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Abstract—Many organizations are faced with the challenge of
how to analyze and build Machine Learning models using their
sensitive telemetry data. In this paper, we discuss how users can
leverage the power of R without having to move their big data around
as well as a cloud based solution for organizations willing to host
their data in the cloud. By using ScaleR technology to benefit from
parallelization and remote computing or R Services on premise or in
the cloud, users can leverage the power of R at scale without having
to move their data around.
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1. INTRODUCTION

COMPANIES routinely own and operate various
machinery as part of their daily business operations.
During the lifecycle of these machines, they will inevitably
run into some form of mechanical failures which leads to
downtime in normal operations of the business. To ensure that
these machines are highly reliable, businesses are now turning
to Machine Learning (ML) techniques to help them predict
these failures ahead of time so that they can proactively send
their maintenance teams to address these issues [1].

II. METHODOLOGY

A. Data Collection

Machines are now equipped with sophisticated sensors that
generate telemetry data. These sensors based on design can
transmit data in real-time or in batches into a central data
repository. Based on privacy policies within the company, the
data are either stored on-premise or can be hosted in the public
cloud.

Depending on the scale of their operations, some companies
are now amassing large amount of data which could prove to
be useful in predicting mechanical failures of their machinery.

B. Problem Formulation

Depending on the business need, the ML problem can be
formulated in different ways. If the primary goal of the
business is to determine if a machine is likely to fail or not,
then the problem can be formulated as a simple binary
classifier. In this case, the business will be able to get an
overview of how many of their machines are functional at any
given point in time. However, if the business is interested in
whether a specific component in a machine is likely to fail, the
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business problem can be reformulated as a multi-class
classifier. In this formulation, the business is able to plan on
scheduling time with their maintenance teams to address the
issue and possibly pre-order spare parts needed for the repair,
ahead of time so as to minimize delays due to a possible
downtime.

In the rest of the paper, the steps taken from feature
engineering to building a model for the multi-class classifier
business use case are outlined. The process essentially is the
same for building a binary classifier with a minor change in
the way the labels are generated.

C. Feature Engineering Process

The raw data that get collected from various inbuilt
machine sensors are not very useful except when used in
monitoring dashboards. These dashboards however do not
help answer business questions like ‘when is a machine likely
to fail due to a certain component?” or ‘when does the
maintenance team need to order specific spare parts?’ To build
an ML model to address these business questions, data need to
be collated from various available sources (purchase order or
invoice, telemetry, maintenance records, failures etc.) and
additional feature engineering needs to be done to best
describe the health of the machine at a given point in time.
Static machine attribute features like make, model, type can be
easily acquired from purchase orders or invoices.
Additionally, date of purchase can be used to determine the
age of the machine at any given point in time. Routine or ad
hoc maintenance records can be used to determine when a
repair or replacement was done for a specific component
within a machine. Most of these static machine features and
maintenance data can be used as is, with minimal additional
feature engineering. However, sensors typically generate data
at a regular interval in time, thus the data typically consists of
multiple time series. Usually these series of data show a lot of
fluctuation and volatility, hence rolling/tumbling aggregates
[13] of these sensor values with varying window sizes (width=
6, 12, 24, etc.) are generated to create additional features that
are less volatile in nature. To determine the optimal window
size, it is recommended that the data scientist consult with a
business domain expert.

After the data collation and feature engineering exercise,
the resultant dataset typically consists of many features (over
hundreds depending on the number of sensors). Parsimonious
models are always preferred over models with all possible
features. The rule of thumb is to retain only the top 50-100 of
the most relevant features.

The next step is to build a label for the ML supervised
learner; this information is wusually retrieved from
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maintenance/repair logs which record an actual failure event
for the machine due to a specific component. In the event, the
business is only interested in a binary classifier, the label takes
only 2 values, no-failure (0) and failure (1), whereas if the
business is interested in a multi-class classifier, the label can
take the values, no-failure (0) and the other labels indicating
failure due to other components. Typically, most models do
not perform very well when the business need is to predict a
failure weeks/months ahead of time.

D.Modeling: Training, Validation and Evaluation

After generating the final dataset with the labels for the
supervised learner, the data are now ready for building the ML
model. In this paper, the assumption is that the business is
interested in predicting which component of their machinery is
likely to fail; hence, a multi-class classifier is built. This
problem can be easily restated as a two-class problem as well
if the business is interested in only predicting whether a failure
occurs irrespective of the components. In a two-class problem,
the ML model will only be able to determine whether a
machine is likely to fail or is not likely to run into a failure in
the near future.

