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Blind Identification and Equalization of CDMA
Signals Using the Levenvberg-Marquardt Algorithm
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Abstract—In this paper we describe the Levenvberg-Marquardt
(LM) algorithm for identification and equalization of CDMA
signals received by an antenna array in communication channels.
The synthesis explains the digital separation and equalization of
signals after propagation through multipath generating intersymbol
interference (ISI). Exploiting discrete data transmitted and three
diversities induced at the reception, the problem can be composed
by the Block Component Decomposition (BCD) of a tensor of
order 3 which is a new tensor decomposition generalizing the
PARAFAC decomposition. We optimize the BCD decomposition by
Levenvberg-Marquardt method gives encouraging results compared to
classical alternating least squares algorithm (ALS). In the equalization
part, we use the Minimum Mean Square Error (MMSE) to perform
the presented method. The simulation results using the LM algorithm
are important.

Keywords—Identification and equalization, communication
channel, Levenvberg-Marquardt, tensor decomposition

I. INTRODUCTION

IN this paper, we consider a multi-user access based
on spread spectrum code DS-CDMA (Direct Sequence

Code Division Multiple Access). In the current systems,
Knowledge of CDMA codes at the receiver is operated to
effect separation of user signals. In each communication
system an identification of the transmission channel between
the transmitter and the receiver is necessary in order to correct
its distortions. Several methods exist, the most commonly
used methods are learning by sending occasionally a known
sequence between the transmitter and receiver. This operation
is called equalization. However, if the channel varies rapidly
over time, it is necessary to periodically send the learning
sequence, which limits the useful rate (about 25% the total
flow rate is spent learning in GSM, UMTS up to 50%)
and entails the use of an important part of bandwidth. in
order to save the resource of bandwidth, other techniques are
called blind, not using training sequence to make the channel
identification but they use structural information on sequences
transmitted (such as higher order statistics. Other algorithms
called semi-blind combine the last two approaches.

Conventionally, the problem of channel identification is
based on the following matrix algebraic formulation:

Y = H • S, (1)

Which the objective is to find the parameters of the
transmission channel H and / or data transmitted S from
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the received data Y . The transmission symbols by CDMA
signals to an antenna array involve three diversities (spatial,
spectral and temporal) which give the received signal a
multilinear algebraic structure. Our approach is to collect
samples of the signal in a tensor of order three of which
each dimension characterizes a diversity. The decomposition
of this tensor allows to extract the contribution of each
user. The system structure differs depending on the case of
spreading by direct paths only. In the literature, the blind
estimation of the signal from each user [1] can be obtained
by decomposition in terms of rank 1 tensor observations or
PARAFAC decomposition (for PARAllel FACtor) [2], [3]. In
the article [4], the authors showed that for a multipath channel
generating the ISI, the equalization and blind separation of
CDMA signals can be carried out jointly by a more general
multilinear decomposition that PARAFAC, using the block
components decomposition (BCD) tensor comments [1], [5],
[6].

The presented algorithm in [6], [4], to calculate the BCD is
an Alternating Least Squares (ALS). However, this algorithm
converges slowly and sometimes it remains sensitive to bad
conditioning extracted data. In this article, we show that it is
possible to get rid of these disadvantages by calculating the
BCD by the optimization method of Levenberg-Marquardt
(LM) [7], which is a technique of Gauss-Newton.

II. PROBLEM STATEMENT

A. Analytical Model

In a system which uses the MIMO technique, we consider
R users transmit simultaneously in the same bandwidth to a
network with K antennas. Each signal is spread by the CDMA
codes of length I, such as Ts = ITc, where Ts is the symbol
period and Tc the chip period.

