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Blind Impulse Response Identification of frequency

Radio Channels: Application to Bran A Channel
S. Safi, M. Frikel, M. M’Saad and A. Zeroual

Abstract— This paper describes a blind algorithm for estimating

a time varying and frequency selective fading channel. In order

to identify blindly the impulse response of these channels, we

have used Higher Order Statistics (HOS) to build our algorithm.

In this paper, we have selected two theoretical frequency selective

channels as the Proakis’s ‘B’ channel and the Macchi’s channel, and

one practical frequency selective fading channel called Broadband

Radio Access Network (BRAN A). The simulation results in noisy

environment and for different data input channel, demonstrate that

the proposed method could estimate the phase and magnitude of

these channels blindly and without any information about the input,

except that the input excitation is i.i.d (Identically and Independent

Distributed) and non-Gaussian.

Keywords— Frequency Response, System Identification, Higher

Order Statistics, Communication Channels, Phase Estimation.

I. INTRODUCTION

I
N the literature we have important results [1], [2], estab-

lished that blind identification of finite impulse response

(FIR) single-input single-output (SISO) communication chan-

nels is possible only from the output second-order statistics,

without using any restrictive assumption on the channel zeros,

color of additive noise, channel order overestimation errors,

and without increasing the transmission rate of the data stream.

The common feature of this class of approaches [1], [2] is

that they induce cyclostationary statistics at the transmitter

by means of a periodically time-varying precoder (e.g., a

filterbank [2] or a simple periodic modulator [1]) and ex-

ploit the resulting second-order cyclostationary statistics of

the received samples. Those algorithms have been termed

transmitter-induced multinationality approaches. Some class

of algorithms for blind channel identification are based on the

iterative strategy [3]. In these algorithms, an initial channel

estimate is used by a symbol estimator to provide tentative soft

estimates of the transmitted symbol sequence. These estimates

are used by a channel estimator to improve the channel

parameters. The improved channel estimates are then used by

the symbol estimator to improve the symbol parameters, and

so on.

S. Safi is with the Department of Physics, Polydisciplinary Faculty, Cadi
Ayyad University Po.Box. 523, Beni Mellal, Morocco (corresponding author
to provide phone: 00 212 66 55 09 14; Fax: 00 212 23 48 52 01 e-mail:
safi.said@gmail.com).

M. Frikel and M. M’Saad are with the GREYC Laboratory, 6,
B. Marchal Juin 1450 Caen France, (e-mail:mfrikel@iutc3.unicaen.fr ,e-
mail:msaad@greyc.ensicaen.fr

A. Zeroual is with the Department of Physics, Cadi Ayyad University,
Po.Box.2390, Marrakech Morocco. (e-mail: zeroual@ucam.ac.ma).

In this paper, we have principally focussed in channel im-

pulse response estimation such as: magnitude and phase.

The considered channels are with non minimum phase and

frequency selective. In most wireless environments, there are

many obstacles in the channels, such as buildings, mountains

and walls between the transmitter and the receiver. Reflections

from these obstacles cause many different propagation paths.

This is called multi-paths propagation or a multi-path channel.

The frequency impulse response, of this channel, is not flat

(ideal case) but comprising some hollows and bumps, due

to the echoes and reflection between the transmitter and the

receiver. Another problem encountered in communication is

the synchronism between the transmitter and the receiver.

To solve the problem of phase estimation we well use, in

this paper, the HOC to test what’s the robustness of those

techniques if the channel is affected by a colored noise.

Higher order cumulants (HOC) are a fairly a topic with many

applications in system theory. The HOC are only applicable to

non-gaussian and non linear process because the cumulants of

a gaussian process are identically zero [4]. Many real world

applications are truly non-gaussian [5]. Also, the Fourier trans-

formation of HOC, which is termed higher order spectra (or

polyspectra) provides an efficient tool for solving the problem

of equalization technology used in communication. The major

feature of HOC, from the point of view of equalization, is that

the phase information of channels is present [8], and therefore

they can be used to estimate the parameters of the channel

model with no a priori knowledge of the phase property

(minimum phase (MP) or non-minimum phase (NMP)) of

channel or the transmitted data (assuming a non-Gaussian

distribution) [5].

