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Blind Non-Minimum Phase Channel Identification
Using 3¢ and 4" Order Cumulants
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Abstract—In this paper we propose a family of algorithms based
on 3" and 4" order cumulants for blind single-input single-output
(SISO) Non-Minimum Phase (NMP) Finite Impulse Response (FIR)
channel estimation driven by non-Gaussian signal. The input signal
represents the signal used in I0GBASE-T (or IEEE 802.3an-2006)
as a Tomlinson-Harashima Precoded (THP) version of random
Pulse-Amplitude Modulation with 16 discrete levels (PAM-16). The
proposed algorithms are tested using three non-minimum phase
channel for different Signal-to-Noise Ratios (SN R) and for different
data input length. Numerical simulation results are presented to
illustrate the performance of the proposed algorithms.

Keywords—Higher Order Cumulants, Channel identification,
Ethernet communication.

I. INTRODUCTION

INITE Impulse Response (FIR) system identification

from output measurements only is a well-defined problem
in several science and engineering areas such as communi-
cations, speech signal processing, adaptive filtering, spectral
estimation, radar Doppler, sonar, geophysical, biomedicine,
blind equalization, plasma physics, seismic data processing,
image reconstruction, harmonic retrieval, time-delay estima-
tion and array processing ( [1], [2], [3], [4], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [16] ). The interest in Higher
Order Cumulants (HOC) (or Higher Order Statistics (HOS))
has been permanently growing in the last years. Mainly finite
impulse response (FIR) system identification based on HOC
of system output has received more attention. Tools that deal
with problems related to either non-linearity, non-Gaussianity,
or non-minimum phase (NMP) systems are available, because
they contain the phase information of the underlying linear
system in contrast to second order statistics, and they are
of great value in applications, such as radar, sonar, array
processing, blind equalization, time daily estimation, data
communication, image and speech processing and seismol-
ogy . Many algorithms have been proposed in the literature
for the identification of FIR system using cumulants. These
algorithms can be classified into three broad classes of so-
lutions: Closed form solutions [13], [17] Optimization-based
solutions [11], [15] and Linear algebra solutions [13], [14],
[21]. Recently, the latter have received great attention because
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they have “simpler” computation and are free of the problems
of local extreme values that often occur in the optimization
solution. Although the closed-form solutions have similar
features, they usually do not smooth out the noises caused
from the observation and computation [16], [18], [19] and
[20]. Therefore, while these solutions are more interesting
from the theoretical point of view, they are not recommended
for practical applications [5], [21]. In this paper, we propose a
family of algorithms based on linear algebra solution, exploit
third, and fourth order cumulants. In the part of simulation, we
have tested the proposed algorithms for channel identification,
principally the Ethernet channel. The Ethernet has evolved into
the most widely implemented physical and link layer protocol
today. Fast Ethernet increased speed from 10 to 100 megabits
per second (Mbit/s). Gigabit Ethernet was the next iteration,
increasing the speed to 1000Mbit/s. The initial standard for
gigabit Ethernet was standardized by the IEEE in June 1998
as IEEE 802.3z. 10 gigabit Ethernet or 10GbE is the most
recent (as of 2006) and fastest of the Ethernet standards. It
defines a version of Ethernet with a nominal data rate of
10Gbit/s, ten times as fast as gigabit Ethernet. 10GbE over
fiber and InfiniBand “like” copper cabling are specified by the
IEEE 802.3-2005 standard. 10GbE over twisted pair has been
released under the IEEE 802.3an amendment. The 802.3an
standard defines the wire-level modulation for 10GBASE-
T as a Tomlinson-Harashima Precoded (THP) version of
pulse-amplitude modulation with 16 discrete levels (PAM-16),
encoded in a two-dimensional checkerboard pattern known as
DSQ128. Several proposals were considered for wire-level
modulation, including PAM with 12 discrete levels (PAM-
12), 10 levels (PAM-10), or 8 levels (PAM-8), both with and
without Tomlinson-Harashima Precoding (THP). PAM-5 was
used in the older 1000BASE-T gigabit Ethernet standard [22],
[23] [24] and [25].

In this paper, we will consider a NMP channel exited by a
random PAM-16, for different signal to noise ratio (SN R) and
for different size data input. The results show the performance
of the proposed algorithms for small data input in noisy
environment.

II. PROBLEM STATEMENT
A. Channel modeling

Consider the transmission of N i.i.d zero-mean symbols with
unit energy, belonging to some alphabet A, across a frequency
selective channel with memory p and Additive white Gaussian
Noise (AWGN) (Fig. 1).