Let the sequences
{
S
(r)
j

}J

j=1
and

{
C

(r)
i

}I

i=1
, representing

respectively J successive symbols transmitted by the user r
and the I chips its spreading sequence. We note hr(t) the
spreading waveform of this user :

hr (t)=

I∑
i=1

C
(r)
i g(t−iTc) (2)

Where g(t) represents the filter shaping (raised cosinus).
We assume that for each user given r, the p th path is

characterized by its delay τrp, the angle of arrival on the
antenna array θrp and attenuation βrp. Let L the length of
the channel impulse response at the symbol rate, which means
that the ISI contains L consecutive symbols. At the reception,



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1271

the overall signal is sampled the chip rate and the observation
interval of duration JTs = IJTc, for which we assume the
channel is stationary.

In order to simplify notation, we consider the same number
of paths P and interfering symbols L for each user. The
ith sample associated with the jth symbol of global signal
received by the kth antenna can be written :

yijk=
R∑

r=1

P∑
p=1

ak(θrp)
L∑

l=1

hrp(i+(l−1) I)s
(r)
j−l=1 , (3)

Where ak(θrp) is the amplification of the kth antenna
coefficient and θrp represent the incidence angle, in which the
attenuation was incorporated θrp and where hrp (i+(l−1) I)
is the sample of hrp (t−τrp) at the instant t= (i+(l−1) I)Tc.
In the analytical model of (1), indices i, j and k corresponding
to three differences induced by the system spectral
diversity provided by the CDMA spreading (i = 1 . . . I),
temporal diversity (j = 1 . . . J) and spatial diversity
(k = 1 . . .K). Collect the IJK samples yijk into a tensor
Y ∈ C

I×J×K along with order 3, ie a cube.

B. Algebraic Model

The algebraic multilinear model is strictly equivalent to the
analytical model of (3) :

Y=
R∑

r=1

Hr • Sr •Ar , (4)

Equation (4) represents the block components decomposition
(BCD) of the tensor of observations Y, shown in Fig 1. This
decomposition is interpreted as follows :Y is a combination
of all users, where each contribution is characterized by three
components blocks :

• Tensor Hr ∈ C
I×L×P

• Matrix Ar ∈ C
K×P

• Toeplitz matrix Sr ∈ C
J×L

Fig. 1 Representation of the BCD

For a given path (p fixed index), each end portion of Hr

is a matrix of size I × L which contains the IL successive
samples hrp(i + (l − 1)I) de hr(t − τrp). The first column
of the matrix Sr contains the J successive symbols of
the user r. This matrix has a Toeplitz structure caused by
the presence of ISI. Finally, the matrix Ar contains the
answer of K antennas in P different angles of arrival, i.e.,
[Ar]k,p = ak(θrp). The BCD can be seen as a generalization
of the PARAFAC decomposition, which corresponds to the
particular case where L = 1 et P = 1.

Given the observation of Y only, the problem of blind
equalization and separation of CDMA signals received
involves the BCD of Y , to estimate unknown components
Hr, Sr and Ar. The separation of R contributions based
on the uniqueness of the decomposition, which has been
demonstrated in [5], and implies a maximum number of
users allowable simultaneously in the system. In particular,
the uniqueness can still be guaranteed if the number of
users exceeds the number of antennas (R > K), providing
that I and J are large enough. we impose a structure on
Toeplitz matrix Sr in the equalization, i.e., the vectors Sr ∈
C

(J+L−1)×1 generators of these matrices will be updated at
each step, instead of matrices them selves. This approach is
deterministic and is based on the algebraic structure of the
tensor observations. Therefore, the sources are not necessarily
statistically independent, the CDMA codes not necessarily
orthogonal, and the geometry of the antenna array is unknown.
In addition, This method can be used for relatively short
frames, which is more flexible considerably the constraint of
stationarity, compared to purely statistical methods.

