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Buckling Analysis of Rectangular Plates under the 
Combined Action of Shear and Uniaxial Stresses 

 
V. Piscopo 

 
 

Abstract—In the classical buckling analysis of rectangular plates 
subjected to the concurrent action of shear and uniaxial forces, the 
Euler shear buckling stress is generally evaluated separately, so that 
no influence on the shear buckling coefficient, due to the in-plane 
tensile or compressive forces, is taken into account. 

In this paper the buckling problem of simply supported rectangular 
plates, under the combined action of shear and uniaxial forces, is 
discussed from the beginning, in order to obtain new project formulas 
for the shear buckling coefficient that take into account the presence 
of uniaxial forces. 

Furthermore, as the classical expression of the shear buckling 
coefficient for simply supported rectangular plates is considered only 
a “rough” approximation, as the exact one is defined by a system of 
intersecting curves, the convergence and the goodness of the classical 
solution are analyzed, too. 

Finally, as the problem of the Euler shear buckling stress 
evaluation is a very important topic for a variety of structures, (e.g. 
ship ones), two numerical applications are carried out, in order to 
highlight the role of the uniaxial stresses on the plating scantling 
procedures and the goodness of the proposed formulas. 
 

Keywords—Buckling analysis, Shear, Uniaxial Stresses.  

I. INTRODUCTION 
HE buckling problem of simply supported rectangular 
plates, under the action of shearing forces uniformly 

distributed along the edges, was discussed by several authors, 
such as Timoshenko [1], M. Stein and J. Neff [2], S. 
Bergmann and H. Reissner [3]. To evaluate the Euler shear 
stress at which the buckling of plates occurs, the energy 
method is generally adopted and the deflection surface of the 
buckled plate is expressed into an appropriate double sine 
trigonometric series, whose terms satisfy the plating boundary 
conditions along all edges.  

The energy method was successfully applied, considering 
only few terms of the series, for plates with aspect ratio α≤1.5, 
as for long narrow plates a larger number of harmonics is 
necessary to obtain a consistent value of the shear buckling 
coefficient, due to a low convergence of solution. An 
approximate method for an infinitely long strip with simply 
supported edges  was adopted, considering a different 
approach, by R.V. Southwell [4]. So, having the exact values 
of the buckling coefficients for an infinitely long plate and for 
plates with α≤1.5, a parabolic curve can be obtained to 
approximately evaluate  it also for other proportions of plates. 
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Denoting by t the plating thickness, E  and ν  the Young and 
Poisson modulus respectively, a and b  the longer and  shorter 
sides of the panel and by ba=α the plating aspect ratio, the 
Euler shear buckling stress is obtained by the following 
formula: 
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in which sK  is the shear buckling coefficient, defined as 
follows: 
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The parabolic curve given by (2) is generally used for 

practical applications, but it doesn’t permit to take into 
account the presence of uniaxial forces, if applied. As the 
problem of buckling analysis of rectangular plates under  the 
combined action of shearing and uniaxial forces is a widely 
diffused topic for the scantling of platings of a variety of 
structures, such as ship ones, this problem is discussed from 
the beginning, to obtain some new project formulas, similar to 
the equations given in (2) and so slightly different from those 
ones given by Wagner [8] for long plates (α>2). The classical 
solution of the buckling problem of plates under pure shear is 
also investigated and discussed. 

Finally, two numerical applications are proposed, 
considering a panel subjected to pure shear and combined 
shear and uniaxial forces: some comparisons with the relevant 
results obtained by a FEM analysis, carried out by ANSYS, are 
also proposed. 

II. THEORETICAL DEVELOPMENT 
Let us refer to the coordinate system of Fig.1 and assume 

that the plate buckles slightly under the action of forces 
applied in its middle plane. Denoting by w the vertical 
displacement  field, normal to the plate middle plane, and 
assuming that there are no body forces and lateral loads, the 
differential equation for the buckled plate becomes: 
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Fig. 1 Plate reference system    

 
where xN and yN  are the in-plane forces per unit of length, 
directed along the x  and y axes respectively, xyN   is the shear 

in-plane force per unit of length and ( )2

3

112 ν−
=

EtD  is the 

plate flexural rigidity. Assuming that: these forces are constant 
throughout the plate, 0=yN   and there is a given ratio γ  
between the remaining terms, so that xyx NN γ= , the eq. (3) 
can be rewritten as follows: 
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To evaluate the Euler shearing stress Eτ  at which buckling 

of plate occurs, the energy method is adopted, as there isn’t a 
rigorous solution of eq. (4). In applying this method, it is 
assumed the plate undergoes some small lateral bending, 
consistent with the given boundary conditions: obviously, if 
the work done by the in-plane forces is smaller than the strain 
energy of bending for every possible shape of buckling, the 
equilibrium of plate is stable, otherwise it is unstable and 
buckling occurs.  