The NMP channel output is modeled as the output of a
FIR system that is excited by an unobservable input and is
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Fig. 1. Discrete time Non-Minimum phase channel.

corrupted at its output by an additive white Gaussian noise.
The output time series is described by

q
y(n) =Y hn)e(n —i) (1)
i=0
Where {e(n)} is the input sequence, {h(n)} the impulse
response coefficients, is the order of FIR system and {y(n)}
is the non-measurable sequences.
the observed “measurable” output {r(

r(n) = y(n) +w(n) 2

where {w(n)} is the noise sequence.

In order to simplify the construction of the algorithm we
assume that: The input sequence, {e(n)} , is independent and
identically distributed (i.i.d) zero mean, and non-Gaussian. The
system is causal, i.e. h(n) = 0 for ¢« < 0 and ¢ > ¢ , where
h(0) =1 and h(q) # 0. The system order ¢ is known or may
be computed by a priori knowledge [5], [6]. The measurement
noise sequence {w(n)} is assumed zero mean, i.i.d, Gaussian
and independent of {e(n)} with unknown variance.

n)} is given by

B. Basic Relationships

In this section, we present the general relationships for
impulse response coefficients that constitute the basic relations
in development of most linear HOC based methods proposed
in the literature.

The m*" order cumulants of the {y(n)} can be expressed as a
function of the impulse response coefficients {h(¢)} as follows
[20]:

q
eZh Z—l—tl

i=0

Cmy(tla m 1 h(i+tmfl) (3)
Where 7,,,e is the cumulant at origin of the input sequences.
From this relation (3), the methods [8], [1], [9], [11], [10],
[13], [14], [21] are derived. The third and fourth order cumu-
lants of {y(n)} , are expressed respectively by

7352]1

ng tl, t2 Z + tl (Z —+ t2) (4)

Cyy(t1,t2,13)

7452]1

Our interest is to search the relationships between the third
and fourth order cumulants. Therefore, the Fourier transform
of the third order cumulant (4) is given by

= y3eH (w

Z+t1 (’L+t2) (’L+t3) (5)

Sy (w1, w2) 1) H (w2)H(—w1 — w2) 6)

The same, The Fourier transform of fourth order cumulant (5)
is given as well by

Say (w1, w2, w3) = vaeH (w1)H (w2) H (w3)
XH(—wi — w2 — w3) @)

with H(w) = Y2 h(i)exp ™7™ (j2 = -1
If we replace wy in equation (6) by ws + w3, the equation (6)
becomes

Szy (w1, w2 +w3) = y3eH (w1) H (w2 + w3)
XH(—wy — wy — w3) (8)

from the equation (7) and (8) we obtain the following equation

H(W2)H(W3)S3y(w17w2 +ws) = eH(wa + w3)
X Sy (w1, wa, w3) )

3z
—)

where € = ( . So, if we take the inverse Fourier transform

Vdx
of the equation (9), we obtain the fundamental relationships,
which link the third and fourth order cumulants to the system
parameters (proof see appendix A)

q
> " h(i)h(i + ts — t2)Csy(t1, 12 — 1)
6h(i)C4y(t1, t2 — i, t3 — ’L) (10)

for different values of ¢1,t> and t3 we can obtain different
algorithms.

C. Proposed algorithms

In order to identify the parameter {h(i)} : i = 1,...,q,
of the communication channel impulse response, we use a
Least Squares (LS) solution of the system of equation (10)
as follow:

If we take t;=X and ¢t = t; = t3 in equation (10), for each
A we can estimate the parameters h(i) by a Least Squares
(LS) solution of the following systems

q q
> eh(i)Cuy(\t —iyt —i) = > h*(i)Cay(A\t —i) (11)

=0 =0

the equation (11) can be written into the following system

q q
(Z eh(i)Cay( A\t — iyt —i) = > h*(i)Cay (At — i))
i=0 i=1
= Csy(A\, ) (12)
else if we suppose that the system is causal, i.e. that h(i) = 0

if ¢ < 0. So, for t = —q,...,0, ..., q the system of equations
(12) can be written in matrix form as follow
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C4y()‘7 —q, 7q) 7031/()‘7 72Q) Gh(l)

Ciay(1,0,0) —Cyy (A —20) eh'(qg

C4y(/\7Q7q) 7031/()\70)

1 (q)
C(3',11 (/\7 _Q)

= Csy(X,0) (13)

the above equation (13) can be written in compact form as

Mhy =d (14)

with M the matrix of size (2¢ + 1) x (2¢q) ele-
ment, hy a column vector is constituted by the values e,
eh(1),....eh(q), h%(1),..., h*(¢) and d is a column vector
of size (2¢ + 1) x (1) that is composed by third order
cumulants Csy (A, —¢q),....C34(A, 0),..., Csy(X, ¢) as indicated
in the equation (18). The Least Squares solution (LS) of
the system of equation (18), permit an identification of the
parameters hy(n) blindly and without any ‘information’ of the
input channel. The solution will be written under the following
form

hy, = (MTM)"*MTd (15)

1) First algorithm ALGI1: if A = —q and for t = —q, ..., q
into the equation (11), we obtain the algorithm (ALG1)
proposed in [21].