If Y is the tensor of observations and Ŷ an estimation of
this tensor, the calculation of BCD of Y is to minimize the
following cost function:

φ =
1

2

∥∥∥Y − Ŷ
∥∥∥2
F
=

1

2

I∑
i=1

J∑
j=1

K∑
k=1

|yijk − ŷijk|2, (5)

Where ‖Δ‖F is the Frobenius norm defined between two
vectors A and B by ‖A.B‖F =

√
tr(ATB), where tr(.)

denotes the trace and the superscript T denotes the matrix
transpose [8], [9]. In other terms, given Y , the calculation of
BCD is to find components blocks Ĥr, Ŝr and Âr of tenseur
Ŷ which minimizes φ. In the next section, we propose to
calculate the BCD by a Levenberg-Marquardt algorithm,
which offers better performance than the proposed algorithm
(ALS) in [4].

III. LEVENVBERG-MARQUARDT ALGORITHM

The Levenberg-Marquardt (LM) is an improvement of the
conventional Gauss-Newton method, to solve the nonlinear
least squares regression. The method is presented in detail
in[10]. This is the recommended method for non-linear least
squares problems, because it is more efficient compared to
more general optimization algorithms (such as Quasi-Newton
methods or simplex; see also nonlinear estimation for a
presentation of other methods in the case of regression /
non-linear estimation).

The Levenberg-Marquardt algorithm is based on iterative
procedure. To start a minimization, the user has to provide
an initial guess for the parameter vector p. In many cases, an
uninformed standard guess like pT = (1, 1, . . . , 1) will work
fine; in other cases, the algorithm converges only if the initial
guess is already somewhat close to the final solution [11], [12],
[13].

In each iteration step, the parameter vector p is replaced by
a new estimate p+ q. To determine q, the functions fi(p+ q)
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are approximated by their linearizations :

f(p + q) ≈ f(p) + Jq (6)

where J is the Jacobian of f at p. At a minimum of the sum
of squares S, we have ∇qS= 0 . Differentiating the square of
the following expression :

S(a) =

m∑
i=1

[yi − f(ti|a)]2

give us the following equation :

(JTJ)q = JT[y − f(p)] (7)

from which q can be obtained by inverting JTJ . The key
to the LM Algorithm is to replace this equation by a ’damped
version’

(J
T
J+λ.I)q = −J

T
f (8)

The damping factor λ is adjusted at each iteration. If reduction
of S is rapid a smaller value can be used bringing the algorithm
closer to the GNA, whereas if an iteration gives insufficient
reduction in the residual λ can be increased giving a step
closer to the gradient descent direction. A similar damping
factor appears in Tikhonov regularization, which is used to
solve linear ill-posed problems.

If a retrieved step length or the reduction of sum of squares
to the latest parameter vector p fall short to predefined limits,
the iteration is aborted and the last parameter vector p is
considered to be the solution.

Choice of Damping Parameter
Various more or less heuristic arguments have been put

forward for the best choice for the damping parameter λ.
Theoretical arguments exist showing why some of these
choices guaranteed local convergence of the algorithm;
however these choices can make the global convergence
of the algorithm suffer from the undesirable properties of
steepest-descent, in particular very slow convergence close to
the optimum.

The absolute values of any choice depends on how
well-scaled the initial problem is. Marquardt recommended
starting with a value λ0 and a factor ν0 > 1. Initially setting
λ = λ0 and computing the residual sum of squares S(p) after
one step from the starting point with the damping factor of
λ = λ0 and secondly with λ/ν. If both of these are worse than
the initial point then the damping is increased by successive
multiplication by ν until a better point is found with a new
damping factor of λνk for some k.

If use of the damping factor λ/ν results in a reduction
in squared residual then this is taken as the new value of
λ (and the new optimum location is taken as that obtained
with this damping factor) and the process continues; if using
λ/ν resulted in a worse residual, but using λ resulted in a
better residual then λ is left unchanged and the new optimum
is taken as the value obtained with λ as damping factor.

To reduce the problem of slow convergence of LMA, the
several improvements to the Levenberg-Marquardt algorithm
existed [14] in order to improve both its convergence speed

and robustness to initial parameter guesses. the update is done
on the usual step to include a geodesic acceleration correction
term, explore a systematic way of accepting uphill steps that
may increase the residual sum of squares due to Umrigar and
Nightingale, and employ the Broyden method to update the
Jacobian matrix.

