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Building Gabor Filters from Retinal Responses

Johannes Partzsch, Christian Mayr and Rene Schuffny

Abstract— Starting from a biologically inspired framework, Gabor
filters were built up from retinal filters via LMSE algorithms. A
subset of retinal filter kernels was chosen to form a particular
Gabor filter by using a weighted sum. One-dimensional optimization
approaches were shown to be inappropriate for the problem. All
model parameters were fixed with biological or image processing
constraints. Detailed analysis of the optimization procedure led to
the introduction of a minimization constraint. Finally, quantization
of weighting factors was investigated. This resulted in an optimized
cascaded structure of a Gabor filter bank implementation with lower
computational cost.
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I. INTRODUCTION

GABOR filters have desirable properties for picture anal-

ysis and feature extraction: They are selective in space,

spatial frequency and orientation, achieving the theoretical

limit for conjoint resolution in the spatial and spatial frequency

domain ([1]). Therefore, they have been widely used in these

fields in recent years ([2], [3], [4]). Those filters were also

used to describe the behavior of simple cells in area V1 of

the human visual cortex, which has turned out to be very

successful ([5]). It is thus worth going back to the roots and

taking a look on how Gabor filters are composed in nature.

The human retina gathers optical information about the

environment via its 108 photoreceptors. Horizontal, bipolar

and amacrin cells filter the information, and the 106 ganglion

cells code the filter outputs into spike trains, sending them to

the optic nerve. In this process, a lot of information compres-

sion is needed ([6], [7]) due to the relatively few number of

outputs. To achieve this, the overall retinal filtering consists

of lowpass and bandpass filtering, emphasizing changes in

illumination and suppressing regions with uniform brightness.

The next processing stage in the human visual system is area

V1 of the visual cortex. There, basic features of the image are

extracted by combining retinal outputs, so that overall Gabor-

like receptive fields arise ([8]).

The idea of building Gabor filters from retinal responses is

not new; it was already stated by Thiem et al. ([9], [10]). We

use their principal idea of building Gabor filters by linearly

combining outputs of retinal filters, using least mean square

error (LMSE) optimization. In contrast to their emphasis on

the system’s archictecture and the hexagonal sampling, we

here investigate the optimization process in more detail. This

includes adjusting the retinal filter parameters, analysing and
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extending the standard LMSE optimization, and testing the

influence of quantised weighting factors on the optimization

results. In particular, we show that one-dimensional opti-

mization approaches are insufficient for the problem, and

introduce a minimization equation leading to a far better

weighting factor distribution. The latter is a prerequisite for

successfully quantising the weights. From the quantisation

results, we propose a simplified cascaded structure for Gabor

filter banks compared to that introduced in [10], and compare

the computational cost of the approach with standard Gabor

filter bank implementations.

In section II, we develop a model for the retinal filters.

Section III will introduce a Gabor filter model and describe

and analyse the different optimization procedures. Finally,

section IV shows how quantization of coefficients influences

the results and describes the simplified cascaded structure of

a Gabor filter bank.

II. MODEL OF THE RETINA

In a simple approach, the retina as a whole can be seen as

performing a discrete convolution of the input image with a

retinal filter kernel. In other words, it could be modeled by a

discrete, linear filter. Each output of a ganglion cell represents

the filter output at a particular position, coded in a spike train.

The retinal filter kernels have a center-surround structure,

i.e. center and surround have opposite sign (see [11], for

example). As negative filter outputs are hard to code into

a spike train by retinal ganglion cells, there exist cell pairs

for each filter output: The so-called ON-center cell codes the

positive values, and the OFF-center cell codes the negative

values using a negated filter kernel ([12]).

A common model for the filter kernels is the Difference-

of-Gaussian (DoG) model. It consists of two Gaussians with

different variances and can generally be written as

d(x, y) = a1 · e
− x2+y2

2σ2
1 − a2 · e

− x2+y2

2σ2
2 . (1)

In our model, the filter will be pure bandpass, meaning

that uniform brightness will be generating zero filter output.

To ensure this, the integral over the filter kernel has to be

zero as well. Because the overall amplitude of the DoG has

no influence on the analysis and is adjusted later by the

coefficients used to combine the retinal filter kernels to Gabor

filters, we simply set the maximum of the first Gaussian to 1.

Then we receive the form

d(x, y) = e
− x2+y2

2σ2
1 − 1

a2
· e−

x2+y2

2a2σ2
1 , with a =

σ2

σ1
. (2)

Whereas σ1 fixes the spatial size of the filter kernel, a defines

its shape. In contrast to what results of biological experiments



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

176

2

suggest (e.g. [12]), we will not vary a in our model, because

it is not thought to be biologically exact but aims for efficient

signal processing. According to [13], we choose a = 1, 6 to

approximate the Laplacian-of-a-Gaussian(LoG) model, which

was also used by [10]. The retinal filter according to this value

is shown in picture 1A.

