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Boundary Effect on the Onset of Marangoni
Convection with Internal Heat Generation
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Abstract—The onset of Marangoni convection in a horizontal
fluid layer with internal heat generation overlying a solid layer
heated from below is studied. The upper free surface of a fluid is
nondeformable and the bottom boundary are rigid and no-slip. The
resulting eigenvalue problem is solved exactly. The critical values of
the Marangoni numbers for the onset of Marangoni convection are
calculated and the latter is found to be critically dependent on the
internal heating, depth ratio and conductivity ratio. The effects of the
thermal conductivity and the thickness of the solid plate on the onset
of convective instability with internal heating are studied in detail.

Keywords—Linear stability, Marangoni convection, Internal Heat
generation.

I. INTRODUCTION

EFFECT of buoyancy or surface tension can become a major
mechanism of driving a possible convective instability

for a horizontal fluid layer heated from below and cooled
from above. The instability of convection driven by buoyancy
is referred to as the Rayleigh-Bénard convection and the
instability convection driven by surface tension is referred to
as the Marangoni convection. The instability of the Bénard-
Marangoni convection due to the combined effects of the
thermal buoyancy and surface tension. Theoretical analysis
of Marangoni convection was started with the linear analysis
by Pearson [1] who assumed an infinite fluid layer, nonde-
formable case and zero gravity. He showed that thermocapil-
lary forces can cause convection when the Marangoni number
exceeds a critical value in the absence of buoyancy forces.
Sparrow et al. [2] and Roberts [3] analyze the thermal insta-
bility in a horizontal fluid layer with the nonlinear temperature
distribution which is created by an internal heat generation.
The effect of a quadratic basic state temperature profile caused
by internal heat generation was first addressed by Char and
Chiang [4] for Bénard-Marangoni convection. Later, Wilson
[5] investigated the effect of the internal heat generation on
the onset of Marangoni convection when the lower boundary
is conducting and insulating to temperature perturbations. He
found that the effect of increasing the internal heat generation
is always to destabilize the layer.

The modern techniques in the recent past has posed chal-
lenges in studying convective instability problems in much
more complicated two and multilayer fluid dynamical systems.
Theoretically and experimentally were studied by considering
multilayer of fluid, or a fluid layer separated at the middle
or bounded from the above or below by a slab. Even though
single layer systems and double layer systems heated from
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below have received a great deal of attention in the past, there
have been very few studies related to the thermal instability
and heat transfer phenomena in a system with more than two
layers. Yang [6] consider the lower boundary to be a solid
plate where it is a perfect insulating boundary condition for
thermal disturbances which is difficult compared to conducting
boundary condition. It is found that the solid plate with a
higher thermal conductivity tends to stabilize the system. The
role of the plate thickness is minor in most of the Bénard-
Marangoni experiments, while the conductivity of the plate
has a significant impact on the stability of the system. Char
and Chen [7] focused on Bénard-Marangoni instability with a
boundary slab of finite conductivity. They solved the problem
numerically and later compared to the asymptotic of the
long wavelength. It shown that the critical Rayleigh number
increases with thickness of solid layer to the thickness of
fluid and thermal conductivity of solid layer to the thermal
conductivity of fluid. Recently, Arifin and Pop [8] have studied
the onset of Marangoni convection in a fluid-porous-solid layer
system and they found that the critical Marangoni number
increases with the depth ratio or the thermal conductivity ratio.
The onset of Marangoni convection in a horizontal fluid layer
with the influences of the variable viscosity and the solid plate
have been investigated by Abidin. et al. [9]. They have shown
that the viscosity is a destabilizing factor but with thicker solid
layer or higher thermal conductivity, the system become more
stable.

In this paper, we consider the onset of Marangoni convec-
tion in a horizontal fluid layer with the internal heat generation
and the solid plate at the bottom surface. The problem has been
solved exactly to obtain a detail description of the marginal
stability curves for the onset of Marangoni convection.

