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Block Activity in Metric Neural Networks
Mario Gonzalez, David Dominguez, and Francisco B. Rodriguez

Abstract—The model of neural networks on the small-world
topology, with metric (local and random connectivity) is investigated.
The synaptic weights are random, driving the network towards a
chaotic state for the neural activity. An ordered macroscopic neuron
state is induced by a bias in the network connections. When the
connections are mainly local, the network emulates a block-like
structure. It is found that the topology and the bias compete to
influence the network to evolve into a global or a block activity
ordering, according to the initial conditions.

Keywords—Block attractor, random interaction, small world, spin
glass.

I. INTRODUCTION

N EURONS never function in isolation; they are organized
into ensembles or neural circuits that process specific

kinds of information and provide the foundation of sensation,
perception and behavior[1]. Our brain consists of various
areas performing special tasks and communicating along spe-
cific pathways. Even on a smaller scale it is organized into
layers and columns. Furthermore on an even smaller scale,
neurons seem to interact in a rather disordered fashion, and
the pathways between different areas are to some degree
diffuse. The storage of information (firing patterns) or the
stimulus-response schemes in neural networks can formally
be described as the construction of attractors in the dynamics
of spin systems[2]. This construction is achieved by giving
suitable values to the exchange couplings between the spins,
which take the role of synapses in neural networks.

In this work a model of sparsely connected Hopfield-type
neural networks[2] on the small-world topology of Watts-
Strogatz[3] is presented. The concept of “small world” net-
works was introduced as an attempt to capture and study
nontrivial features observed in realistic social, biological and
technological networks. The key idea is to generate an struc-
ture which interpolates between a regular lattice and a random
graph. One starts with a locally connected network, e.g. a ring,
of nearest neighbours, and subsequently “re-wires” randomly
with probability ω those local connections, creating long-range
shortcuts[4].

The response of a network to a given input stimulus leads
to a particular configuration of the neural activity. If there
is an excitatory bias in the synaptic weights, the neurons
will be ordered in either the active or the inactive states,
according to the initial conditions (the stimulus)[5]. If the
stimulus is a more complex set of neural activities, the network
may become trapped in a stationary state with no global
ordering. However, a local order can emerge if the stimulus has
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some neighbourhood structure, whatever the network topology
preserves some metric, with stronger connectivity between
nearest neurons than between neurons far from each other[6].
The block-like attractor structure of the network is explored,
to study its dynamical behaviour, and the parameters which
allow such configurations.

II. THE MODEL

In order to describe the neural activity the following model
is used. A neuron i can be in one of two states, firing or nonfir-
ing, described by binary variables σi ∈ {±1} (active/inactive).
The state of a neuron σi is updated in time t through the
following equation:

σi(t) = sign

(∑
i

hi(t − 1) − θ

)
, hi(t) ≡

∑
j

Jijσj(t) (1)

where hi(t) is the postsynaptic field arriving at neuron σi.
Here sign denotes the sign function defined as: sign(z) =
1 if z ≥ 0, and sign(z) = −1 if z < 0. The variable θ is the
firing threshold which is considered to be zero. A synchronous
update and asymmetric weights are used.

The synaptic couplings between neurons i, j are Jij ≡
CijWij , where C = {Cij} is the topology matrix and
W = {Wij} are the synaptic weights. The topology matrix,
with Cij ∈ {0, 1} splits in local and random links. The local
links connect each neuron to its KL nearest neighbours, in
a closed ring. The random links connect each neuron to KR

others uniformly distributed along the network[7]. Hence, the
network degree is K = KL + KR. The network topology is
then characterized by two parameters: the connectivity ratio,
and the randomness ratio, defined respectively by:

γ = K/N, ω = KR/K, (2)

where ω plays the role of a rewiring probability in the small-
world model[3].

The weights Wij , of the connections between neurons i and
j, are composed of two terms:

Wij = W + W r
ij , (3)

where W r
ij are generated randomly to be either +1 or −1

with equal probability, representing either an excitatory or an
inhibitory synapse, respectively. One defines a variable W ∈
(0, 1), and adds W to the weight matrix Wij in order to induce
a bias (ferromagnetic) interaction in the network[8]. W is the
same for all synapses.