IV. SIMULATION RESULTS

We present in this section, the simulation results to solve
the problem of blind equalization and separation by simulating
the performance of the receiver based on multilinear BCD.
First we illustrate the impact of data conditioning on the
performance of LM and ALS algorithms for signal without
noise. The identification process is initialized by random
spreading codes with the following parameters:

• Length I=16 ;
• Sequences j = 30 QPSK symbols ;
• K=4 antennas ;
• L=3 interfering symbols per user;
• P=2 main paths per user;
• R= 5 users.
Fig. 2 shows the evolution of φ depending on the number of

iterations, for several values of conditioning A, denoted κ(A).
The speed of convergence of ALS decreases drastically when
κ (A) increases, because φ encounters a bearing whose length
depends on κ(A). The LM algorithm provides a quadratic
speed of convergence for the final iterations and abode very
sensitive to the value of κ(A). The Fig. 3 illustrates the effect
for near-far of the non-noisy data. The tensor of observations
is generated as follows :

Y=
R∑

r=1

αr
yr

‖yr‖F
(9)

Where αr is the coefficient used to weigh the power of the
contribution of each user.

Fig. 2 Evolution of φ in terms of k(A)

In order to see the impact of the near-far effect on the
observations at the reception, we perform several simulations
where the data are obtained from a random (1000 simulations).
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Fig. 3 Number of simulations and successful initializations

For each simulation performed, 10 initializations are tested.
The process stops when the calculated value of the difference
between the last two terms is less than or equal to 10−7

(‖ŷ(n)− ŷ(n)‖ ≤ 10−7)for the case of two algorithms. It
is seen that the ratio K(y) (max (αr) /min (αr) ) has an
important value while the near-far effect has an influence on
the observations.

In the case of noisy data by additive white Gaussian noise
with zero mean , we consider a simulation is successful if
the latter leads to φ <= 10−5 after the convergence of the
algorithm. The top of Fig. 3 shows the percentage of successful
simulations based on the value of K (y).
This leads us to say that the ALS algorithm is very influenced
by the near-far effect and convergence takes a little time
because it is relative to the high value of K(y). On the contrary
the LM algorithm is a little sensitive to this effect (see Fig.
2).
The function cost is stagnant so the shutdown process
is satisfied. The bottom of Fig. 3 shows the successful
simulations where we calculated the number of successful
initializations. In fact we can conclude that the ALS requires a
number of iterations and resets all larger than K (y) or K (y)
is great it shows us that the LM algorithm is certainly favorable
to solve the problem of equalization.
Fig. 2, illustrates the near-far effect on data daubed by additive
white Gaussian noise (AWGN) which has the Gaussian
distribution with mean zero and whose variance is given by
the tensor noise in dB :

SNR = 10 log10

(
‖Y ‖2F
‖N‖2F

)
(10)

In the following, we take this values : the spreading code
length I = 16, frames symbols QPSK J = 30 , K = 4
antennas, ISI on L = 2 symbols, P = 2 paths and R = 3
users. Then the equation tensor the observations is :

Ŷ = Y +N (11)

Where

Y =
3∑

r=1

αr
yr

‖yr‖F
Fig. 4, 5 and 6 illustrate the performance of the

presented algorithms. These algorithms are compared using the
Minimum Mean Squares Error (MMSE), which is recognized
by a perfect identification of the channel parameters and the
response of the antennas (unblinded approach). The results
presented show that the evolution of BER by 3 users with
coefficients α = 1 , α = 5, 5 and α = 10 representing users
1,2 and 3 respectively . We conclude that the LM algorithm
effectively approach the performance of MMSE (about 2 dB
difference between two curves) against the ALS algorithm.
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Fig. 4 BER of user 1

