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Blind Speech Separation Using SRP-PHAT
Localization and Optimal Beamformer in
Two-Speaker Environments

Hai Quang Hong Dam, Hai Ho, Minh Hoang Le Ngo

Abstract—This paper investigates the problem of blind speech
separation from the speech mixture of two speakers. A voice activity
detector employing the Steered Response Power - Phase Transform
(SRP-PHAT) is presented for detecting the activity information of
speech sources and then the desired speech signals are extracted from
the speech mixture by using an optimal beamformer. For evaluation,
the algorithm effectiveness, a simulation using real speech recordings
had been performed in a double-talk situation where two speakers are
active all the time. Evaluations show that the proposed blind speech
separation algorithm offers a good interference suppression level
whilst maintaining a low distortion level of the desired signal.

Keywords—Blind speech separation, voice activity detector,
SRP-PHAT, optimal beamformer.

[. INTRODUCTION

N recent years, research in speech separation for cocktail-

party or multiple-speaker environment has been very
actively conducted by using multi-channel systems like
microphone arrays. Hence, this problem is very attractive in
the speech enhancement area when the observed signal is
obtained from several speakers in different locations. Many
applications have benefited from the multi-channel speech
separation techniques such as in hearing aids, multi-talker
speech separation, hands- free microphones, robot systems,
speaker phones, and speech recognition systems. Here, the
localization information of speech sources is very important
for speech separation due to the fact that all speech signals
have the same spectral characteristic. In the case of
localization information available, many methods have been
proposed for evaluation of sources’ spatial information such as
evaluation using a pre-known geometry localization like the
array geometry and source localization, a calibration method
by using training samples of prerecording desired and
undesired sources [1], [2]. Using available sources’ spatial
information, many separation techniques have been proposed
like steering beamforming, optimal beamforming, post-
filtering [3], [4]. There, optimal beamforming techniques are
very popular because optimal beamformers are used to exploit
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the spatial information of desired and undesired signals in
such a way that the desired one is extracted and undesired
signals are suppressed. Then, the optimal beamformers are
designed by using the spatial information to suppress the
contribution of all undesired signals while preserving the
contribution of the desired signal. Specifically, the optimal
beamformer weights are calculated by using the knowledge
about the location of the target signal and the array geometry
[2], [3]. However, when the localization knowledge is not
known a priori then the observed mixture signals are the only
available data for the speech enhancement. In this case, blind
source separation (BSS) techniques are developed for
separating the different sound sources. Many blind speech
separation techniques using microphone array have been
proposed for the speech separation in both time domain and
frequency domain. Some very popular BBS techniques for the
speech separation are Independent Component Analysis
(ICA), maximum likelihood, and kurtosis maximization [5]-
[7]. Most of the BBS techniques are based on the independent
characteristics of speech sources in the observed signal. In the
case of blind separation in a multiple-speaker environment,
different BSS techniques are proposed in both time domain
and time-frequency domain [8]-[12].
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Fig. 1 Position of speakers and the microphone array in the Two-
Speaker Environment

This paper considers the case of blindly separating of
speech signals from a two speech sources’ mixture (see Fig.
1). Thus, the source activity information is blindly estimated
in the frequency domain without having prior knowledge
about the location of speech sources. In [9], [10], active and
inactive periods of speech sources have been detected for their
spatial information. However, in some special cases, sources’
inactive periods are not available like a double-talk situation
where two sources are active all the time. To overcome with
double- talk situation, in this paper, a voice activity detector
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for both speech sources employing SRP-PHAT is presented
for obtaining the speech sources’ activity information. The
SRP-PHAT is based on the cross-correlation and phase-
transform weighting of the observed signals from all
microphone pairs in the array [13]. Based on the sources’
activity information, an optimal beamformer is proposed for
extraction of each speech source from the observed signals.
The effectiveness of the proposed algorithm had been
evaluated by using the real speech recordings in double-talk
situation. Evaluations in a real double-talk environment reveal
a good suppression level of the undesired speech source whilst
maintaining a low distortion level of the desired speech
source.