In this paper we have proposed an algorithm based only on

third order cumulants. The solution, in least squares sense,

gives an estimation of the frequency-selective fading channel

impulse response parameters of the considered theoretical

channel such as: Prokis ‘B’ [6], [7] and Macchi [8] channels.

In order to test the efficiency of the proposed algorithm we

have considered practical, i.e. measured, frequency-selective

fading channel, called Broadband Radio Access Network

(BRAN A), representing the transmission scenario at the

interior of the office. This model channel is normalized by

the European Telecommunications Standards Institute (ETSI)

[9] [10].

A. Problem Statement

The channel output of a FIR channel, excited by an unob-

servable input sequences, i.i.d zero-mean symbols with unit

energy, belonging to some alphabet A, across a selective
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channel with memory p and additive colored Gaussian noise.

The output time series is described by the following equation

r(k) = hpxk + n(k) (1)

where hp = (h(1),h(2),...,h(p)) represents the channel

impulse response, xk = (x(k − 1),x(k − 2),...,x(k − p))
and nk is the additive colored Gaussian noise with energy

E {n2(k)} = σ 2.

The completely blind channel identification problem is to

estimate hp based only on the received signal r and without

any knowledge of the energy of the transmitted data x nor the

energy of noise.

B. Basic relationships

The output of the channel is characterized by its impulse

response h(n), which we identify “blindly” its parameters is

given in the following equation (2).

y(k) =

P
∑

i=0

x(i)h(k− i); r(k) = y(k) + n(k) (2)

Let us suppose that: The additive noise n(k) is Gaus-

sian, colored or with symmetric distribution, zero mean, with

variance σ 2, i.i.d with the m th order cumulants vanishes

for m > 2. In addition we suppose that the noise n(k) is

independent to x(k) and y(k). The channel order p is supposed

to be known and h(0) = 1.

Then the m th order cumulant of the output signal is given

by the following equation [4]

Cmy(t1,...,tm−1) = γ mx

+∞
∑

i=−∞

h(i)h(i+ t1)...h(i+ tm−1)

(3)

with γ mx represent the m th order cumulants of the excita-

tion signal (x(k)) at origin.

If m = 3 the equation (3) becomes:

C3y(t1,t2) = γ 3x

P
∑

i=0

h(i)h(i+ t1)h(i+ t2) (4)

the same, if m = 2 the equation (3) becomes

C2y(t1) = σ
2

P
∑

i=0

h(i)h(i+ t1) (5)

the Fourier transformation of the equations (4) and (5) give

us the spectre and bispectra respectively

S3y( ω 1,ω 2) = γ 3xH (ω 1)H (ω 2)H (−ω 1 − ω 2) (6)

S2y( ω ) = σ
2
H ( ω )H (−ω ) (7)

if we suppose that ω = ( ω 1 + ω 2) , the equation (7) becomes

S2y(ω 1 + ω 2) = σ
2
H ( ω 1 + ω 2)H (−ω 1 − ω 2) (8)

then, from the equations (6) and (8) we obtain the following

equation

H ( ω 1 + ω 2)S3y( ω 1 + ω 2) = ǫ H ( ω 1)H ( ω 2)S2y( ω 1 + ω 2) (9)

with ǫ = (
γ 3x

σ 2
). The inverse Fourier transformation of the

equation (9) demonstrates that the 3rd order cumulants, the

Auto-Correlation Function (ACF) and the impulse response

channel parameters are combined by the following equation

P
∑

i=0

h(i)C3y(t1−i,t2−i) = ǫ

P
∑

i=0

h(i)h(i+t2−t1)C2y(t1−i)

(10)

if we use the property of the ACF of the stationary process,

such as C2y(t) �= 0 only for (−p ≤ t ≤ p) and vanish

elsewhere. In addition if we take t1 = −p, the equation (10)

takes the form

P
∑

i=0

h(i)C3y(−p− i,t2 − i) = ǫ h(0)h(t2 + p)C2y(−p) (11)

else if we suppose that t2 = −p, the equation (11) becomes

C3y(−p,−p) = ǫ h(0)C2y(−p) (12)

using the equation (11) and (12) we obtain the following

relation

P
∑

i=0

h(i)C3y(−p− i,t2 − i) = h(t2 + p) (13)

else if we suppose that the system is causal, i.e. that h(i) = 0
if i< 0. So, for t2 = −p,...,0,the system of equations (13)

can be written in matrix form as













C3y(−p− 1,−p− 1) . C3y(−2p,−2p)
C3y(−p− 1,−p) − α . .