The Least Squares solution of the system provides an es-
timation of the parameters e.h(i) and h2(i). In order to
exploit this redundancy we propose the following solution
for estimating the parameters of the communication channel
impulse response {h(i)}:i=1,...,q

eh(i) eh(i)

1 .
== + sign(

ha=—q(i) = 5 )(R2(i)M?) (16)

€ €
where sign(z) =1if 2 >0, =1 if < 0 and 0 if = 0.

2) Second algorithm ALG2: now if A=—q + 1 and for
t = —q,...,q into the equation (13), we obtain the second
LS algorithm (ALG?2), the parameters of the communication
channel impulse response are given by

hre o1 () = L(P0) Py Gy ay

3) Third algorithm ALG3: if we take A=0 and for ¢ =
—q,...,q into the equation (13), we obtain the thirth LS
algorithm (ALG3) and the parameters of the communication
channel impulse response are given by

-1 éh(i O
incoi) = 5P sign( ™ Dyiziy ) as)

4) Fourth algorithm (ALG4): if we take A\ = ¢ — 1 and for
t = —q,...,q into the equation (13), we obtain the fourth LS
algorithm (ALG4) and the in the same way the parameters of
the communication channel impulse response are given by

. 1. SO
e () = e + sign( )i a9)

5) Fifth algorithm (ALGS): if we take A = ¢ and for
t = —q,...,q into the equation (13), we obtain the fifth LS
algorithm (ALGb5) and in the same manner the parameters of
the communication channel impulse response are given by

N . 1 eh(i . eh(i) vo, .
e = (P sign( Py izi ) 2o

6) Mean algorithm ALGm: so, in general, if the system
order is ¢ we can construct 2q + 1 algorithms for each A €
[—q, g], from this algorithms we can obtain the means of the
estimated parameters as follow

1 .
Sat 1 > i) @1

iLmean (Z) =

III. SIMULATIONS AND DISCUSSIONS

In order to evaluate the performance of the proposed algo-
rithms, we consider a non-minimum phase channel in which
the order is known. The channel output was corrupted by an
Additive White Gaussian Noise (AWGN) for different sample
sizes and for 100 Monte Carlo runs.

A. First channel

We consider the channel described by the model FIR-NMP
(2) with the zeros located at 0.75 and 1.333, given by the
following equations
y(n) = e(n) —2.083¢e(n — 1) 4+ 1.0e(n —2), in noise free case.
S(n) = y(n) + w(n), in presence of Gaussian noise.

Where the signal to-noise-ratio (SN R) is defined [14] by

E(y*(n)
B(w? <n>) 22)

To measure the accuracy of parameter estimation with respect
to the real values, we define the mean square error (M SFE)
for each run as

SNR = 1010g<

MSE = ; (h(i)h(i)h(i)> (23)

where, h(i) , h(i) for ¢ = 0,...,¢, represent the true and
estimated parameters respectively. In the following figure (Fig.
2) we have represented the magnitude, phase and zeros of the
impulse response of the first channel. The magnitude response
is more flat and the phase response is linear.

833



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:2, No:11, 2008

Magnitude (dB)

Ndrmalized Frequency (m rad/sample)

0.25 0.5

-100

Phase (degrees)
o

—-200,

Imaginary Part

o
o wu

o
3l

0.75

-

|
[N

1

20

Magnitude (dB)

0 0.25 05 075 1 -1

0
Normalized Frequency (n rad/sample) Real Part

Fig. 2. First channel impulse response characteristics.

TABLE I
TRUE AND ESTIMATED PARAMETERS OF THE FIRST CHANNEL EXCITED BY
A PAM(16) INPUT SEQUENCE OF 1024 SAMPLES (100 ITERATIONS)

m
o
> O fmoemir ' e
g ———
g -s00r "'""“~~"~‘.~.~ ]
K= -
o
-1000 - - -
0 0.25 0.5 0.75 1
Normalized Frequency (m rad/sample)
Fig. 3. Estimated magnitude and phase of the channel 1 impulse response

in noise free case, using the proposed algorithms, when the data input is
N = 1024.