II. PROBLEM FORMULATION

Consider a linear microphone array with L microphones,
and observed signal, in this case, is the mixing speech of two
speakers sitting in front of the array (see Fig. 1). A Lx1
discrete-time vector of the observed signal is denoted by x(n)
(see Fig. 1). The observed signal x(n) can be expressed as

x(n) =s,(n)+s,(n) (M

where si(n) and s>(n) are L x 1 discrete-time vectors from the
first and second sources, respectively, at the time index n.
Initially, the observed signal is decomposed into the frequency
domain by using a frequency analysis method. In the
frequency domain, the observed signal can be written as

x(@,k) =s,(@,k)+s,(®,K) 2

where x(w,k), si(w,k), and s>(w,K) are the contribution from
the observed signal, the first and the second speech sources,
respectively in frequency bin ®. The objective is to separate
the speech signals from the observed signal. As such, one
speech source is treated as the desired source while the other
becomes an undesired source. In this case, a voice activity
detector employing SRP-PHAT is proposed to detect the
speech sources’ activity information based on the statistics of
the observed signals.

III. VOICE ACTIVITY DETECTOR EMPLOYING SRP-PHAT

Let us divide the sequence of observed signal into Q blocks,
each consisting of N samples with the index [(q—1)N+1,gN ],
1 < q < Q. The SRP-PHAT of the observed signal in the q"
block can be obtained as

2. 2 R(@.q,n,m)

F(o.q) = )

where Rx(w,q,n,m) is the cross-correlation between m™ and n™
microphone observed signals from the q" block in frequency
bin o, px(w,q) is the power spectral density (PSD) of the
observed signals from the g™ block in frequency bin . Here,

the cross-correlation Rx(®,q,n,m) can be estimated as follows

1 & .
Ry(@.q.n,m)=— > x(a.k,nx(e,k,m) )
N -GN+t
where (.)" denotes the complex conjugate operator, X(w,k,n)
and X(w,k,m) are m" and n'" elements of the observed vector
x(w,k). The PSD of the observed signals px(w,q) can be
estimated by using the observed signals at a reference
microphone £ (1< £ <L) as

% x(@,K, O)x(w,k, )" )

1
p" (w)q) N k=(q-1)N+1
where X(w,k,£) is the £ element of the observed vector x(,K).

To avoid the division by 0 in (3) i.e. periods in which all
speech sources are inactive, we propose to use a threshold
epx(®) to detect the speech presence where € is a preset
tolerance, 0<e< 1, and px(®) is the PSD of observed signals in
frequency bin ®. Here, px(®) can be calculated as

1

X(@,K, O)X(w,k, 0)" (6)
gN i3

p. (@) =

Denote by S the index of all the blocks with at least one
active speech source. Based on the proposed threshold, this set
can be obtained as

S={a, 1<4<Q : p. (@) 2, () } (7)

Note that, S is not an empty set since px(®) is the average of
all px(®,q), see (5) and (6). The SRP-PHAT of the first and
second sources’ signals in the q" block can be obtained as

L L
z Z Rsl (a)7 qv ns m)

\Psl (0), q) =1 m:n+p1 (w q) (8)
sl ’

and

L L
Z z Rsz (a)’ q9 na m)
lI152 (ﬂ), q) R (9)
psz (a)a q)

where Rs(w,q,n,m) and Re(w,q,n,m) are cross correlation
between m" and n microphone for first and second speech
sources from the q block in frequency bin ®, psi(w,q) and
ps2(w,q) are power spectral density (PSD) of the first and
second speech sources from the q" block in frequency bin .
Here, cross-correlation Rsi(®,q,n,m) and R«(w,dq,n,m) can be
estimated as

qN
Ry (0,00 m) = — 3 s,(.k,m)s, (. K, m)’ (10)
k=(q-1)N+1
and
1 N .
Ro(@,q,n,m)=— s, (w,k,n)s,(w,k,m) (1)
Nk:(q—l)NJrl
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where S1(w,k,n) and si(ew,k,m) are m" and n elements of the
first source source vector si(w,k), and Sa(w,k,n) and sz(w,k,m)
are m™ and n™ elements of the first second source vector
s2(w,k). The PSD of the two speech source signals px(w,q) can
be estimated as

qN
Pa(@ ) =— 35 (@.K.0)8, (@.K.0)° (12)
Nk:(q—l)N+l
and
1 an N
Pa(@.@)=— s, (o.k 0)s,(o.k,0) (13)
Nk:(q—I)NH

Due to the fact that two speech signals si(n) and s»(n) are
statistically independent, the cross-correlation between them
are zeros for all frequency bin. So, Rx(®,q,n,m) and px(w,q)
can be expressed as follows

Rx(wiq’nsm): Rsl(a)’q’ n5 m)+ Rsz(a)’q’n5m) (14)

and

Py (@,9) = Py (@,0) + P, (@,9) (15)