0 2 4 6 8 10 12
10−4

10−3

10−2

10−1

100

SNR [dB]

M
ea

n 
B

E
R

 u
se

r (
1)

MMSE
LM
ALS

Fig. 5 BER of user 2

To verify the performance of the Levenvberg-Marquardt
algorithm, we test it on a simulation example. In the case,
the excitation input e (k) is random and i.i.d (identically and
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Fig. 6 BER of user 3

independent distributed). The signals y (k), s (k) and n (k) are
related by (12) and (13). In order to measure the influence of
noise, we define the signal to noise ratio.

y(n) = h(n) ∗ e(n) =
q∑

i=0

h(i)e(n− i) (12)

If the output y(n) of the system is noisy by a white or
colored Gaussian noise w(n) , the available output s(n),
practically, is given by the following equation:

s(n) = y(n) + w(n) (13)

In order to measure the influence of noise, we define the
signal to noise ratio (signal-to-noise ratio (SNR)) as :

SNR = 10log

(
σ2
y(k)

σ2
w(k)

)
(14)

To measure the precision of the estimated parameters
compared with real ones, we define the normalized mean
square error (MSE) for each iteration :

EQM =

q∑
i=0

(
h (i)−ĥ(i)

h(i)

)2

(15)

V. APPLICATION : BRAN A CHANNEL

We test the performance of the equalization of MC-CDMA
systems are evaluated using the LM algorithm. This evaluation
is conducted by calculating the Binary error rate (BER) for the
MMSE equalizer, using measured and estimated parameters of
BRAN A channel.

The model representing the BRAN A channel , consisting
of 18 paths, is given its impulse response by (16)

hA(n) =

NT∑
i=0

hiδ(n− τi) (16)

Where δ(n) is the Dirac function, hi is the amplitude of the
path i, NT = 18 is the number of paths and τi temporal delay
of path. Table I shows the values of the impulse response of
the channel A BRAN.

TABLE I
DELAY AND MAGNITUDES OF 18 TARGETS OF BRAN A

RADIO CHANNEL

Delay τi [ns] Mag.Ci [dB] Delay τi [ns] Mag.Ci [dB]
0 0 90 -7.8
10 -0.9 110 -4.7
20 -1.7 140 -7.3
30 -2.6 170 -9.9
40 -3.5 200 -12.5
50 -4.3 240 -13.7
60 -5.3 290 -18
70 -6.1 340 -22.4
80 -6.9 390 -26.7

We estimate the parameters of the BRAN A radio channel
using the LM algorithm, This procedure allows us to have a
good estimation of the parameters of the impulse response of
the channel. For different signal to noise ratio, we represent
in Fig.7 the estimated amplitude and phase of the BRAN A
channel. From Fig. 7, we observe that the estimated values are
very closed to measured one.
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Fig. 7 Amplitude and phase of BRAN A channel response

We represent in Fig. 8, the BER simulation results obtained,
using the measured and estimated data for BRAN A channel.
Equalization is done by the MMSE technique. From Fig. 8,
we observe that the blind equalization using the LM algorithm,
give us approximately the same results using measured data.
This is due to a good estimate of the amplitude and phase.

So if the SNR is equal to 16dB , we will have only one
wrong bit when 102 bits are received, but if the SNR is equal
to 20dB we have one wrong bit for 103 bits received.
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Fig. 8 BER of the estimated and measured of BRAN A
channel

VI. CONCLUSION

According to the obtained results, the blind equalization
problem of CDMA signals received by an antenna array can
be formulated in terms of multilinear algebra. The problem
is solved using the Levenberg-Marquardt algorithm based on
block components decomposition of a tensor with three order.
The levemberg-Marquardt optimisation method provides better
performance than the classical alternate least square algorithm,
especially for noisy data. According to the encouraging results
the multilinear formulation can be used in other problems
where three diversities are usable(the spatial diversity, spectral
and temporal).
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