Considering the plate as simply supported along all edges, 
the boundary conditions are satisfied by taking for the 
deflection surface of the buckled plate the following double 
sine trigonometric series: 
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The strain energy of bending of the buckled plate can be 
expressed as follows: 
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The work done by the external forces during the buckling of 
plate is: 
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finally becoming: 
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with 1=mnpqχ  if pm ±  and qn ± are odd numbers, 0=mnpqχ  
otherwise. Equating the work produced by the external forces 
to the strain energy, the following expression is obtained: 
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with: 
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The coefficients n,mw  of the series (5) must be chosen to make 
the expression (10) minimum. Using this condition of 
minimum and considering the Mand N  partial sums of (5), 
the following equation system can be derived: 
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The system (12) can be finally developed as follows: 
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Such equations may yield solutions different from zero only if 
the determinant of (14) is zero. When the determinant is put 
equal to zero, an equation for determining the critical value of 
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λ is found. Starting from (13), the classical expression of the 
Euler shear stress, see eq. (1), is obtained, introducing the 
shear buckling coefficient as follows: 
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It is noticed that xσ stresses are related to the Euler shear ones 
by the following relation: 
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so that, if  the convention 0<γ  ( 0>γ ) for 0<xσ  ( 0>xσ ) 
is introduced, it always must be 0<λ .  

The problem of finding the minimum value of λ that makes 
the determinant of (14)  null,  has been solved by a dedicated 
program developed in MATLAB. The solution is obtained 
varying the number of harmonics, to assure its convergence 
for very long narrow plates, too. The panel aspect ratio 

ba=α  can be varied as well as the ratio between the shear 
and uniaxial stresses.   

III. BUCKLING OF PLATES UNDER PURE SHEAR 
The classical buckling problem of rectangular plates under 

pure shear can be immediately solved putting 0=γ . In this 
case the Euler shear buckling stress doesn’t depend on its 
direction and  for panels with aspect ratio 51.≤α  
Timoshenko furnished the following expression for λ , 
considering only five terms of the series (5): 
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In the actual analysis, the parameter λ is evaluated applying 

the energy method for different values of α , as shown in table 
1,  and the convergence of the solution is also investigated. 
The number NM = of harmonics has been varied from 3 to 
30, in order to obtain a number of terms comprised between 9 
and 900. It is possible to verify that if the harmonics’ number 
is >100, for  8≤α  a good convergence in the assessment of  
λ , and then of the shear buckling coefficient sK , is obtained 
for practical purposes, while only for the case of an infinitely 
long plate a larger number of harmonics may be required. 

 
TABLE I 

CONVERGENCE OF λ VALUES AND SHEAR BUCKLING COEFFICIENT COMPARISON 
         

α  

λ  values sK values 

NM =  Timoshenko 
(T) 