From (3), (8), (9), (14), and (15), we have the following
expression

psl (a)s q)\ysl (a)7 q)+ psz (a)s q)\Psz (a)7 q) (16)
Py (@,0) + Py, (@,0)

Y. (0,0) =

In this research, two speech sources are unmoved during the
conversation, so we can use the SRP-PHAT to localize the
source position in the room [12], [13]. As such, the SRP-
PHAT of each speech source can be supposed to be
unchanged for all block geS. Hence, ¥si(®,q) is supposed to
be equal to ¥q(w), and Ye(w,q) is supposed to be equal to
WYo(o) for all block qeS. Then, (15) can be rewritten as
follows

V(0.0 =—L12D__y ().
Py (@,Q)+ Py (@,0) a17)
psz (C(), q) \Psz (C())
psl ((0, q) + psz (a)7 q)
Denote y51(®,q) as follows
Vo (@,q) = Py (@,q) (18)

Pa(@,9) + P, (@,9)

s0, (17) can be rewritten as follows
Y (@,9) = 7 (0, ¥y (@) + (1= 7, (0,0) Py (@) (19)

Clearly, (18) shows the contribution balance between two
speech sources in block q. Here, vs1(®,q) is the contribution of
the first speech source, and 1- ys1(w,q) is the contribution of
the second speech source. As such, during the conversation,

contributions of speech sources can be changed from block to
block. Blocks, in which the contribution of one speech source
is dominant in comparison with the contribution of another
speech source, are useful for the sources’ activity estimation.
In the complex plane, based on (19), the point of ¥y(®,q) is
located in the link between two points of Wsi(®) and Yeo(w).
Also, the block’s point located near vertices should represent
the domination of one speech source, see Fig. 3. As such,
block of first source domination can be detected as block qi,
and the block of second source domination ¢, can be detected
as

[P :argmax“l’x(w,ql)—\I’x(a),qz)‘ (20)

;.0,€S

here | ¢ | is the absolute operation. To reduce the frequency
mismatch, we can use SRP-PHAT of a frequency range [
2] which can be estimated as

,

¥, (o, ,1,0)= 3 ¥, (@,9) @D

W=,

Signal blocks, where the contribution of one source is
dominant compared to the contribution of another source, can
be estimated as I blocks which SRP-PHAT are nearest to SRP-
PHAT of q" block or SRP-PHAT of q," block. Then, []; and
[]» are proposed to be the sets of observed signal x(n) in I
blocks which SRP-PHAT are nearest to SRP-PHAT of q"
block and q.™ block, respectively. In practice, the value I can
be chosen as smaller than 5% of the number of elements in S.

IV. OPTIMAL BEAMFORMER USING SOURCES’ ACTIVITY
INFORMATION

For extracting each speech source from the observed
signals, the optimal beamforming technique is used based on
the sources’ activity information obtained by voice activity
detector in such a way that the desired one is extracted and
undesired one is suppressed. In each frequency bin o, the
correlation matrix Ri(w) for the first source can be estimated
as

R, (®) = Ii > x(@,k)x" (,k) 22)

kell;

Due to the small value of I, the contribution of second
speech sources in the correlation matrices Ri(®) is much
smaller in comparison with the contribution of the first speech
source. The correlation matrix R, (®) for the second source
can be estimated as follows

R, () :% > x(@,k)x" (,k) (23)

kell,

These matrices are now used to desire an optimal
beamformer in each frequency bin. Based on the estimated
sources’ correlation matrices Rj(0w) and Ry(®) in each
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frequency bin ®, an optimal beamformer is desired for each
speech source in the frequency bin ®. The beamformer weight
for the first source is denoted by wi(®). This weight vector can
be obtained by solving the following optimization problem

minw;' ()R, (@)W, (@) (24)
subject tow,'d, () =1

where di(®) is the estimated cross-correlation vector between
the first source and a {" reference microphone. The vector
di() is also the ™ column of the matrix Rj(®). Similarly, the
beamformer weight w>(w) for the second source can be
obtained as the solution to the optimization problem

min wi (@)R, (@)W, (@) (25)
subject tow}'d, (@) =1

where dx(®) is the €™ column of the matrix Ra(w). The
solutions to two optimization problems can be expressed as

[R,(@)]"'d,(w) (26)
4 (0)[R,(0)]"'d, ()

Wl(w):

and

-1
W (@)= [R,(®)] df](w) 27)
d; (0)[R,(®)]"d, (@)

The beamformer outputs for the two sources are calculated
as

Yi(@,k) =W x(e,k) (28)

and
Y, (@,k) = W' x(,k) (29)

Finally, time-domain outputs yi(n) and y»(n) of speeches
from two speakers can be obtained from the frequency-domain
beamformer outputs yi(n,k) and y»(n,k) by using the synthesis
reconstruction.