TABLE 1T
TRUE AND ESTIMATED PARAMETERS OF FIRST CHANNEL EXCITED BY A
PAM(16) INPUT SEQUENCE OF 1024 SAMPLES (100 ITERATIONS,

Algorithms h(l)to h(2)to MSE
ALG1 —1.729 £1.158 | 1.221 +0.811 0.077
ALG2 —1.736 £0.748 | 1.249 +£0.791 0.089
ALG3 —1.511+£0.791 | 1.036 £0.724 | 0.076
ALG4 —1.669 +0.989 | 0.984 +£0.797 | 0.039
ALG5 —1.344+0.698 | 0.980+0.534 | 0.126
ALGm —1.764+0.721 | 1.257 +£0.763 | 0.094

SNR = 8dB)

Algorithms h(l) o h(2)to MSE
ALG1 —1.683+£0.864 | 1.336 £0.748 | 0.149
ALG?2 —1.895+0.878 | 1.399 £0.922 | 0.167
ALG3 —1.525+1.047 | 1.184 +£0.828 | 0.105
ALG4 —1.368 £ 0.659 | 0.818 £0.647 | 0.150
ALG5 —1.203 +£0.942 | 1.002+0.732 | 0.178
ALGm —1.535+0.842 | 1.147+0.794 | 0.145

1) performance in noise free case: In the following Table
(I) we have summarized the simulation results when the length
data input is 1024.

From the Table (TABLE I) we can conclude that:

« All proposed algorithms gives approximately the same
results on the estimation of the impulse response. These
estimations are closed to the true ones.

o The variances of the estimated parameters are acceptable.

o The mean squares error is small for all algorithms,
which is demonstrates that the estimated channel impulse
response parameters are more closed to the true ones.

A above results -TABLE I- are obtained in noise free case,
but in the following Tables TABLE II and IIl we estimate
the non-minimum phase channel impulse response parameters
described by the system 1 for a very low SN R (8dB and 0dB)
and for the input data length N = 1024. In the following figure
(Fig. 3) we represent the estimated magnitude and phase of the
first channel impulse response in noise free case and for 1024
input data length. In the figure (Fig. 3) we remark that the
estimated magnitude response, using all proposed algorithms,
are not very different from the true ones. Concerning the
estimation of the phase response, we observe a constant
gap between the estimated phases and the true ones. This
observation concerns principally the ALG1, ALG2, ALG3
and ALGm algorithms. But the estimated phase response
using the ALG4 and ALG5 have approximately the same
phase in comparison with the true ones.

In the figure (Fig. 4) we have plotted the estimation of the
magnitude and phase of first, the case of the SN R = 8dB and
for data length of NV = 1024. This is a test of the influence

of the noise on the estimation.

Magnitude (dB)

Phase (degrees)

—-1000 - -
0 0.25 0.5 0.75 1

Normalized Frequeﬁcy (m rad/sample)

Fig. 4. Estimated magnitude and phase of the channel 1 impulse response,
using the proposed algorithms, when the data inputis N = 1024 and SNR =
8dB.

In the case of an SNR = 8dB and for a data length
N = 1024, we remark from the figure (Fig.4) that the
presence of noise has “nearly” no influence on the estimation
of the magnitude and phase response using all the proposed
algorithms.

From the Tables (TABLE II and III), we notice that
the estimated parameters are slowly affected by the noise
presence, this is more apparent if we observe the variance
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TABLE III
TRUE AND ESTIMATED PARAMETERS OF FIRST CHANNEL EXCITED BY A
PAM(16) INPUT SEQUENCE OF 1024 SAMPLES (100 ITERATIONS,

0.4

0,4 1

SNR = 0dB)

Algorithms h(l) o h(2) o MSE
ALG1 —1.558 £1.033 | 1.611 +1.174 0.436
ALG2 —1.922+1.171 | 1.403+0.839 | 0.168
ALG3 —1.586 +0.427 | 1.386 +0.827 | 0.205
ALG4 —1.903 £0.656 | 1.457 +0.578 | 0.216
ALG5 —2.036 +1.027 | 1.577 £0.827 | 0.333
ALGm —1.801 £ 0.756 | 1.486 4+ 0.865 0.271

of the estimated parameters. The M SFE is not very different
from the noiseless case (TABLE I).