Actual (A) 
( 30== NM ) 100⋅

−
A

AT  
3 5 10 20 30 

0.1 0.00221 0.00225 0.00316 0.00498 0.00532 538.00 579.81 -7.21 
0.2 0.00757 0.01080 0.01115 0.01116 0.01116 137.50 138.25 -0.54 
0.4 0.01855 0.02033 0.02045 0.02045 0.02045 37.38 37.70 -0.87 
0.6 0.02677 0.02708 0.02713 0.02713 0.02713 18.83 18.95 -0.60 
0.8 0.03145 0.03171 0.03177 0.03177 0.03177 12.34 12.14 1.72 
1.0 0.03274 0.03302 0.03308 0.03308 0.03308 9.34 9.32 0.18 
1.2 0.03187 0.03214 0.03219 0.03220 0.03220 8.12 7.98 1.70 
1.4 0.02991 0.03018 0.03023 0.03024 0.03024 7.38 7.29 1.31 
1.6 0.02757 0.02786 0.02791 0.02791 0.02791 6.90 6.91 -0.06 
1.8 0.02520 0.02557 0.02562 0.02562 0.02562 6.57 6.69 -1.70 
2.0 0.02297 0.02384 0.02390 0.02390 0.02390 6.34 6.45 -1.74 
2.5 0.01855 0.02033 0.02045 0.02045 0.02045 5.98 6.03 -0.87 
3.0 0.01541 0.01754 0.01760 0.01761 0.01761 5.78 5.84 -0.92 
3.5 0.01277 0.01529 0.01536 0.01537 0.01537 5.67 5.73 -1.17 
4.0 0.01064 0.01362 0.01371 0.01371 0.01371 5.59 5.62 -0.61 
5.0 0.00757 0.01080 0.01115 0.01116 0.01116 5.50 5.53 -0.49 
6.0 0.00559 0.00864 0.00870 0.00939 0.00939 5.45 5.47 -0.42 
7.0 0.00427 0.00699 0.00810 0.00810 0.00810 5.42 5.44 -0.39 
8.0 0.00335 0.00575 0.00711 0.00712 0.00712 5.40 5.41 -0.22 
∞  0.00058 0.00115 0.00228 0.00281 0.00288 5.35 5.35 0.02 
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From table 1 it is also possible to verify that the classical 
expressions (2) for the shear buckling coefficient define a very 
good  approximation  of the exact values, so  that they   cannot  

be considered as only a “rough” expression for practical 
purposes. In fig. 2 the convergence of λ  for different values 
of the aspect ratio α  is shown.  

 
 

 

Fig. 2(a) 20.=α  
 

 

 Fig. 2(b) 01.=α  
 

 

Fig. 2(c) 02.=α  
 

 

Fig. 2(d) 04.=α  
 

 

Fig. 2(e) 08.=α  
 

 

Fig. 2(f) ∞=α  
 

Fig. 2 Convergence of λ  for different values of the aspect ratio α    
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IV. BUCKLING OF PLATES UNDER COMBINED SHEAR AND 
UNIAXIAL STRESSES 

The critical λ  values have been determined varying the ratio

xyx NN=γ  in the range [ ]11,− . According to the previously 
assumed convention, in all cases with 0<γ  ( 0>γ ) the 
uniaxial stresses are negative (positive) and so the panel is 
compressed (in traction). As it will be subsequently verified 
(see tab.2), it appears quite clear that when 0<γ  ( 0>γ ) the 
shear buckling coefficient sK  is less (higher) than the one 
obtained by (2).  

In the table below  the shear buckling coefficients, for 
different values of α  and γ  are shown; the convergence of 
the solution, in terms of critical λ values, has also been studied 
varying the number of harmonics from 9 to 900. 

Starting from the data summarized below, the following 
equations have been obtained to evaluate, for practical 
purposes, the shear buckling coefficient for simply supported 
rectangular  plates  under  the  combined  action  of  shear  and  
uniaxial stresses. Obviously for 0=γ  (pure shear)  the eq. (2)  
 

 
are obtained again. 
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From the analysis, it follows that a consistent variation of the 

shear buckling coefficient is found also for low values of the 
ratio between the axial and shear stresses.   
In fig. 3 some project curves, based on the eq. (18), are 
presented: the thick curve refers to the classical case of pure 
shear. The curves below (over) the thick one refer to the case 
of shear with uniaxial compressive (tensile) stresses. 

TABLE II 
SHEAR BUCKLING COEFFICIENTS FOR DIFFERENT VALUES OF α AND γ 

              

α 

Shear + Compression Pure shear Shear + Traction 

γ γ γ 

-1.00 -0.80 -0.60 -0.40 -0.20 -0.10 0.00 0.10 0.20 0.40 0.60 0.80 1.00 

0.1 102 127 169 252 396 465 580 629 717 930 1214 1550 1971 

0.2 26.8 33.4 44.1 64.4 101.5 119.2 138.2 159.0 181.6 236.9 302.7 387.0 492.7 

0.4 8.17 10.05 12.98 17.97 26.98 33.03 37.70 43.31 49.81 63.67 81.81 103.36 131.24 