One wants to study the evolution of the network when
initialized in blocks (l+ and l−). The blocks are defined as the
groups of neighbour neurons initialized as σi = +1, i ∈ l+
and σi = −1, i ∈ l−. A mesoscopic variable Al(t) is used to
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describe the neural activity of block l, with size Nl, as the
fraction of neurons firing at time t,

Al(t) =
1
Nl

∑
i∈l

σi(t). (4)

The macroscopic parameters are defined averaging the ac-
tivities over the blocks:

A =< Al >, D =
√

V ar(Al), (5)

where A is the usual global activity[9] and D is the block
activity, respectively. One can also define the global activity
of the network as A = (A+ + A−)/2 and the block activity
as D = (A+ − A−)/2. The network can be in the following
representative phases: global activity (G, with A �= 0, D = 0),
block activity (B, with A = 0, D �= 0) and zero activity (Z,
with A = 0, D = 0)[10]. In the next section the states of the
network, in each of this phases, are presented.

III. SIMULATION

The typical evolution of a network with N = 65, 536
neurons and K = 64 connections (in average) for each of
them, is presented in Figure 1. The probability of random
connections is ω = 0.127, and the bias for the synaptic weights
is W = 0.3. In each figure, the activities are smooth averaged
over windows of Nw = 655 neurons. The network starts in
a noisy 2-blocks structure of activities, with initial condition
A = 0, D = 0.2.

After t = 12 time steps in the network evolution, the block
has been almost completed, with A ∼ 0.0, D ∼ 0.8. Then a
long process takes place, and at t = 400 the active block is
approximately filled with A+ ∼ 1, while the inactive block
was destructed A− ∼ 0. In the next steps, the inactive block
become attracted by the active one, and the global phase is
achieved, where an active ordering is restored, A ∼ 1, D ∼ 0.
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Fig. 1. Evolution of a network with N= 65, 536 and K = 64. The
parameters are ω = 0.127 and W = 0.3. The time steps are t = 0 (top-left
panel), t = 12 (top-right) t = 400 (bottom-left) and t = 450 (bottom-right).

Both global and block activity order parameters are plotted
against the time evolution in Figure 2, for the same values
of the variables in the Figure 1. One sees that after an
initial retrieval of the full block ordering, the network almost

suddenly (in a logarithmic time scale) crashes into a switch
between B and G phases.
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Fig. 2. Global (A) and Block (D) activity evolution in time. Stationary G
phase; ω = 0.127, W = 0.3. Network with N=65,536 neurons and K=64.

For a somewhat smaller value of the randomness parameter,
say ω = 0.090, and keeping the other parameters the same as
in Figure 2, one can observe a stable block phase. In Figure
3 the global and block activities, A, D are plotted against the
time. It is seen that up to t = 10, 000 time steps, the blocks
doesn’t change into a global ordering. The behaviour of the
activity during the network evolution corresponds to the top
panels in Figure 1.
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Fig. 3. Global (A) and Block (D) activity evolution in time. Stationary B
phase; ω = 0.090, W = 0.3. Network with N=65,536 neurons and K=64.

One can describe this new phenomenon of phase transition
between global and block neural activity phases, briefly, by a
phase diagram. In Figure 4 it is shown in which regions of
the parameters ω, W there are G, B or Z stationary states.
The initial condition is chosen as a noisy block phase with
A = 0, D = 0.2, and the network evolves until its attractor.

It can be concluded from this figure that block activity
appears for values of W greater than 0.16 approximately, and
for increasing ω with W . This phase diagram has been checked
against other initial conditions with A = 0, D > 0, and it is
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Fig. 4. Phase Diagram for block activity. B: block activity region, G: global
activity region, Z: Zero region.

roughly the same. So, the B and G phases are qualitatively
robust respect to all block initial conditions.

