, each path outgoing each step in the use 
case is assigned a probability. So for example, after a user has 
executed step 2, we expect that 80% of the time the user will 
go to step 3 next and 20% of the time they will go to step 3a. 
After probabilities are assigned to each path, the probability of 
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each scenario is calculated by taking the product of the 
probabilities of paths in that scenario.  

For example, the probability of scenario 1, 2, 3, 4 is 1 x 0.8 
x 0.8 = 0.64 

Ideally, we can conduct a usability study. Otherwise, we 
can apply the Pareto principle to operational profiles: 20% of 
the paths outgoing a use case step will carry 80% of the user 
traffic. We take the number of paths exiting a use case step 
and multiply by 20%; for most use cases this will yield 1 or 2 

exit paths (e.g., 20% of 10 exit paths = 2). Distribute 80% of 
the traffic across these 1 or 2 steps. For the remaining steps, 
distribute 20% of the traffic across them. 

Fig. 3: Scenarios of a use case 

Figure 4 and Figure 5 show the two examples of successive 
application of Pareto principle where the initial 80% of traffic 
is allocated to 1 and 2 exit paths, respectively. 

B. Building the operational profile of a use case package 
Until now, we can build the operational profile of use case 

scenarios. However, few projects deal with just a single use 
case, so next we must build the operational profile for a 
package of use cases with generalization relationship, extend 
relationship and include relationship as defined in UML 2.0. 
[4]. We'll proceed as the following: 

First, we estimate the usage frequency of base use cases.
Next, we estimate the usage frequency of include and 
extend use cases used stand-alone. 
Finally, we estimate the usage frequency of include and 
extend use cases used by the base use cases. 

In these three steps, step 1 and step are quite simple, only 
the step 3 need the probabilities that include use cases and 
extend use cases are actually used.

Inclusions and extensions in UML both have the property 
that flow of control returns to the base use case at the same 
point where the inclusion/extension took place (i.e., the 
inclusion point or extension point, respectively). [4] 

Let's return to the graph of use case in Figure 3 and assume 
that it is the graph of base use case. Then let's say that steps 3 
and 4 of the graph are the inclusion and extension points for 
an include use case and extend use case, respectively, as 

Fig. 4: 80% is allocated to a single use case outgoing path. 
Fig. 6: The graph of the base use case. 

Fig. 5: 80% is allocated to two use case outgoing paths 

TABLE I
PROBABILITY OF EACH SCENARIO IN FIGURE 3

Scenario Probability 

1, 2, 3, 4 0.64
1, 2, 3, 1 0.16
1, 2, 3a, 4 0.13
1, 2, 3a, 4a 0.03
1, 2, 3a, 4b 0.03
1, 2, 3a, 4c 0.01
Total 1.00
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showed in Figure 6. 
As above, we need the probability that the base use case 

will actually invoke the inclusion or the extension in Figure 6. 
Table I provides the probability of each scenario of Figure 3. 

Because the inclusion is invoked in the step 3, that is, it’s 
invoked in the scenarios 1, 2, 3, 4 and 1, 2, 3, 1, the 
probability that the base use case invokes the inclusion is: 

0.64 (probability of 1, 2, 3, 4) + 0.16 (probability of 1, 2, 3, 
1) = 0.80. 

Similarly, the probability of invoking the extension is: 
0.64 (probability of 1, 2, 3, 4) + 0.13 (probability of 1, 2, 

3a, 4) = 0.77 

Fig. 7: The reliability prediction model of component-based software architectures 

However, remember the UML definition of an extend use 
case: the extension is "subject to specific conditions specified 
in the extension." [4]. If the condition, specified as part of the 
extend use case, is met, the extension is executed; otherwise, 
the base use case flow resumes as is. Of course, the Pareto 
principle says that 20% of the outgoing paths from a use case 
step will account for 80% of the traffic. Because we've only 
got two possible choices: extension or not, we take the 
probability of no extension at 0.8, that is, the probability for 
extension is 0.2. 
 Therefore, the probability that the base use case invokes the 
extension is the probability of the use case flow taking one of 
the scenarios on which the extension lies (scenarios 1, 2, 3, 4 
and 1, 2, 3a, 4 in Figure 3) times the probability that the users 
actually wants an extension: 
(0.64 + 0.13) * 0.2 = 0.15 

C. Calculating the operational profile-dependent reliability 
Assume that a use case j includes n scenarios numbered 

from 1 to n, and then the reliability of the system with regard 
to the use case j is given by: 

1

n

j i i
i

r p r

Where pi is the probability of scenario i, ri is the reliability 
of the system with regard to scenario i. 