Now what will happen if the variance of noise is equal
to the output channel variance (i.e. SNR = 0dB). The
following figure (Fig. 5) will explain this situation. If the

20 T T T
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—20L

-30

-49 5
200, 0.25
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| U
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o o
o O

Phase (degrees)

I
<)
o
o

|
@
o
o

0.25 0.5 0.75 1
Normalized Frequency (m rad/sample)

Fig. 5. Estimated magnitude and phase of the first channel impulse response,
using the proposed algorithms, when the data input is N = 1024 and SNR =
0dB.

noise variance is equal to the output channel variance (i.e.
SNR = 0dB) and for the same data length, we conclude that
all algorithms give the “same” estimations of the phase which
have a constant difference comparing to the true ones. The
estimated magnitude response using the proposed algorithms
are not different from the original ones excepted those parts
of magnitude < 0dB.
As a result, we can say that:

o The proposed algorithms yield approximately the same
estimation of system parameters.

« We observe some increases of the variance estimations,
this is due to the presence of noise and short data input
(due to a bias estimation of the cumulants).

o If )\ approaches zero, i.e A = —1, 0 and 1, the algorithms
( ALG2, ALG3 and ALG4) give good estimation for
all SNR and for different input data length (low M SE
(Fig. 6), because in this case we use more cumulants
information if the lags are centered round to zero.

In Tables IV and V we increase the sample data to 2048

and for two SNR (0 and 16 dB). From the results shown
in the TABLE IV and V, we can deduce that the estimated

0,3 1

MSE

0,2 1

0,1 1

0dB adB 16dB 32dB infimty

Fig. 6. MSE (first channel) for each algorithm and for different SN R and
for a data length N = 1024.

parameters are not very different from those shown in TABLE
II. This is implies that the data length does not influence the
estimation of third fourth order cumulants. The MSE are
approximately of the same values.

TABLE IV

TRUE AND ESTIMATED PARAMETERS OF FIRST CHANNEL EXCITED BY A
PAM(16) INPUT SEQUENCE OF 2048 SAMPLES (100 ITERATIONS,

SNR = 0dB)

Algorithms (1) £ o h2) to MSE
ALGT —1.320£0.778 | 1.208 £0.824 | 0.174
ALG2 —1.725+£1.109 | 1.342+0.852 | 0.146
ALG3 —~1.330£0.676 | 1.142+0.898 | 0.150
ALG4 —1.355+£1.152 | 0.733+0.687 | 0.193
ALG5 —1.279+£1.132 | 1.039 £ 1.051 | 0.150
ALGm, —1.404 £ 0.962 | 1.093+0.932 | 0.162

TABLE V

TRUE AND ESTIMATED PARAMETERS OF FIRST CHANNEL EXCITED BY A
PAM(16) INPUT SEQUENCE OF 2048 SAMPLES (100 ITERATIONS,

SNR = 16dB)
Algorithms A1) to h(2) to MSE
ALG1 —1.619+0.719 | 1.296 +£0.807 | 0.137
ALG2 —2.093+£1.214 | 1.362+1.013 | 0.131
ALG3 —1.474+£0.851 | 1.066 £ 0.801 0.089
ALG4 —1.461+£0.692 | 0.783+0.569 | 0.136
ALG5 —1.384 £ 0.556 | 0.857 +£0.499 | 0.133
ALGm —1.606 +0.726 | 1.073 +£0.659 | 0.125

We remark from the above results that the noise have a
small influence on the magnitude and phase estimation, but
now we will know the influence of the data length on the
estimation of the impulse response estimation. In the Fig.5
we have represent the results for an SINR = 16dB and the
data length is N = 2048.

In Fig.7 we have increased the data length to have N =
2048 and the SNR = 16dB, we remark that the estimated
magnitude of the first channel impulse response are not very
different from the true ones excepted those with a magnitude
< 0dB. The estimated phase response using the algorithms
ALG1, ALG2 and ALG3 have approximately the same allure
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Fig. 7. Estimated magnitude and phase of the channel 1 impulse response,
using the proposed algorithms, when the data input is N = 2048 and SNR =
16dB.

comparing the true ones; but the algorithms ALG4, ALGS5 and
ALGm give a constant gap comparing to the true ones.

B. Second channel

In this section, we increase the channel order (in order
to know the influence of the increasing system order on the
parameters estimation). Let us consider the channel impulse
response described by the system FIR-NMP(3), with the zeros
that are located at -0.955, 0.812 and 1.226 given by the
equation:

y(n) = e(n) —1.083e(n — 1) — 0.95¢e(n — 2) 4+ 0.95¢(n — 3),
in noise free case.

r(n) = y(n) + w(n), in presence of an AWGN.