V.EXPERIMENTAL RESULTS

For performance evaluations of the proposed blind speech
separation algorithm, a simulation in double-talk situation is
performed in a real room environment by using a linear
microphone array consisting of six microphones. Here, the
distance between two adjacent microphones is 6 cm, and the
positions of two speakers are shown in Fig. 1. The distances
between the array and speakers are about Im ~ 1.5m. The
duration of the observed signal is 60 seconds, and the value N
was chosen as the number of samples in the 0.25 s period,
while €, I, and & were chosen as 4, 15 and 0.1, respectively.
Fig. 2 shows time domain plots of two speech signals and the
observed signal. The speech signals from two speakers occur
at same times and overlap with each other in the observed
signal.

Source 1

10s 20s 30s 40s 50s 60s

Fig. 2 Time domain plots of the original speech signals and the
observed signal at the 4th microphone

TABLEI
THE INTERFERENCE SUPPRESSION AND THE SOURCE DISTORTION LEVELS IN
THE OUTPUTS OF THE PROPOSED METHOD AND THE SECOND-ORDER BSS

ALGORITHM
First output Second output
Method
IS(dB) SD(B) IS(dB) SD (dB)
Proposed 6,9 212 7.6 234
beamformer
Second-order
BSS 2,1 -20,5 1,9 =223
sl
sl
4 .
2r -?‘ 4
* *
. S s
—
ey éf *
2l W ]
#3%
-4t o 1
E o
-6f o5
_8 .
-15 -10 -5 0 5 10 15

Fig. 3 Blocks’ SRP-PHAT of the observed signal for frequency
range [250Hz 750Hz] in the complex plane

The proposed blind separation algorithm is used for
separating the observed signal, and the SRP-PHAT of
frequency range [250Hz, 750Hz] is used for voice activity
detector to estimate the activity information of both speech
sources. The frequency range [250Hz, 750Hz] had been
chosen because the acoustical energy of speech in this
frequency range is significant for voice processing [14].
There, Fig. 3 depicts all blocks’ SRP-PHAT of observed
signals for frequency range [250Hz, 750Hz] in the complex
plane. Fig. 4 depicts time domain plots of the two outputs of
the proposed separation algorithm. The two outputs are speech
signals extracted for two speakers from the observed signal.
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Thus, Fig. 4 shows that the proposed algorithm can separate
the two speech signals from the observed mixture. Informal
listening tests suggest the good hearing quality of signal
outputs from the proposed algorithm.

Also, the second-order blind signal separation (BSS)
algorithm is used for separating the observed signal. This
second-order BSS algorithm was proposed in [15] for the
blind source separation. The outputs show a little separation
level, and the separation did not have a good result in double-
talk situation, see Table I.

13t Qutput

2nd Output
1 T T T 1 I

Fig. 4 Time domain plots of the proposed algorithm outputs

To quantify the performance of the proposed algorithm, the
interference suppression (IS) and source distortion (SD)
measures as in [16] are employed. As such, the speech signal
from one speaker is viewed as the desired signal and other
speech signals are interference. Table I shows the interference
suppression and source distortion levels for the two outputs of
the proposed beamformer and the second-order BSS
algorithm. The table shows an improvement in the IS and SD
levels of the proposed algorithm when compared with the
second-order BSS algorithm. Here, the proposed blind speech
separation algorithm offers a good interference suppression
level ~7 dB whilst maintaining a low distortion level
(—21~-24 dB) for the desired source.

VI. CONCLUSION

In this paper, a new blind speech separation algorithm in the
frequency domain is developed for the two-speaker
environment. Since the position of the sources is unknown, a
voice activity detector using the SRP-PHAT is proposed for
estimating the activity information of two speakers in
observed signals. Based on the obtained activity information,
an optimal beamformer is designed for each speech source to
extract the desired signal in each frequency bin. For the
algorithm evaluation, a simulation with a double-talk situation
had been conducted by using real speech recordings.
Simulation results show that the proposed algorithm manages
to achieve a good noise suppression level ~7dB in a real
double-talk environment whilst maintaining a low distortion
level for each speech source.
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