In the sample use case, the data need to be first sorted and
then split based on time into training and testing datasets. The
training data are used to build and tune the performance of the
classifier prior to evaluating the multi-class classifier on the
testing dataset which was withheld from the entire training
process. An alternate approach would be to split the machines
into training/testing datasets, where the machines that are used
to build the trained model are not used for testing the model.
In such cases, the team should be certain that all the machines
are identical in nature and are likely to function in a similar
manner.

Based on the nature of the dataset, the optimal classifier can
vary. It is recommended to build multiple classifiers using
Decision Forest, Decision Jungle, Logistic Regression, Neural
Network algorithms and then evaluate each of these models on
the withheld testing dataset. Multiple classifiers can be easily
tested within Microsoft Azure ML Studio’s drag and drop
environment as shown in Fig. 8 [6]. Often, this ends up being
an iterative process where the model is tuned and evaluated
multiple times before the business finds a satisfactory model
based on relevant evaluation metrics like precision, recall, F-1
score or accuracy.

The methodology so far can be summarized as shown in
Fig. 1.

Sensor

Y Hedl®

Data
feature
engineering

Predictive N\
maintenance
model

Final model
Fig. 1 Methodology

E. Operationalization

After the model is finalized, it is vital that the business can
use this model in their production environment on a regular
basis to determine whether a machine is likely to fail in the
near future. Typically, most models do not get operationalized
due to the difficulty in integrating it with the existing
productional environment. However, with Microsoft’s Cortana
Intelligence suite of products [4], [6], [7], these ML models
can be easily converted into a web service based on whether it
is an on-premise (Fig. 2) or a cloud based solution (Figs. 3, 4)
often with a single click deployment. Once these models are
deployed, they can be operationalized into existing production
systems. Such an end to end system can help streamline and
prioritize the maintenance schedule for their machines and
reduce the downtime to normal business operations.

III. SCALING THE SOLUTION

The final solution options vary depending on size of the
business data and the scale of their operations as well as their
data storage and privacy policies. This section addresses the
common issues that need to be considered before picking
either an on-premise solution as shown in Fig. 2 [2], [4] or
build a cloud based solution as shown in Figs. 3 [3] or 4. The
solution framework described below gives broad guidelines to
small, medium/large business owners as they determine their
future business road map.

sql <- RxInSqlServer() oo
rxSetComputeContext(sql)

model <- rxBTrees () '

SQL Server 2016

SQL R Services

2. Execution
(In-Database

. . 1. Script
Data Scientist Workstation
R IDE
Microsoft R Client <
3. Results

on-premise)

Fig. 2 On premise solution framework

366



International Journal of Information, Control and Computer Sciences

Data Scientist Workstation

Connect to Azure ML
via the internet

ISSN: 2517-9942
Vol:11, No:3, 2017

library(gbm)
model <- gbm(formula = trainformula, data =
trainingdatal, distribution = "multinomial", n.trees = 50)

A

Execute code on the cloud
+ view results

Fig. 3 Cloud based solution framework-1

sql <- RxInSqlServer()
rxSetComputeContext(sql)
model <- rxBTrees ()
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Fig. 4 Cloud based solution framework-2
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Fig. 5 Data processing in SQL

The feature engineering and model building code is
available in R at the GitHub repository [4] along with a
sample dataset. R [5] is a popular open source statistical
programming language that is frequently used for data
manipulation, feature engineering and building customized
ML models. However, open source R is often constrained by
the amount of data it can hold in memory as well as expensive
data movement. This is where Microsoft’s R can help
overcome this limitation by using various scalable parallel
processing algorithms or by using R within SQL Server [12].
Microsoft’s R [11] functions typically have a prefix ‘rx’ to
help distinguish them from native R functions.

In the next section, a few scenarios are discussed in more
detail to help address the business needs of a small/medium/
large business with varying data requirements.

A. Scenario: Small Business — On Premise Solution

Consider a small business who currently stores their entire
data on-premise in either CSV or any other text file format, a
possible solution for such a business would be to use the R
based solution using any R IDE (integrated data environment)
on-premise. However, as their data size grows over time, they
would need to consider alternative options to store and
organize their data along with their data security and privacy
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team to determine whether they would need to continue to
store their data on premise as text files or if they prefer to
move their data onto any cloud. If the business prefers to store
their data on premise, it is advisable to start organizing their
data into a relational database like SQL. In this scenario, as
shown in Fig. 2, the data can be stored in SQL Server on-
premise. In such a setup, it is optimal to do most of the feature

No:3, 2017

engineering directly on SQL Server as shown using SQL
queries in Fig. 5.