In the following figure (Fig. 8) we represent the magnitude,
phase and zeros of the impulse response of second channel.
The magnitude response represents more selectivity in fre-
quency and the phase response is not linear.

)

=2

()

e}

2

c

j=2}

I

=

Normalized Frequency (n rad/sample)
-30 I i i
0 0.25 0.5 0.75 1
200
= 1
(%)
g 100 ]
o I
:OJ’ né 0.5
z 0 g o @ L 2N J
g 2
£ -100 g 05
o =
-1
-200 -1 0 1
0 0.25 0.5 0.75 1 Real Part

Normalized Frequency (m rad/sample)

Fig. 8. Second channel impulse response characteristics

In the following Table (TABLE VI) we represent the sim-
ulation results where the data input is N = 1024 and for an
SNR = 16dB From the Table VI we can conclude that:

TABLE VI
TRUE AND ESTIMATED PARAMETERS OF SECOND CHANNEL EXCITED BY A
PAM(16) INPUT SEQUENCE OF 1024 SAMPLES (100 ITERATIONS,

SNR = 16dB)

Algorithms | h(1)+o | h(2)+o | h(3)x*0o | MSE

ALG1 —0.956+ | —1.027+ 1.073+ 0.037
0.782 0.396 0.862

ALG2 —1.207+ | —1.081+ 1.276+ 0.149
0.598 0.663 0.720

ALG3 —0.996+ | —1.083+ 1.243+ 0.121
0.829 0.491 0.639

ALG4 —1.351+ | —0.940+ 1.415+ 0.301
0.986 0.525 1.313

ALG5 —1.147+ | —1.330% 1.383+ 0.371
0.526 0.802 0.825

ALGm —1.131+ —1.092+ 1.278+ 0.144
0.697 0.586 0.776

o The estimated parameters are good for all algorithms.

o The ALGI gives a better estimation compared to the other
algorithms, if we observe the values of variance o and
MSE.

o The ALG4 and ALGS are not very efficient compared to
other algorithms, because they have the greatest M SE
compared to the rest of algorithms.

In the following figure (Fig. 9) we represent the M SE for
the proposed algorithms, when the length of the data input is
N = 1024 and the SNR = 16dB. The results in TABLE

0.4

0.3

7]

20,2
0.1

Algorithms

& &

o . .
h sl
NS

Fig. 9. MSE for each algorithm and for different SNR and for a data
length N = 1024.

VI shows that the noise presence has a small influence on
the parameters estimation (overestimation of the parameter
h(3) ), but not a great influence on the parameters estimation
using all algorithms. This can be observed in the values of
the M SE. From Fig. 9 we can observe the robustness of the
ALG1 compared to the other algorithms. The imprecision of
the algorithms ALG4 and ALGS5 is minimized by using the
mean algorithm ALGm.

In the figure (Fig. 10) we represent the estimated magnitude
and phase response of the second channel using the proposed
algorithms, when the SNR = 16 and the data length N =
1024. The estimations of magnitude impulse response of the
second channel, using all proposed algorithms, are not more
close to the real ones when the data length N = 1024 and the
SNR = 16dB (Fig. 10. but the phase estimations are different
from the true ones by “constant” value.
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Fig. 10. Estimated magnitude and phase of the second channel impulse

response, using the proposed algorithms, when the data input is N = 1024
and SNR = 16dB.

In the following Table (Table VII) we represent the param-
eters estimation in the case of a small data input (N = 512)
and for a very noisy environment (SNR = 0dB), in order
to test the robustness of the proposed algorithms to noise and
small data input.

TABLE VII
TRUE AND ESTIMATED PARAMETERS OF SECOND CHANNEL EXCITED BY A
PAM(16) INPUT SEQUENCE OF 512 SAMPLES (100 ITERATIONS,

SNR = 0dB)

Algorithms | h(l)+o | h(2)+0o | h(3)+o | MSE

ALG1 —1.260+ | —1.211+ 1.425+ 0.352
0.730 0.675 0.796

ALG2 —1.001+ | —1.076% 1.568+ 0.447
0.502 0.652 0.755

ALG3 —0.968+ | —1.363+ 1.344+ 0.372
0.428 0.763 0.689

ALG4 —1.1304+ | —1.425+ 1.552+ 0.654
0.560 0.943 0.871

ALG5 —1.081+ | —1.335+ 1.652+ 0.711
0.433 0.443 0.775

ALGm —1.088+ | —1.282+ 1.508+ 0.468
0.530 0.695 0.777

The results shown in the Table VII demonstrate that:

e There is a little influence of the noise, because the
proposed algorithms are based on cumulants of order
great than 2 (3" and 4*" order cumulants)

o There is some influence of short data input (N = 512),
this implies a bias of the cumulants estimation.

o In conclusion, if we use high data length we will mini-
mize the influence of the bias caused when we estimate
the cumulants. In addition we can minimize this influence
by dividing the input data (V) into M interval in which
we estimate the cumulants and then we take its means.