II. THE MATHEMATICAL FORMULATION

Consider a horizontal fluid layer of depth d with a free
upper surface overlying a solid layer of thickness ds. The
physical configuration is shown in Fig.1. The lower boundary
is subjected to a fixed heat flux, while the upper surface of
the fluid is assumed to be non-deformable. We used Cartesian
coordinates with two horizontal x- and y-axes located at the
lower solid boundary and a positive z-axis is directed towards
the free surface. The surface tension, τ is assumed to be a
linear function of the temperature

τ = τ0 − γ (T − T0), (1)

where τ0 is the value of τ at temperature T0 and the constant
γ is positive for most fluids. The density of the fluid is given
by

ρ = ρ0{1 − α(T − T0)}, (2)
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Fig. 1. Geometry of the unperturbed state

where α is the positive coefficient of the thermal liquid
expansion and ρ0 is the value at the reference temperature T0.
Based on the above assumptions together with the Boussinesq
approximation, the governing equations for the continuity,
momentum and energy in the fluid layer are respectively

∇ · u = 0, (3)(
∂

∂t
+ u · ∇

)
u = −

∇p

ρ
+ ν∆u, (4)

(
∂

∂t
+ u · ∇

)
T = κ∇2 T + q (5)

and for the solid layer, the energy equation takes the form

∂Ts

∂t
= κs∇

2Ts, (6)

where u, T , p, ρ, ν, κ and q denote the velocity, temperature,
pressure, density, kinematic viscosity, thermal diffusivity and
uniformly distributed volumetric internal heat generation in the
fluid layer, respectively. The subscript s refer to the quantities
in the solid layer.

When motion occurs, the upper free surface of the layer
will be deformable with its position at z = d + f(x, y, t).
At the free surface, we have the usual kinematic condition
together with the conditions of continuity for the normal and
tangential stresses. The temperature obeys the Newton’s law
of cooling, k∂T/∂n = h(T − T∞), where k and h are
the thermal conductivity of the fluid and the heat transfer
coefficient between the free surface and the air, respectively,
and n is the outward unit normal to the free surface.

To simplify the analysis, we write the governing equations
and the boundary conditions in a dimensionless form. We
choose d, κ/d, d2/κ and ∆T for length, velocity, time
and temperature gradient respectively. As a results the fol-
lowing dimensionless group arises, the Marangoni number,
M = γ∆Td/ρ0κν, the Biot number, Bi = hd/k, the Bond
number, Bo = ρ0gd2/τ0, the Prandtl number, Pr = ν/κ, the
Crispation number, Cr = ρ0νκ/τ0d and the internal heating,
Q = qd2/2κ∆T.

Standard methods of linear stability analysis are used to
determine the effect of the controller gain, K, on the critical
Marangoni number at the onset of convection with internal
heat generation. We start with a linear stability analysis of the
basic state in the usual manner by seeking perturbed solutions
for any quantity Φ(x, y, z, t) in terms of normal modes in the
form

Φ(x, y, z, t) = Φ0(x, y, z) + φ(z) exp [i(αxx + αyy) + st],
(7)

where Φ0 is the value of Φ in the basic state, a = (α2
x+α2

y)1/2

is the total horizontal wave number of the disturbance and
s is a complex growth rate with the real part representing
the growth rate of the instability and the imaginary part
representing its frequency. At marginal stability, the growth
rate s of perturbation is zero and the real part of s, Re(s)> 0
represents unstable modes while Re(s)< 0 represents stable
modes. Substituting equation (7) into equations (3) – (5), we
obtain the corresponding linearized equations involving only
the z-dependent parts of the perturbations to the temperature
and the z-components of the velocity denoted by T and w
respectively, namely

(D2 − a2)[(D2 − a2)w − sP−1
r ] = 0, (8)

(D2 − a2 − s)T + [1 − Q(1 − 2z)]w = 0, (9)

(D2 − a2 − s)Ts = 0, (10)

subject to

w = 0, (11)

D2w + Ma2T = 0, (12)

DT + BiT = 0, (13)

evaluated on the undisturbed position of the upper free surface
z = 1,

w = 0, (14)

Dw = 0, (15)

T = Ts, (16)

DT = κrDTs, (17)

evaluated on the solid-fluid interface z = 0, and

DTs = 0, (18)

on z = −dr. The operator D=d/dz denotes differentiation
with respect to the vertical coordinate z, κr = κ/κs is the ratio
of the thermal conductivity of the solid plate to that of fluid
layer and dr = ds/d is the ratio of the solid plate thickness
to the fluid layer thickness. Solving the perturbation equation
(10) for the solid layer, together with the boundary conditions
(16) – (18), the thermal boundary condition at the solid-fluid
interface, at z = 0 becomes

DT = κra tanh(adr)T. (19)

III. RESULTS AND DISCUSSION

By substituting the general solution of equations (8) and (9)
into the boundary conditions (11) – (15) and (19), we obtain
the closed form analytical expression for M on the marginal
stability curves which can be written in the form