0.6 4.83 5.86 7.38 9.72 13.43 15.96 18.95 22.28 25.14 31.58 40.32 50.95 63.27 

0.8 3.80 4.54 5.56 7.04 9.16 10.52 12.14 14.00 16.12 21.06 25.70 31.73 39.64 

1.0 3.45 4.06 4.86 5.94 7.39 8.29 9.32 10.52 11.86 15.14 19.29 23.65 28.51 

1.2 3.39 3.92 4.60 5.46 6.57 7.23 7.98 8.83 9.79 12.10 15.04 18.77 23.23 

1.4 3.46 3.94 4.53 5.26 6.17 6.70 7.29 7.95 8.69 10.45 12.66 15.46 18.97 

1.6 3.37 3.87 4.51 5.19 5.96 6.41 6.91 7.46 8.07 9.50 11.28 13.48 16.22 

1.8 3.19 3.66 4.24 4.97 5.85 6.25 6.69 7.18 7.71 8.94 10.44 12.27 14.50 

2.0 3.10 3.54 4.08 4.75 5.57 6.04 6.45 7.00 7.49 8.60 9.92 11.50 13.39 

2.5 3.09 3.48 3.95 4.52 5.21 5.60 6.03 6.51 7.02 8.17 9.29 10.56 12.01 

3.0 3.00 3.40 3.88 4.46 5.11 5.46 5.84 6.26 6.70 7.71 8.89 10.21 11.49 

3.5 2.98 3.35 3.80 4.34 4.98 5.34 5.73 6.16 6.58 7.50 8.56 9.76 11.13 

4.0 2.96 3.33 3.79 4.31 4.91 5.25 5.62 6.03 6.46 7.42 8.42 9.53 10.76 

5.0 2.93 3.30 3.73 4.24 4.83 5.16 5.53 5.92 6.34 7.22 8.21 9.32 10.50 

6.0 2.92 3.28 3.70 4.20 4.79 5.12 5.47 5.86 6.26 7.13 8.12 9.17 10.29 

7.0 2.92 3.26 3.68 4.18 4.76 5.09 5.44 5.82 6.21 7.09 8.05 9.08 10.21 

8.0 2.90 3.25 3.67 4.17 4.75 5.07 5.41 5.79 6.19 7.05 8.00 9.04 10.13 

∞  2.88 3.21 3.67 4.12 4.73 5.01 5.35 5.71 6.14 7.01 7.91 8.91 9.95 
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Fig. 3 Shear buckling coefficients 

 

V. NUMERICAL APPLICATIONS 
In order to verify the goodness of the presented results, two 

applications are proposed: the first one is relative to the 
buckling analysis of a rectangular plate under pure shear, the 
second one, instead, under the combined action of shear and 
uniaxial stresses. It is noticed, for the second application, that 
the most representative case is that one with  0<γ , as the 
Euler shear buckling stress is less than the one relative to pure 
shear. 

Some comparisons with the relevant results obtained by a 
FEM analysis, carried out by ANSYS, are also presented to 
validate the theoretical analysis. The convergence of the 
model has been studied by thickening the mesh (the last one 
with a mean element length of 0.010 m); the chosen element is 
the 4-node finite strain SHELL181, suitable for analyzing thin 
to moderately thick structures and well-suited for linear, large 
rotation, and/or large strain nonlinear applications. The 
following panels have been considered: 

1. Case 1: a=1 m; b=1 m; t = 10 mm; 
2. Case 2: a=3 m; b=1 m; t = 10 mm; 
3. Case 3: a=8 m; b=1 m; t = 10 mm. 

Concerning the material properties, it was assumed                
E=2.06E11 Pa, ν =0.3. 
 

A. Plates under pure shear 
In tables III.A, III.B and III.C the Euler shear buckling stress 
Eτ  in 2mmN  is shown. The convergence of the solution 

obtained by ANSYS  is also studied verifying that  in all   cases  

 
 
it  is quite quickly achieved and a very good accordance with 
the theoretical values is always found.  

 
 

TABLE III.A 
CASE 1 – α = 1, γ = 0 

         
Mean 

element 
length 

Elements ANSYS Theoretical 100⋅
−
A

AT  

m --- 2mmN  2mmN  % 

0.050 400 177.1 

173.5 

-2.033 
0.025 1600 174.1 -0.345 
0.015 4489 173.1 0.231 
0.010 10000 172.7 0.463 

     
 

TABLE III.B 
CASE 2 – α = 3, γ = 0 

         
Mean 

element 
length 

Elements ANSYS Theoretical 100⋅
−
A

AT  

m --- 2mmN  2mmN  % 

0.050 1200 109.9 

108.7 

-1.092 
0.025 4800 108.8 -0.092 
0.015 13600 108.5 0.184 
0.010 30000 108.4 0.277 
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TABLE III.C 
CASE 2 – α = 8, γ = 0 