In the following figure (Fig. 11) we have considered the bad
situation, i.e small data length (N = 512) and for a high noise
variance (SINR = 0dB, of the impulse response estimation
using the proposed algorithms. When the output channel is
more affected by the noise, i.e. SNR = 0, we estimate the
magnitude impulse response (using all algorithms) with more

Magnitude (dB)

0.25 0.5 0.75 1
Normalized Frequency (m rad/sample)

Fig. 11. Estimated magnitude and phase of the second channel impulse
response, using the proposed algorithms, when the data input is N = 512
and SNR = 0dB.

precision so that the data length is only N = 512 (Fig.11).
But, the estimation phases impulse response have the same
constant gap comparing to the true ones.

C. Third channel

In this example, we consider a non-minimum phase impulse
response channel, given by the following equation:
y(n) = e(n)+0.327e(n—1) — 0.815¢(n —2) +0.470e(n — 3),
in noise free case.
r(n) = y(n) + w(n), in presence of an AWGN.
The channel characteristics are illustrated in the following fig-
ure (Fig. 14). The magnitude of the channel impulse response
is more selective in frequence and the phase response are not
linear. We have selected the third algorithm (ALG3), i.e. for
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Fig. 12. Third channel impulse response characteristics.

A = 0 in which we use the maximum information of the
estimated signal using higher order cumulants. In the TABLE
VIII we represent the estimated impulse response parameters.
From the TABLE VIII we conclude that the algorithm (ALG3)
gives a good impulse response parameters estimation, for
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TABLE VIII
TRUE AND ESTIMATED PARAMETERS, USING ALG3, OF THIRD CHANNEL
EXCITED BY A PAM(16) INPUT SEQUENCE OF 1024 SAMPLES (100
ITERATIONS AND FOR DIFFERENT DATA SN R)

SNR(B) | h(l) o | h(2)*o | h(3)+o | MSE
o0 0.3754 | —0.923f | 0.488% | 0.041
0.659 0.561 0.371
40 0.232+ | —0.775+ | 0525+ | 0.101
0.458 0.336 0.299
32 0.253+ | —0.861+ | 0.584+ | 0.113
0.499 0.332 0.206
24 0.209+ | —0.815+ | 0566+ | 0.170
0.482 0.357 0.238
16 0.167+ | —0.73414 | 0478+ | 0.249
0.574 0.520 0.368
8 0136+ | —0.828+ | 0.442+ | 0.344
0.991 0.916 0.555

different SV R and for a data input N = 1024. The influence
of noise is not very important, this influence is due, principally,
to the use of cumulants biased estimator.

In the following figure (Fig. 13), we represent the estimation
of the magnitude and phase of the channel impulse response
for different SN R and for a data input N = 1024.
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@ - = = Estimated, SNR=40dB
] Ol [ Estimated, SNR=32dB
I . Estimated, SNR=24dB
= - - - Estimated, SNR=16dB
9 —2007 . Estimated, SNR=8dB
g \_w
-400 : : : '
0 0.25 0.5 0.75 1
Normalized Frequency (m rad/sample)
Fig. 13. Estimated magnitude and phase of the second channel impulse

response, using the ALG3 algorithm, when the data input is N = 1024 and
for different SN R.

In order to minimize the influence of the bias cumulants
estimator, we consider in the following Table (TABLE IX) the
data input N = 2048. The simulation results are illustrated for
different SN R.

The TABLE IX demonstrate a light improvement of channel
impulse response parameters estimation, especially on the
variance estimation -no more fluctuation comparing to the
TABLE VIII- and a small MSE.

In Fig.14 so below, we represent the estimation of the magni-
tude and phase of the third channel in the case of input data
length N = 2048.