After feature engineering, then the model can be built in-
database with the scale R codes in SQL context with any R
IDE environment like R Studio as shown in Fig. 6. Hence the
models are not constrained by available local memory limits.
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Fig. 6 Using an R IDE to access SQL Server

After the model is built and finalized, it can be
operationalized [8] by creating a T-SQL stored procedure
which can be invoked on a pre-defined schedule.

B. Scenario: Small Business — Cloud Based Solution

If the small business however decides to avoid all the costs
incurred in maintaining an on-premise data repository, an
option would be to move their data to a public cloud. In this
scenario, as shown in Fig. 3, the data are available on the
cloud and by using Microsoft’s Azure ML [6], [7] notebook

Z Jupyter Predictive Maintenance Modelling Guide R Notebook Last Checkpoint: a minute ago (autosaved) R o

File Edit View Insert Cell Kernel Widgets Help

+ x @ B A~ v M B C Makdown v @& CelToolbar | lul

In [30]: set.seed(1234)

environment, the feature engineering and modeling can be
done via a jupyter notebook as shown in Fig. 7. Once the
model is deployed as a web service, it can be invoked from
any web application. If on the other hand, the business prefers
to continue to use a SQL Server, now the data can be stored in
SQL Server on the cloud [9] instead and the model can be
built in-database with scale R code in SQL context as
recommended in the cloud-based solution shown in Fig. 4.

powered by

v

IR O

ne learr

gbm_modell <- gbm(formula = trainformula,data = trainingdatal, distribution = "multinomial®,,
- n.trees = 50, interaction.depth = 5, shrinkage = 0.1)

gbm_model2 <- gbm(formula = trainformula,data = trainingdata2, distribution = "multinomial®,,
n.trees = 50, interaction.depth = 5, shrinkage = 0.1)

gbm_model3 <- gbm(formula = trainformula,data = trainingdata3, distribution = "multinomial",,

n.trees = 50, interaction.depth = 5, shrinkage = 0.1)

In [31]: | #print relative influence of variables for Ist model as an example

summary (gbm modell)

var rel.inf
error2count error2count 17.55478
error5count error5count 14.92207

Fig. 7 Using jupyter

notebook in Azure
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C.Scenario: Medium/Large Business — On Premise
Solution

Consider a medium/large business with large scale
operations but has very stringent data privacy guidelines
which prevents the business from migrating any of their data
to any cloud. In this scenario, it is advisable that the business
organizes their data into a relational database like a SQL
Server. Then as shown in Fig. 2, the data can be systematically
organized in SQL Server where all the feature engineering and
the model can be built in-database with the scale R code in
SQL context. Here the models are not constrained by any
available local memory limits. In the end, after the model is
built, it can be operationalized [8] by creating a T-SQL stored
procedure which can be invoked on a predefined schedule.

D.Scenario:  Medium/Large Business — Cloud Based
Solution

If the medium/large business however decides to avoid all
the costs and hassle involved in maintaining their data on-
premise, an option would be to move their data to a public

cloud. Along with data storage, cloud providers like Microsoft
Azure [10], offers additional services to manage the data in a
database as well as use additional tools to build models on the
cloud. In this scenario, as shown in Fig. 4, the data can be
stored in SQL Server in the cloud [9] and the model can be
built in-database with the same scale R code in SQL context or
the model can be built using Azure ML as shown in Fig. 3.
Hence, the models are not constrained by any available local
memory limits. Another option would be to host the data on
the cloud in any other storage option and then read the data
into the Azure ML Studio environment and then build
additional features, create the label, build the model and
operationalize it via the easy to use drag and drop environment
as shown in Fig. 8.

Once the model is deployed as a web service, it can be
invoked from any web application or can be invoked using a
T-SQL script on a predefined schedule.
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Fig. 8 Azure ML Studio environment

N Small business Medium/Large
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Strict with no option On premise
to store the data in the

business
On premise

cloud
Liberal data storage On premise or On premise or
options Cloud based Cloud based

Fig. 9 Guidelines to picking a solution

E. Recommendation

In summary, the various options discussed can be tabulated
as shown in Fig. 9 with the options based on the size and
privacy concerns of the business.

IV. CONCLUSION

At the end of the paper, the user would be able to formulate
their business problem, build features and the dataset for
building a relevant classifier to solve their data science
problems when working with their data.
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1) This use case will help users who have small on-premise
data and some expertise in R build a basic ML predictive
maintenance model.

2) This use case will also help users scale their on-premise
solutions using sensitive big data using R.

3) This use case also gives an overview of how the same
solution can be ported over as a cloud based solution with
minor edits in the R code.

4) The sample code in R that is available on GitHub can be a
good starting point for more advanced business specific
use cases.

5) This use case also gives recommendations on how to pick
a solution for a business.
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