 Given the reliability of the system with regard to each use 
case, the reliability of the system with regard to use cases can 
be calculated. Assume that the system includes m use cases 
numbered from 1 to m, and then the reliability of the system 
with regard to the use cases is given by: 

R = 
1

m

j j
j

p r

Where pj is the probability of use case j, rj is the reliability 
of the system with regard to the use case j. 

IV. THE RELIABILITY PREDICTION MODEL OF
COMPONENT-BASED SOFTWARE ARCHITECTURES
Fig. 7 shows the reliability prediction model of component-

based software architectures: 
1. Starting with use cases and use case scenarios, the results 

of analyzing the system, the operational profile calculator 
with two components which are a operational profile 
calculator for use case scenarios and a operational profile 
calculator for use cases gives the enhanced use cases with 
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the probabilities of use cases and the enhanced use case 
scenarios with the probabilities of use case scenarios. 

2. Next, each of the enhanced use case scenarios is entered 
the reliability calculator. The principle of operation of the 
reliability calculator is described as following: 
The set of service effect specifications and the entered use 
case scenario form the inputs of the profiler; the output is 
a set of the enhanced service effect specifications with the 
information about transition probabilities and the 
execution times of each state. Basically, a profiler is a 
performance analysis tool that allows measuring the 
behavior of a program during execution, namely the 
frequency and the period among function calls. 
Nowadays, profilers are quite popular, for example 
JProbe for Java of Quest Software, dotTrace Profiler of 
JetBrains for .NET.

With the enhanced service effect specifications and the 
component model [2], the component reliability calculator 
gives the reliability of the system (not include the 
resource-dependent reliability of the system). Basically, 
the component reliability calculator starts with calculating 
the reliability of the top level composition component and 
then recourses until a basic component is reached [1]. 

Fig. 8. Use case diagram of the web server system  

Concurrently, the resource-dependent reliability 
calculator accepts the resource reliability formulas and the 
enhanced service effect specifications as inputs and gives 
the resource-dependent reliability of the system. 
Basically, the resource-dependent reliability calculator 
repeats the following for each resource: 

o Calculate the usage period of each resource and 
then use the corresponding resource reliability 
formula to calculate the resource-dependent 
reliability of the system with regard to each 
resource.

o And the resource-dependent reliability of the 
system is the product of all resource-dependent 
reliabilities of all resources. 

Next, the reliability of the system with regard to the 
entered use case scenario is the product of the resource-
dependent reliability of the system and the reliability of 
the system (not include the resource-dependent 
reliability). 

3. Finally, the operational profile-dependent calculator is 
used to calculate the total reliability of the system.  

Not mentioned in this model is the way to build up the 
service effect specifications, the component model and the 
resource reliability: 
o The service effect specifications can be provided by 

component suppliers or can be generated from the source 
code of components. 

o The component model [2] can be taken out from 
designing the system. 

Fig. 9: The operational profile of use cases of the web server system. 
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o The resource reliability is assumed to have an exponential 
distribution where 1/  is the rate of failure occurrences. 

V. EXPERIMENTAL EVALUATION
The evaluated system is a web server. Fig. 8 shows the use 

case diagram of the web server system with relationships 
between use cases. 

Fig. 9 shows the operational profiles of use cases of the 
web server system. Table 2 shows the logged information 
during the execution of the web server by using a profiler.  

The logged information from table 2 can be used in 
conjunction with the service effect specifications to get the 
enhanced service effect specifications with transition 
probabilities and the execution times of each state. We use the 
logged information to retrace each logged execution path of a 
service in its specification, that is, the number of visits to each 
state and transition is counted. The number of visits to a state 
must be greater or equal than the number of visits to its 
outgoing transitions, since the state must be visited before one 
of these transitions is taken. Furthermore, if the state is a final 
state, it might happen that the execution terminates in the state 
and no further transitions are taken. So, the transition 
probability from a state si to a state sj is: P(i, j) = Ti, j/Si

Figure 10 shows the enhanced service effect specification 
of the service HandleRequest of StaticFileProvider. 