To fix the value of σ1, we consider the Fourier transform

of the DoG, which is

D(u, v) = 2πσ2
1 ·

(
e−2σ2

1(u2+v2) − e−2a2σ2
1(u2+v2)

)
. (3)

As can be seen in figure 1C, the DoG behaves like a bandpass

filter with the mid frequency proportional to 1
σ1

. The Gabor

filter is also bandpass, so a constraint on σ1 is that the

frequency range of the DoG filters lies within the frequency

range of the Gabor filter. After introducing Gabor filtering in

the next section, we will describe this a bit more precisely.
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Fig. 1. DoG filters: A: composition of the DoG function out of two Gaussians.
B: 2D-profile, corresponding to an ON-center ganglion cell. C,D: spectrum
of the DoG function in 1D and 2D. Shape parameter a = 1.6 and standard
deviation σ1 = 1 for all charts.

III. SYNTHESIS OF GABOR FILTERS

Before starting to compose Gabor filters, we have to de-

scribe them mathematically. Lee ([1]) has derived a Gabor

filter model that is based on biological experiments, but also

considers constraints from information processing, such as

zero mean or L2 normalization. It has the form

g(x, y) =
ω0√
πd · k · e−

ω2
0

2k2 (x2+ y2

d2 ) ·
(
ejω0x − e−

k2
2

)
(4)

and its spectrum is given by

G(u, v) = 2
√

πd
k

ω0
· e−

k2d2

2ω2
0

v2

(5)

·
(

e
− k2

2ω2
0
(u−ω0)

2

− e−
k2
2 · e−

k2

2ω2
0

u2
)

.

Both the filter and its spectrum are displayed in figure 2.

As the filter function is complex, real and imaginary part

have to be treated separately. In fact, simple cells in V1

are arranged in pairs, with each pair approximately having
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Fig. 2. Gabor function: A: shapes of real (dashed line) and imaginary(dotted
line) part in x-direction. B,C: real and imaginary part as 2D profile. D:
spectrum in u-direction(solid line), and spectra of real(dashed) and imagi-
nary(dotted) part. E: 2D profile of the Gabor spectrum. F: 2D profile of the
Fourier transformed real part.

a quadrature characteristic ([1], [14]). The Gabor function

consists of a two-dimensional elliptic Gaussian, spreading

along the y-axis, and a zero-mean complex oscillation along

the x-axis. Its spatial size and spatial mid-frequency can be

adjusted by ω0, whereas the parameter k defines the spatial

frequency bandwidth and d the length-to-width-ratio of the

elliptic Gaussian. According to [1], we choose d = 2 and

a bandwidth of 1.5 octaves, which corresponds to k = 2.5.

For different orientations of the Gabor filter, the local filter

coordinates (x, y) have to be rotated with respect to the global

image coordinates.

Now that we have described the Gabor filter kernels, we can

start composing them from retinal DoG filters. Like Thiem et

al. ([9]), we use a linear approach:

g(x, y) ≈
∑
(j)

aj · dσj (x, y) , (6)

where dσj is the DoG kernel with standard deviation σ1 = σj .

The coefficients aj have to be determined by an optimization

procedure. This can be done by defining a set of control points

(xi, yi). For each control point, (6) defines one equation of a

linear system of equations. For good optimization results, there

should be far more control points (xi, yi) than coefficients aj ;

we used 10 times more control points than coefficients. The

resulting overdetermined system of equations can be solved in

a least mean square error (LMSE) sense.

One of the noteworthy properties of the Gabor filter is carte-

sian separability, i.e. the possibility to separate the function

into a product g(x, y) = g1(x) · g2(y), where x and y are

oriented along the main axes of the Gabor function. This

property was also found in receptive fields of V1 simple cells

(see [8]). It could be used to simplify the optimization from

a 2-dimensional problem into two 1-dimensional problems. A

prerequisite for this method is cartesian separability of the

basis functions, which is not the case for DoG-functions. So

our results would suffer from an additional systematic error.