IV. THEORY

The simulation results presented in the previous section can
be supported by a straightforward theory. The theory discussed
here is based in a signal to noise ratio approximation[11]. Let
the neurons be distributed within blocks l, successively with
positive and negative activities, Al = A±. Then, following
Equations (5), the block activities can be written as

Al = A + ylD, (6)

where yl
.= ±1 (according to the block) is a random variable.

The local field, Equation (1), with the Equation (3) for the
synapses, can be separated in a signal and a noise terms,

hi = WKAi + Ωi (7)

where Ai ≡ 1
K

∑
j∈{i} σj , Ωi ≡

∑
j∈{i} W r

ijσj are the
activity restricted to the neighbours {i}, and the synaptic noise,
respectively.

There are local and random neighbours for each neuron,
hence the signal term itself splits in localized and randomized
terms, namely

Ai =
KL

K
AL

i +
KR

K
AR

i , (8)

with AL,R
i ≡ 1

KL,R

∑
j∈L,R σj where L and R are the local

and random sets of neighbours, respectively, of the neuron σi.
From Equation (4), whenever the neighbours belong to a

block, the localized field depends on its block activity, Al. On
the other hand, the randomized field is a sample of a global
field, which does not depend on the block. Using the definition
in Equation (2), one arrives to an approximation for the local
field of neurons in the block l,

hl ≡ WK[ωA + (1 − ω)(A + ylD)(1 − γb)] + Ω (9)

where the correction term (1− γb) accounts for the boundary
effects between A± blocks.

The equation for the the block-activity is then Al =
〈sign(h)〉Ω, where the average in the angular brackets are over
the noise Ω. But from the Equation (6), after averaging over
the yl one gets

A = 〈Al〉y = 〈sign(h)〉y,Ω

D = 〈yAl〉y = 〈y sign(h)〉y,Ω, (10)

The average over Ω stands for the noise distribution.
This noise is Gaussian distributed, Ω .= N(0,Δ2)[2]. Its

variance is given by the sum of random and local terms,
Δ2 = V ar(Ωi) = ωΔ2

r +(1−ω)Δ2
l . Neglecting the feedback

terms, it is Δ2 = K. This approximation is valid in the limit
of strongly diluted networks (K 	 N ) [12]. However, for
local connections, even extreme dilution do not eliminate the
feedback, and Δ needs more precise calculations, which is
outside the scope of the present work.

The continuous transition from the G to the Z phase may be
analysed by taking first D = 0 in the Equations (10), which
gives A = 〈sign(WKA+Ω)〉, then expanding around A ∼ 0.
It gives the constant line: W =

√
π

2K
, which coincides with

border G-Z plotted in Figure 4. The transition between B and
G phases is not continuous, so no expansion is possibly, but
the equation: D = 〈sign(WK(1 − ω)D + Ω)〉, is similar to
the previous equation for A except that it depends on ω. The
finite solution D > 0 is stable only if W (1 − ω) >

√
π

2K
,

which fits well also with the phase diagram in Figure 4.

V. CONCLUSION

A new type of solution, for an attractor neural network,
was studied here: the block activity phase (B). When a bias
in the synaptic weights is added to random weights, the
network becomes ordered in a global activity phase (G), which
resembles the ferromagnetic state in a spin system. This phase
may coexists with a spin-glass phase, which is microscopically
ordered, but without any spatial structure[8].

The B phase, however, is spatially structured: within each
(mesoscopic) block, the neurons are ordered, which represents
synchronization of activities in cortices of a neural system.
If the connections between each block are less relevant than
inside the blocks, as it is the case of small-world networks with
few long-range re-wiring, the B phase is stable. If there are
enough random long-range connections, the G phase attracts
almost all space of configurations: even a initial condition
close to a block structure leads to a final state where all
neurons are ordered. One believes this B phase is robust for
a whole set of topologies (for instance, power-law scaling)
or neural dynamics (for instance, integrate and fire neurons),
which is actually being investigated by the authors. It is also
robust for learning of patterns, which was the subject of
research in [13].
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