M =
A1[A2κr sinh(adr) + A3 cosh(adr)]

κr[A4Q + A5] sinh(adr) + [A6Q + A7] cosh(adr)
,

(20)
where
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A1 = 192a2(a − SC)(S + C)
A2 = aC + BiS

A3 = aS + BiC

A4 = 3a(2 − a)[1 + (S + C)4] + 4a2(a2 + 8)
[1 + (s + C)2] + 2(8a3 + 21a − 6)[1 − (S + C)2] +
6(a − 2)(s2 + C2)

A5 = −3a[1 + (S + C)4] + 12a4[1 + (S + C)2] −
6a[1 − (S + C)2] + 6a(S2 + C2)

A6 = 3(2 − a)[1 + (S + C)4] + 6a(1 − 2a2)
[1 + (S + C)2] + 4(3 − a4)[1 − (S + C)2] −
6(a + 2)(s2 + C2)

A7 = 3a[1 − (S + C)4] − 12a3[1 + (S + C)2] −
12a2(a2 + 2)[1 − (S + C)2] + 12aSC

where we have define C = cosh(a) and S = sinh(a). When
we set κr = 0 or dr = 0, the equation (20) reduces to the
expression given by Wilson [5].

The marginal curves in the (a, M) plane are obtained
by (20) where M is a function of the parameters a, Bi,
Q, dr and κr. For a given set of parameters, the critical
Marangoni number for the onset of convection is defined as
the minimum of the global minima of marginal curve. We
denote this critical value by Mc and the corresponding critical
wave number ac. Numerically calculated values of M and
the corresponding values of a are shown in Fig.2 and Fig.3
for a range values of dr and κr respectively with Q = 1
when the free surface is perfectly insulated (Bi = 0). From
Fig.2 and Fig.3, it can be seen that with the larger depth ratio,
dr and thermal conductivity ratio, κr, the global minimum
occurs at short wavelength (a �= 0) and the critical Marangoni
number increases. Numerically calculated values of M and the
corresponding values of a are plotted in Fig.4 and Fig.5 for
a range values of dr and κr respectively with Q = 1 when
the free surface is conduction (Bi �= 0). An inspection of the
figures reveals that the critical Marangoni number increases as
the values of dr and κr increase.

Fig. 6 – Fig. 9 show the variation of Mc and ac with Q for
a range of values of dr and κr in the case Bi = 0. Fig. 6 and
8 shows that Mc is a monotonically decreasing function of Q,
while Fig. 7 and 9 shows that ac increases monotonically with
Q. For dr = 0, we reproduce the numerical results obtained by
Wilson [5]. From Fig. 7, it is seen that the critical Marangoni
number, Mc increases with dr. The thicker solid layer are
clearly a stabilizing factor to make system more stable because
its might store more thermal energy. Fig. 8 indicate the study
of thermal conductivity influences to stability curves. The
results shows that the thermal conductivity ratio always has
a stabilizing effect on the Marangoni convection. This is due
to the thermal disturbances are easily dissipated deep into the
solid layer.

IV. CONCLUSION

Boundary effect on the onset of Marangoni convection in a
horizontal layer of electrically-conducting fluid which is free
above and rigid below with internal heat generation is studied.
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Fig. 2. Numerically-calculated Marangoni number, M as a function of the
wave number, a, for various values of dr , in the case Bi = 0, κr = 1 and
Q = 1.
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Fig. 3. Numerically-calculated Marangoni number, M as a function of the
wave number, a, for various values of κr , in the case Bi = 0, dr = 1 and
Q = 1.
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Fig. 4. Numerically-calculated Marangoni number, M as a function of the
wave number, a, for various values of dr , in the case Bi = 2, κr = 1 and
Q = 1.

We obtained the closed form analytical solution for the onset
of Marangoni convection. The critical values of the Marangoni
numbers for the onset of Marangoni convection are calculated
and the latter is found to be critically dependent on the internal
heating, depth ratio and conductivity ratio. It is found that the
critical Marangoni number increases as depth ratio and thermal
conductivity ratio increases.
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Fig. 5. Numerically-calculated Marangoni number, M as a function of the
wave number, a, for various values of κr , in the case Bi = 2, dr = 1 and
Q = 1.
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Fig. 6. The critical Marangoni number at the onset of convection as a function
of Q, for a range of values of dr in the case Bi = 0, and κr = 1.
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Fig. 7. The critical wave number at the onset of convection as a function of
Q, for a range of values of dr in the case Bi = 0 and κr = 1.
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