Even when using another, cartesian separable approximation

of a retinal filter kernel, there is a further drawback: The

solution would lead to a rectangular grid of retinal cells,
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oriented along the main axes of the Gabor filter. So one would

have to choose whether to take a grid of retinal cells for

each desired orientation of Gabors (there is at best a re-use

of a grid for the 90◦-rotated filters), which would be very

inefficient, or whether to take a single grid and then use for

each required retinal cell the nearest available position, which

would likely be highly inaccurate or (if the grid was fine)

again very inefficient. For this reasons, the 1D-approach is

unsuitable for the problem.
With a more general 2D-approach, the positions of retinal

filter cells can be chosen arbitrarily. For simplicity, we will

use quadratic grids of retinal filter cells with different statial

and spatial frequency size, i.e. different σ1. A hexagonal grid

would be more efficient in terms of the sampling theorem

and is approximately used in the retina of mammals and

humans ([9]), but that would be incompatible with common

image processing and quadratically sampled digital images.

Furthermore, the density of photoreceptors and ganglion cells

in the retina is not constant ([13]), so a uniform grid can

only be a coarse, local approximation to the arrangement in a

human retina.
To determine the σ1, we consider the spectra of DoG and

Gabor, shown in figures 1 and 2. As mentioned, the frequency

range of the DoG filter has to be within the frequency range

of the Gabor. Especially the maximum of the DoG amplitude

spectrum has to lie inside the Gabor spectrum. To express this,

we use the amplitude of frequency r =
√

u2 + v2. As the DoG

spectrum is radially symmetric, it becomes a 1-dimensional

function D(r):

D(r) = 2πσ2
1 ·

(
e−2σ2

1r2 − e−2a2σ2
1r2

)
(7)

with maximum at:

rmax =
1
σ1

·
√

ln a

a2 − 1
≈ 0.55

σ1
(a = 1.6) . (8)

For describing the extent of the Gabor spectrum, we adopt

a typical estimation from statistics for Gaussian distributions:

We calculate the amplitude maximum (ū, v̄) in the frequency

domain and take the standard deviations σu and σv as a mea-

sure for the expansion of the spectrum. In the following, we

will separately derive espressions for the u- and v-direction.

As the Gabor function is a single Gaussian in the v-direction,

we can simply read off its mean and standard deviation:

v̄ = 0 , σv =
ω0

kd
. (9)

Deriving the maximum in the u-direction is a bit more

complicated. The part of the spectrum dependent on u is given

by:

G1(u) = e
− k2

2ω2
0
(u−ω0)

2

− e−
k2
2 · e−

k2

2ω2
0

u2

. (10)

The derivation of this function has to be set to zero, yielding

a nonlinear equation that has to be solved:

1
z

+ e−k2z − 1 = 0 , z =
ū

ω0
→ z ≈ 1 for k = 2.5 . (11)

The standard deviation is simply taken from the two Gaussian

functions in G1(u), giving as result for the u-direction:

ū = ω0 , σu =
ω0

k
. (12)

Then we calculate the r-frequency range when taking the n·σu

and n · σv- interval:√
02 + ω2

0(1 − n

k
)2 ≤ r ≤

√
(
nω0

kd
)2 + ω2

0(1 +
n

k
)2 , (13)

which, with formula (8), yields

n = 1 : 0.39
ω0

≤ σ1 ≤ 0.92
ω0

(14)

n = 2 : 0.29
ω0

≤ σ1 ≤ 2.75
ω0

. (15)

This is a relatively wide range, because we have only used

the maximum of the DoG function and ignored its frequency

range.

We will use octave sampling here, i.e. increasing σ1 by a

factor of 2 for subsequent grids, and change the width of the

grid accordingly:

σ1,m = σ1,0 · 2m , Δxm = Δx0 · 2m , 0 ≤ m ≤ M − 1 ,
(16)

where M is the number of grids/octaves. To limit the number

of DoG functions, we only use those, whose center (x0, y0)
lies inside a circular area around the center of the Gabor filter

mask. The radius of this area is proportional to the size of the

Gabor major axis:

x2
0 + y2

0 ≤ R2 , R = αR · kd

ω0
. (17)

Simulations with different αR show, that αR = 1.5 gives a

good trade-off between accuracy at the boundary and number

of DoG masks.

Figure 3 shows simulation results for different orientations.

Because the quadratic grids are highly symmetric, we only

need to consider Gabor filters for orientations 0 ≤ φ ≤ 45◦,

all others can be obtained by mirroring at one of the symmetry

axes. We will use ω0 = 1 for all simulations without loss

of generality, because all parameters are fixed relative to ω0.

Furthermore, we will only show simulations for the real part

of the Gabor function, as the results for the imaginary part are

similar.

The synthesized Gabor filters look very similar to the

original ones, exept that they are a bit compressed at the

ends of their main axis. In figure 3 E,F , a test image was

filtered with the masks shown in figure 3 B and C. Again, the

results look very similar. When we increase the grid width, the

number of DoG masks decreases, but the results get worse.