. . .

. . .

C3y(−p− 1,1) . C3y(−2p,−p) − α













×













h(1)
.

h(i)
.

h(p)













=













0
−C3y(−p,−p+ 1)

.

.

−C3y(−p,0)













(14)

where α = C3y(−p,−p)
the above equation (14) can be written in compact form as

M hp = d (15)

with M the matrix of size (p+1)×(p) element, hp a column

vector constitute by the unknown impulse response parameters

h(n) : n = 1,...,p and d is a column vector of size (p+1)×(1)
as indicated in the equation (14). The Least Squares solution

(LS) of the system of equation (15), permit an identification

of the parameters h(n) blindly and without any ‘information’
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of the input selective channel. So, the solution will be written

under the following form

hp = (M T
M )−1

M
T
d (16)

II. SIMULATION RESULTS

A. Proakis ’B’ channel

The Proakis ‘B’ channel is more frequency selective, the

parameters of their impulse response is given by:

hp = (0.407,0.815,0.407).
The characteristics of this channel are illustrated in the fol-

lowing figure (Fig. 1). One of their zeros is outside of the unit

circle (i.e. non minimum phase channel). The magnitude of

the impulse response of this channel represent more frequency

selective.
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Fig. 1. Proakis ‘B’ channel characteristics.

1) Impulse response parameters estimation: In the follow-

ing Table I, we represent the estimated parameters for different

data length and for different SN R (Signal to Noise Ratio)

defined by:

SN R = 10 log(
σ 2

x

σ 2
) (17)

The qualities of the estimated parameters are evaluated by

the quadratic criteria (Mean Squares Error (M SE )) given by

the following equation

M SE =
1

p

P
∑

i=1

(h(i) − ĥ(i))2 (18)

TABLE I
ESTIMATED PARAMETERS OF PROAKIS ‘B’ CHANNEL MODEL EXCITED BY

DIFFERENT SAMPLE SIZES AND FOR SNR = 16dB

ˆh(i) ± σ N = 512 N = 2048

ĥ(1) ± σ 0.150 ± 0.514 0.334 ± 0.254

ĥ(2) ± σ 0.722 ± 0.458 0.764 ± 0.237

ĥ(3) ± σ 0.325 ± 0.691 0.297 ± 0.364
MSE 0.0271 0.0067

from the Table I we can conclude the following remark: 1)

The smallest values of the M SE imply that the parameters

estimation are very close to the true ones. 2) The difference

between the parameters estimation values obtained using the

data length N = 512 and N = 2048 (for an important SN R =
16) is due principally to the bias estimation of the HOC using

the data length N = 512.

2) Magnitude and phase estimation: In this section we well

estimate the magnitude and phase of the Proakis ‘B’ channel

impulse response for different data length and for different

SN R . In the Figure 2 (SN R = 16dB ) we observe that the

small data have not the influence to the phase response, but,

had an influence on the magnitude response of the Proakis

‘B’ channel. This is due to bias when we have estimated the

cumulants. Therefore, the cumulants are sensitive to the phase

channel (good results for small data input). When the input

data increases, we remark that the magnitude response follows

the original ones.
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Fig. 2. Estimated magnitude and phase of the Proakis channel impulse
response, for different data length, SNR = 16dB

Finally, if we increase the data input -for different SN R -

we well obtain a good estimation of magnitude and phase

response of the Proakis ‘B’ channel. This is very clear in Fig.

3.
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Fig. 3. Estimated magnitude and phase of the Proakis channel impulse
response, for different data length, SNR = 40dB

B. Macchi channel

The Macchi channel has five parameters of its impulse

response given by:



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:9, 2007

451

hp = (0.8264,−0.1653,0.8512,0.1636,0.8100). The channel

characteristics are illustrated in the following figure (Fig. 4).