The Fig. 14 proof that the ALG3 gives a very good
estimation for phase response, the estimated phase are closed
to the true ones, and an important estimation on the magnitude
estimation. To conclude, the proposed algorithms are able to
estimate the phase and magnitude of the non minimum phase
channel impulse response in very noisy environments, this is

TABLE IX
TRUE AND ESTIMATED PARAMETERS, USING ALG3, OF THE THIRD
CHANNEL EXCITED BY A PAM(16) INPUT SEQUENCE OF 2048 SAMPLES
(100 ITERATIONS AND FOR DIFFERENT SN R)

SNR(dB) | h(1)£o | h(2)+o | h(3)+0o | MSE
0 0.227+ —0.762+ 0.550+ 0.066
0.341 0.195 0.134
40 0.245+ —0.770+ 0.560+ 0.102
0.312 0.109 0.074
32 0.220+ —0.760+ 0.552+ 0.142
0.364 0.132 0.163
24 0.192+ —0.761+ 0.550+ 0.203
0.394 0.253 0.146
16 0.182+ —0.741+ 0.541+ 0.227
0.373 0.237 0.191
8 0.171+ —0.691+ 0.529+ 0.266
0.373 0.258 0.197
10 T T T
o
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S
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g
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~10 i | i
0 0.25 0.5 0.75 1
True
200 1 Estimted, no noise
A - - - Estimted, SNR=40dB
g P R Kt Estimted, SNR=32dB
2 o Estimted, SNR=24dB
Y - - - Estimted, SNR=16dB
8200 - - - Estimted, SNR=8dB
o
-400 ‘ ‘
0 0.25 0.5 0.75 1
Normalized Frequency (m rad/sample)
Fig. 14. Estimated magnitude and phase of the second channel impulse

response, using the ALG3 algorithm, when the data input is N = 2048 and
for different SN R.

due to the cumulants properties such as: the cumulants of the
Gaussian noise are zeros.

IV. CONCLUSION

In this paper, we have proposed a family of algorithms based
on third and fourth order cumulants. These algorithms are
used for the estimation of parameters of non-minimum phase
channel. The results show the performance of all the proposed
algorithms mainly for (ALG3). The proposed algorithms can
be used for all channel (minimum phase or non-minimum
phase). Therefore, these algorithms will be used for modeling
the internet traffic. It is important to know that we can use all
family of random PAM input (i.e.: PAM (2), PAM (4), PAM
(8)). The current work is aimed to show the performance of
the proposed algorithms to a practical channel such as BRAN
A and BRAN E used in mobile communication.

APPENDIX A
PROOF OF THE EQUATION (10)

From the equation (9)

eH (wg + w3)Suy (w1, w2, ws)
= H(w2)H (w3)S3y (w1, w2 + w3) (24)
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If we take the inverse Fourier Transform of the above equation
(24) we obtain the following equation

400 “+oo 400 “+o0

Z Z Z Z CBy n, l e J"“Jle*Jl(Werwg)
Nn=—00M=—00 l=—o00 k=—00 B N
X (h( ) me?)h(k)e (]kw%)) — Z Z Z

n=-—00 M=—00 |=—00

h(k)cély(n m, l) (Jnwi) *(]mwz))
X (e—(jloJ3)e—(,jk(w2+w3)) 25)

X (sumzfi

Or in another form as follow

+oo +oo +o00

SIS DD ORI

n=—00 M=—00 |=—o0 k=—0c0

(k)Csy(n,l)e” (Gnws)

+o0 400
( —(G(m)wz) o= (i (k+) um)) Y ¥ Z
n=—oo m=—o0 [=—oc0
+oo , )
x Z h(k)Cy(n, m, 1)e~ 01 =G (mtk)w2)

=—00

% (6—(j(l+k)uJ3)) (26)

if we take if we take (in the left hand) of the above equation
that

l+m:t1 andk—i—l:tg

and in right hand that

k+m:t1 and k‘+l:t2

we obtain the following equation

+o00

> (3

t1,ta,n=—00 \'m=—00

2 — tl -+ m)C’3y (TL, tl — m)

“+oo

% (e—(]"ﬂwl)e—(jtw}z)e—(jtzws)) —¢ Z

t1,l2,n=—00

+o0o
x Z h(k)c4y(na tl - k,tg — ]g)e_(jnwl)
k=—o00

% (e—Utlm)e—(ﬁzws)) 7

from the equation (27) we obtain the following equality

t2 — tl + m)ng(n,tl — m))

“+o0
Z h(m)h(

—€Zh C4ynt1

V(th to, n) S

ko ts — k)
(~q,q)) (28)

where ¢ is the impulse response channel order. If the system is
causal (our case of study) the equation (28) takes the following

form

Z h(m

m=0

h(tg - tl + m)ng(n, tl - m))

q
=€> h(k)Ciy(n,t1 — k,to — k)
k=0
V(t17t27n) € [7(]7 Q]) (29)

so, we have obtained the equation (10)
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