VI. FUTURE WORK & FURTHER DEVELOPMENT
The modeling of different return values and errors of a 

service enables the modeling of algorithms like fault tolerance 
and load balancing in distributed systems. Both are common 
methods to increase the reliability and performance of a 
software system. However, it is important to notice that the 
reliabilities of copies of the same software component are not 
independent. This must be considered when determining the 
overall system reliability.  

The interdependency of components is limited to service 
calls which are made from one component to the other, that is, 
if one component fails, this has no influence on the other 
components in the system as long as these not require any 
services of this component. We also considered the 
dependency of components that are deployed on the same 
resource, that is, if two components are deployed on the same 
resource, both depend on it and their reliability has a certain 
dependency. However, there is still dependence between 
successive software executions. This must be considered as 
well.

Since a considerable uncertainty exists in the estimates of 
the operational profile and components reliabilities then a 
significant uncertainty exists in calculated software reliability. 
Moreover, the way of estimating software reliability by 
plugging point estimates of unknown parameters into the 
model may not be appropriate since it discards any variance 
due to uncertainty of the parameters. Therefore, a 
methodology for uncertainty analysis of software reliability 
suitable for large complex component based applications and 
applicable throughout the software life cycle is needed. 

The fact the components that are rarely executed usually 
handle critical functionalities such as exception handling or 
recovery. That is, components with small execution rates 
might be the most sensitive components to the changes in the 
operational profile. Therefore, a method for studying the 
sensitivity of software usage to changes in the operational 
profile is needed. 

One important fact should not be overlooked - the quality 
of the reliability predictions depends not only on the methods 
used, but also on the quality of the failure data. One reason for 
low data quality is due to the fact that in most cases problem 
and change tracking repositories used today were not designed 
with failure analysis. Another major reason of low data quality 
is the lack of consistency and discipline in the process of 

recording the data. Therefore, a method for improving the 
process of collecting and recording the failure data, making 
real failure data from variety of sources publicly available is 
needed.

TABLE II
THE LOGGED INFORMATION OF THE WEB SERVER SYSTEM 

C
al
l

Cal
ler Class Interface.Method Time 

1 0 XMLConfigReader IConfigReader.Read
Configuration 3004320

2 0 WebserverConfig IWebserverConfig.ge
tConfigFilesPath 0

3 0 WebserverConfig IWebserverConfig.ge
tConfigFilesPath 0

4 0 WebserverMonitor IWebserverMonitor.I
nitializeWriteAccess 500720

5 4 WebserverConfig IWebserverConfig.ge
tDebugFile 400576

6 4 WebserverConfig IWebserverConfig.ge
tLogFile 0

7 0 DefaultDispatcher IDispatcher.Start 801152
… … … … …

Conducting a large software application requires to analyze 
the adequacy, applicability, and the software reliability model. 
For that purpose, an innovative approach to efficiently extract 
and more accurately analyze a large amount of empirical data 
is needed. Applying the theoretical results on a large scale 
field study allows us to test how and when the model works, 
to understand its limitations, and outline the issues that need 
attention in the future research studies. 

VII. CONCLUSION
The approach of Reussner [1] provides a way to predict the 

reliability on the basic of parametric contracts and Markov 
models. There, the entry R(i, j) of the potential matrix of a 
Markov model is the expected number of visits to the state sj

from the state si. The fact that the potential matrix contains the 
expected numbers brought us an idea to use these values to 
calculate the execution time of a service. 

A clear understanding of the reliability from users’ point of 
view has been introduced by Cheung [6]. He states that the 
fact that users rarely request a faulty service or users often 
request a faulty service must be considered in calculating the 
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reliability. Therefore, we extended his view of reliability: if a 
faulty resource is not used, it will not influence the reliability 
from users’ point of view. 

Using the Markov model as basic to give prediction of the 
reliability accepts an assumption: the service executed next 
depends only on the current state. So, the importance of the 
path through the control flow of the program is neglected, that 
is, the input data as well as the user behavior are neglected. 
Motivated by this assumption is quite popular in Markov-
based reliability prediction, we have developed a way to build 
operational profile which accounts for the influence of the 
input data and the user behavior. 
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Fig. 10: The enhanced service effect specification of the service HandleRequest of StaticFileProvider. 