         
Mean 

element 
length 

Elements ANSYS Theoretical 100⋅
−
A

AT  

m --- 2mmN  2mmN  % 

0.050 3200 102.0 
99.6 

-2.353 
0.025 12800 100.9 -1.288 
0.015 35778 100.7 -1.092 

     

B. Plates under combined shear and uniaxial stresses 
In tables IV and V the Euler shear buckling stresses Eτ  in 

2mmN  are evaluated for 60.−=γ and 01.−=γ . The 
convergence of the solution obtained by ANSYS has been 
studied and also in this case a very good accordance with the 
theoretical values is found. 

 
TABLE IV.A 

CASE 1 – α = 1, γ = -0.6 
  

       
Mean 

 element 
length 

Elements ANSYS Theoretical 100⋅
−
A

AT  

m --- 2mmN  2mmN  % 

0.050 400 91.4 

90.5 

-0.985 
0.025 1600 91.1 -0.659 
0.015 4489 90.8 -0.330 
0.010 10000 90.7 -0.221 

 
 
    

TABLE IV.B 
CASE 2 – α = 3, γ = -0.6 

         
Mean  

element 
length 

Elements ANSYS Theoretical 100⋅
−
A

AT  

m --- 2mmN  2mmN  % 

0.050 1200 75.5 

72.2 

-4.371 
0.025 4800 73.5 -1.769 
0.015 13600 72.8 -0.824 
0.010 30000 72.5 -0.414 

 
 
 
 
    

TABLE IV.C 
CASE 3 – α = 8, γ = -0.6 

         
Mean 

element 
length 

Elements ANSYS Theoretical 100⋅
−
A

AT  

m --- 2mmN  2mmN  % 

0.050 3200 68.7 
68.3 

-0.582 
0.025 12800 68.2 0.147 
0.015 35778 68.1 0.294 

     
TABLE V.A 

CASE 1 – α = 1, γ = -1.0 

         
Mean 

element 
length 

Elements ANSYS Theoretical 100⋅
−
A

AT  

m --- 2mmN  2mmN  % 

0.050 400 65.4 

64.2 

-1.835 
0.025 1600 64.8 -0.926 
0.015 4489 64.4 -0.311 
0.010 10000 64.2 0.000 

  
 
   

TABLE V.B 
CASE 2 – α = 3, γ = -1.0 

         
Mean  

element 
length 

Elements ANSYS Theoretical 100⋅
−
A

AT  

m --- 2mmN  2mmN  % 

0.050 1200 59.5 

55.9 

-6.050 
0.025 4800 57.5 -2.783 
0.015 13600 56.7 -1.411 
0.010 30000 56.3 -0.710 

  
 
   

TABLE V.C 
CASE 3 – α = 8, γ = -1.0 

         
Mean 

element 
length 

Elements ANSYS Theoretical 100⋅
−
A

AT  

m --- 2mmN  2mmN  % 

0.050 300 54.2 
53.9 

-0.554 
0.025 12800 53.9 0.000 
0.015 35778 53.8 0.186 

  
 

 
 
   

VI. CONCLUSIONS 
In this paper the problem of the buckling analysis of simply 

supported rectangular plates under the combined action of 
uniaxial and shear stresses has been analyzed. It was found 
that uniaxial stresses have a great influence on the shear 
buckling coefficient and so on the platings’ scantling 
procedures. The relevant results have been obtained by a 
dedicated program developed in MATLAB and the 
convergence of the solution was studied, too. Two 
applications have been proposed to validate the numerical 
analysis by a comparison between the shear buckling stresses 
evaluated by a FEM analysis carried out by ANSYS and the 
theoretical ones:  a very good accordance is always found. 

Starting from the classical formulas for the buckling 
coefficient of platings under pure shear, new design 
expressions have been obtained for it, as function of the ratio 
γ  between the axial and shear stresses. These formulas may 
be of practical aid for the scantling of platings of a variety of 
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structures, e.g. ship ones, where these problems are often 
encountered. The present analysis can be also extended to 
platings under the combined action of shear and biaxial 
stresses; the influence of the plating thickness on the shear 
buckling coefficient for thick plates can be studied, too. These 
topics will be the subject of future works.   
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