For Δx = 2σ1, the shape of the filter changes significantly,

whereas the filtered image still looks rather the same (Fig. 4

B). With higher grid widths, the results get useless, because the

DoG masks overlap little (Fig. 4 C). When increasing σ1,0, the

masks first stay very much the same, either with or without

increasing the grid width (Fig. 4 D and E). But for values

σ1,0 > 2
ω0

, either the system of equations gets rank deficient,

or there appear undesired bumps in the outer regions of the

mask, which make the filtering results useless. Seen overall,

the frequency range calculated at the beginning of this section

is too wide, but gives a reasonable starting point.

Let us now examine the histograms. There is no reason

for the few high values of the aj , which are likely to be the



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

178

4

A

200

800 0

200

200 0

B2

C2

D2

B1

C1

D1

E1

F1

B3

200

0

800

E2

F2

C3

D3

E3

F3

|a||a||a|
N

(|
a
|)

N
(|

a
|)

N
(|

a
|)

x

y

x

2
5
5

0

0

255

-1
8

1
8

y 18-18

Fig. 3. Original and synthesized Gabor filters for different orientations: 0◦
(1), 22.5◦ (2) and 45◦ (3). Parameters are: σ1,0 = 1

ω0
, Δx0 = σ1,0, M=3

octaves, leading to N=231 DoG masks. A: test image; B: Gabor filters derived
from equation (4); C: composed filters; D: histograms of weighting factors aj ,
amplitudes sorted into 50 equally spaced bins (note the few very high values
distorting the histograms); E: image A filtered with Gabor kernels shown in
B; F: image A filtered with approximated masks shown in C. (Axes for E,F
as in A; for B,C as in B3)

result of numerical side effects. This problem could be solved

by introducing an additional minimization condition, using a

sum of squares: ∑
(j)

a2
j → min . (18)

The LMSE-solution of this nonlinear system of equations

gives as good results as without minimization, but with far

better distribution of coefficients, as figure 5 shows. Such an

additional minimization equation should therefore be included

into optimization problems like this one.

IV. QUANTIZATION

We will now investigate the effects of quantized coefficients

on the results of the composition. Those depend on how strong

deviations from the optimal solution worsen the filter masks.

We quantize the amplitudes of the coefficients in K equal

intervals relative to a maximum value, so the allowed values

are:

a±k = ± k

K − 1
· amax , k = 0, 1, . . . , K − 1 . (19)

For optimal results, we use a successive approximation proce-

dure. First, the full overdetermined system of equations as in

A1

A2

B1 C1

B2 C2

D2

D1 E1

E2

Fig. 4. Parameter variation: 1: synthesized filter masks, 2: results of test
image filtering. A: σ1,0 = 1

ω0
, Δx0 = σ1,0. B: σ1,0 = 1

ω0
, Δx0 = 2σ1,0.

C: σ1,0 = 0.5
ω0

, Δx0 = 3σ1,0. D: σ1,0 = 2
ω0

, Δx0 = 0.5σ1,0. E: σ1,0 =
2

ω0
, Δx0 = σ1,0. (Axes as in Fig. 3)
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Fig. 5. Results of minimization: synthesized Gabor filters with orientation
0◦(A), 22.5◦ (B) and 45◦ (C). 1: filter masks. 2: histograms. Same conditions
and axes as in Fig.3 .

equation (6) is solved, including minimization of coefficients

(equation (18) ), since a narrow range of values is necessary for

good quantization. Then amax is determined slightly smaller

than the maximal occurring amplitude (amax = 0.95|a|max).

Thereafter, all coefficients that are in a range ε around an

allowed value are fixed to that value, and the system of

equations is solved for the remaining non-fixed aj . This

procedure is continued, increasing the range ε subsequently,

until all coefficients are fixed to an allowed value.

Figure 6 A-C shows results for the standard case (figure 3).

The masks look slightly different, with some jitter occurring at

the outer regions, which, however, does not affect the filtering

results. So, even when only switching on and off DoG masks

without any weighting factor (except the sign) as shown in

C, the results become not significantly worse. This is an

indication for the robustness of the synthesis process.