The impulse response of this channel present some fading

hollow and their phase response is not linear. Two of its

zeros are outside of the unit circle (i.e. non minimum phase

channel). The magnitude of the impulse response of this

channel represent more frequency selective in every hollow.
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Fig. 4. Macchi channel characteristics.

1) Impulse response parameters estimation: In this sub-

section we well present the impulse response parameters

estimation of the Macchi’s channel for different input data

length and for various SN R . In the following Table (Table II)

we are summarized the obtained results.

TABLE II
ESTIMATED PARAMETERS OF PROAKIS ‘B’ CHANNEL MODEL EXCITED BY

DIFFERENT SAMPLE SIZES AND FOR SNR = 16dB

ˆh(i) ± σ N = 512 N = 2048

ĥ(1) ± σ 0.517 ± 0.522 0.802 ± 0.378

ĥ(2) ± σ −0.801 ± 0.974 −0.216 ± 0.438

ĥ(3) ± σ 0.776 ± 0.859 0.796 ± 0.311

ĥ(4) ± σ −0.138 ± 0.483 0.122 ± 0.428

ĥ(5) ± σ 0.455 ± 0.649 0.806 ± 0.259
MSE 0.1446 0.0020

From the Table II we can conclude that: The parameters

estimation of the Macchi channel impulse response are not

different to the true ones, in the case, when the data length are

N ≥ 1024. The M SE values are small for all data length and

for all SN R , this imply, that the estimated parameters are very

close to the original ones. All parameters are estimated (with

acceptable variance), without more difference to the true ones

for all SN R and for all data length; with the exception the

parameters ĥ(4) principally for small data length (N ≤ 1024),

in witch we have a small difference.
2) Magnitude and phase estimation: In the following figure

(Fig. 5) we have presented the estimation of the magnitude

and the phase of the impulse response using the proposed

algorithm. For an SN R = 16dB ; we remark that the phase

estimation for all data length have the same appearance (Fig.

5). The magnitude estimations corresponding to the data length

N = 2048 and 4096, have the same allure comparatively to

the true ones; but those representing the data length N = 512
and 1024 represent some fluctuations.
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Fig. 5. Estimated magnitude and phase of the Macchi channel impulse
response, for different data length, SNR = 16dB

So, if the SN R ≥ 16dB , for example for a SN R = 40dB
(Fig. 7), we can conclude that the noise is without influence.

the corresponding estimation of magnitude and phase have

the same mining to the true ones. In conclusion the proposed

algorithm is able to estimate the magnitude and phase of these

channel characterized by the frequency selective. Seeing that

the proposed algorithm is based only on third order cumu-

lants, so, the phase estimation was estimated without more

difference, in presence of colored noise and with different data

length.
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Fig. 6. Estimated magnitude and phase of the Macchi channel impulse
response, for different data length, SNR = 40dB.

C. BRAN A channel

In this paragraph we consider the BRAN A model rep-

resenting the fading radio channels, the data corresponding

to this model are measured in a scenario of transmission in

local office. The following equation (19) describes the impulse

response of BRAN A channel.

h(n) =

NT
∑

i=0

C i δ (n− τ i) (19)

where δ (n) is Dirac function, C i the magnitude of the target

i, N T = 18 the number of target and τ i is the delay of target i.
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In the Table III we have summarized the values corresponding

the BRAN A channel impulse response.

TABLE III
DELAY AND MAGNITUDES OF 18 TARGETS OF BRAN A CHANNEL

delay τi(ns) mag. Ci(dB) delay τi(ns) mag. Ci(dB)
0 0 90 −7.8
10 −0.9 110 −4.7
20 −1.7 140 −7.3
30 −2.6 170 −9.9
40 −3.5 200 −12.5
50 −4.3 240 −13.7
60 −5.2 290 −18
70 −6.1 340 −17.4
80 −6.9 390 −20.9

1) Estimated BRAN A channel using only 6 first target: The

proposed algorithm is used to estimate the BRAN A channel

for different data length and for different SN R . In this part, of

modeling and identification, we have estimated only the sixth

first target in order to know if we can reduce the number of

parameters consisting the BRAN A channel impulse response.

In the following figure (Fig. 7) we represent the estimated

magnitude of BRAN A and using only the 6 first target for an

SN R = 32dB and N = 2048.
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Fig. 7. Estimated magnitude and phase of BRAN A, SNR = 16dB.

From the figure (Fig. 7) we have approximately the same

allure of the estimated (magnitude and phase) and the true

ones, this is because the 6th first targets have the maximum

magnitude comparing to the following 12th targets. The same

remark can be done to the phase impulse response. So, in some

context of study we can limit our modeling of channel BRAN

A in the sixth first targets.

2) Estimated BRAN A channel using all target: Although,

the BRAN A channel is constituted by N T = 18 parameters

and seeing that the latest parameters are very small. So, in

order to estimates the parameters -constituting the BRAN

A channel impulse response- with maximum information

obtained by calculating the cumulants function, we have taking

the following procedure:

1) We decompose the BRAN A channel impulse response

into four sub-channel as follow:

h(n) =

4
∑

j=1

hj(n); (20)



hj(n) =

Pj
∑

i=j

C j δ (n− τ j);
4

∑

j=1

Pj = N T





2) We estimate the parameters of each sub-channel inde-

pendently, using the proposed algorithm.

3) We add all sub channel parameters, to construct the full

BRAN A channel impulse response.

This procedure give us a good estimation of the impulse

response channel. In the case of an SN R = 16dB and for

the data length varying from N = 2048 to N = 6144. In the

following figure (Fig. 8) we have represented the estimated

magnitude and phase of the impulse response BRAN A.
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Fig. 8. Estimated magnitude and phase of BRAN A channel for different
data length and for an SNR = 16dB.

From the Fig. 8 we observe that the estimated magnitude

and phase are the same allure and we have not more difference

between the estimated and the true ones. In conclusion, if

increase the data length, i.e. N ≥ 4096, the estimated

magnitude and phase will be more closed to the true ones.

In time domain we have represented the BRAN A channel

impulse response parameters (Fig. 9)

Now we have estimated the magnitude and phase of BRAN

A channel impulse response for different data length and for

an SN R = 32dB (Fig. 10). We remak an apparent progress

of the magnitude and phase estimation, more closed to the

true ones, this is due to the influence of the colored noise on

the estimation. The following Fig. 11 represent the estimated

BRAN A channel impulse response for different data input

and for an SN R = 32dB . From the figure (Fig. 11) we ca

can conclude that the estimated BRAN A channel impulse

response are very closed to the true ones, principally for high

data length (N = 4096 and N = 6144), for an SN R =
32dB . Concerning the BRAN A channel impulse response

for the data length N = 2048 we have a minor difference to

the measured ones. This results is very interest such as the

estimation of channel frequency selective impulse response in

noisy environment.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:9, 2007

453

0 50 100 150 200 250 300 350 400
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time in (ns)

S
a
m

p
le

s
 o

f 
th

e
 m

a
g
n
it
u
d
e
 i
m

p
u
ls

e
 r

s
p
o
n
s
e Estimated for N=2096

Estimated for N=4096

Estimated for N=6144

Measured (BRAN A)

Fig. 9. Estimation of the BRAN A channel impulse response for different
data length and for SNR = 16dB.
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III. CONCLUSION

In this paper we have presented an algorithm based on third

order cumulants. The proposed algorithm is used to identify

the parameters of the impulse response of the frequency selec-

tive channel such as the Proakis ‘B’ and Macchi channel’s. The

simulation results are very important to show the efficiency of

our algorithm. The phase estimation of the channel impulse

response is estimated with higher precision, this is because the

HOC constitute the best element to estimate the system phases.

Also the magnitude of the impulse response is estimated

with an acceptable precision in noisy environment in the case

of small data. In the future we will test the efficiency of

the proposed algorithm for the identification of the mobile

channel, especially MC-CDMA (Multi-Carrier Codes Division

Multiple Access) systems.
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