To test the limits of the method, we repeat the quantization
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Fig. 6. Results for quantized coefficients. 1: synthesized filter masks, 2:
results of test image filtering, 3:histogram. In A-C, parameters σ1,0 = 1

ω0
,

Δx0 = σ1,0 are used and K is set to 8 (A), 4 (B) and 2 (C). D and E show
data for σ1,0 = 2

ω0
, Δx0 = σ1,0. In D, K = 4 and in E, K = 2, leading

to poorer results. Conditions and axes are the same as in Fig. 3, except the
bin count of 30 for the histograms.

for an arrangement with fewer DoG masks (figure 4 E). Here,

the results become significantly worse for strong quantization,

as can be seen from figure 6 D,E, but could still be used as a

reasonable approximation of a Gabor filter. Notice that there

are only 16 coefficients unequal to zero in the last case (see

height of bar at 0.12 in figure 6 E).

This small number of DoG masks needed to form a reason-

able Gabor filter could be used for an efficient implementation

of a Gabor filter bank, using a cascaded structure as was

mentioned in [10]. Instead of calculating a convolution for

each Gabor filter - which is computationally expensive and has

caused efforts in developing optimization strategies reducing

the size of filter banks ([16], [15]) - the convolution is only

calculated for a few DoG masks (3 in our case), and for each

position there only needs to be added a certain set of filter

outputs together to form an approximation of a particular

Gabor filter (see figure 7). This goes beyond the approach

of [10], where filter outputs are weighted before summation.

Calculating another Gabor filter would only require to sum

up another set of DoG filter outputs, but would avoid the

computation of a convolution. This method requires a pre-

calculation, which is much more expensive than a convolution,

as there have to be solved several overdetermined, nonlinear

systems of equations. But this can be done once, and the

Fig. 7. Cascaded filter structure: For calculating the Gabor filter output at a
particular position, selected DoG-filter outputs are added together.

combination of DoG masks is then stored for subsequent

filterings.

For showing the advantage of the approach described above,

let us compare the computational cost with a standard Gabor

filter bank. In the standard approach, a discrete convolution is

calculated for each desired Gabor filter. Assuming a number of

NG Gabor filters, an (output) image size of X ·Y pixels and a

size of the filter kernel of U ·V pixels, filtering an image would

require approximately NG · X · Y · U · V multiplications and

the same number of additions. The approach with composed

Gabor filters requires to calculate discrete convolutions for

each of the NR retinal DoG-layers with approximately NR ·
X · Y · U · V multiplications and additions. One could argue

that the filter kernel size varies from layer to layer, but this

is compensated by the coarser sampling of DoG filters with

greater spatial extent. The composition of the Gabor filter

approximation requires MG additions for each position, which

leads to NG · X · Y · MG additions for the whole sampling

process. The difference between standard Gabor filter bank

and composed-Gabor filter bank is then

ΔC = NG · X · Y ·
[
U · V ·

(
1 − NR

NG

)
− MG

]
. (20)

For a big filter bank, the approximation NR � NG holds, so

the term in brackets simplifies to [U · V −MG]. For practical

filter sizes, U · V is much bigger than MG. In the figures

presented in this paper, U = V = 16 was used, which leads

to a reduction of computational cost of factor 5 for the first

quantisation (with ca. 50 coefficients unequal to zero) and of

factor 16 for the arrangement with fewer DoG masks. Note

that we combined multiplication and addition to one operation

and thus did not take the reduced computational costs due to

the missing multiplications in case of the composed-Gabor

filter bank into account.

V. CONCLUSION

In this paper, a model for the retinal filter kernels has

been developed inspired by experimental results and image

processing methods. In a biology-inspired approach, Gabor

filters were composed from the retinal filters using LMSE-

algorithms. Therefore, parameters of the DoG filters were fixed



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

180

6

relative to the Gabor masks and methods with separate 1-

dimensional composition were proven to be insufficient to

the problem. The composed masks are very similar to the

original Gabor filters and it was shown that they are relatively

insensible to parameter variations. To optimize the amplitudes

of the coefficients, an additional minimization equation was

used, which dramatically improved the distribution of am-

plitudes. Finally, the effects of quantization of coefficients

were investigated with no significant worsening of results.

This leads us to the conclusion, that an “all-or-nothing”

approach, despite its coarse quantization can yield accurate

Gabor filter masks. Inspired by the results, we propose an

efficient implementation of a Gabor filter bank, which could

enable the use of a high number of filters with relatively low

computational expense.
Composition of Gabor filters could in principle be done

with localized filters other than DoG filters, which would

be maybe as efficient as with DoG filters or yield even

better results. In this paper, we have restricted ourselves to

a biological framework, for which filters similar to DoG

filters are necessary to reproduce retinal behavior. Testing our

approach with other filter kernels would be very interesting in

that it helps assessing the results of composition with DoG

filters. Furthermore, the composition of a large number of

filters from a few basis filters could be a useful strategy for

the efficient implementation of filter banks in general.
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