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Abstract—In this study, a black box modeling of the coupled-

tank system is obtained by using fuzzy sets. The derived model is 
tested via adaptive neuro fuzzy inference system (ANFIS). In order to 
achieve a better control performance, the parameters of three 
different controller types, classical proportional integral controller 
(PID), fuzzy PID and function tuner method, are tuned by one of the 
evolutionary computation method, genetic algorithm. All tuned 
controllers are applied to the fuzzy model of the coupled-tank 
experimental setup and analyzed under the different reference input 
values. According to the results, it is seen that function tuner method 
demonstrates better robust control performance and guarantees the 
closed loop stability.  
 
Keywords—Function tuner method, fuzzy modeling, fuzzy PID 

controller, genetic algorithm. 

I. INTRODUCTION  

INCE it was first introduced by Zadeh [1] in 1965, fuzzy 
set theory has been widely used in many industrial 

applications and demonstrated satisfying results. After first 
implementation of fuzzy logic controller by Mamdani [2] on a 
steam engine, it has prevalently been used in processes, 
specifically where system dynamics are either complex or 
include high nonlinearity. Due to their capability to cope with 
complex and highly nonlinear structures, the fuzzy logic 
controllers are found in many different application areas.  

The fuzzy logic sets are defined based on the application of 
IF-THEN rules. It can exist either as defined by Mamdani [2] 
or by Takagi-Sugeno [3]. Defining the rule base is the key of 
success of fuzzy logic controllers to handle with large 
complexities. It should be mentioned that, to be able to 
maintain a satisfactory control performance, modeling the 
system is crucial. However, numerical computational errors 
and sensor sensitivities can cause obtaining faulty system 
models. To overcome this problem, using fuzzy models is 
quite beneficial to obtain correct model of unknown systems 
as well as achieving substantial control performance, which is 
explained in [4] and [5] in detail.  

Modeling has been always one of the critical topics among 
control system studies. Obtaining an accurate model of the 
systems with high nonlinearity or complexity can be real 
complex and it can increase computationally burden as 
discussed in [6]. Fuzzy modeling can be applied to the systems 
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as black box modeling and it is fair to say that, it has 
satisfactory results on modeling, as well. Using only input and 
output data of a system, it is possible to obtain a correct model 
of the system.  

Although fuzzy logic controller (FLC) is successful 
compared to classical control methods, the design procedure is 
depending on the human experience and knowledge and it 
limits the control rules. To be able to overcome this drawback, 
evolutionary FLC is proposed as in [7] and [8]. The basic 
principle of the evolutionary optimization algorithms is based 
on to obtain optimized parameters by Darwinian natural 
selection as given in [9]. In literature, different types of 
evolutionary algorithms can be found, such as, evolutionary 
programming and genetic algorithm as given in [10].  

In last decades, many control theories have been developed, 
proportional–integral–derivative (PID) controllers are still 
widely used in many industrial applications as discussed in 
[11]. This control type has three parameters as, proportional, 
integral and derivative. The structure of a PID controller is 
quite simple: The input of the controller is the control error 
and the output is the sum of three terms, the proportional term, 
the integral term and the derivative term which are referred as 
being proportional to the error, the integral of the error and the 
derivative of the error, respectively. PID control is accepted as 
the best controller in control system applications and by 
choosing suitable parameters for specified works, its success is 
incontrovertible as analyzed in [11] and [12]. While using PID 
structure, one may keep the third parameter of the controller as 
zero and apply the controller in that way. In other words, PID 
controller can be applied as PD (Proportional-Derivative) or 
PI (Proportional-Integral) as well. The proportional, integral 
and derivative parameters affect the system in terms of steady 
state error, rising time, settling time and overshoot. In order to 
surpass the steady state error, PI controller usually preferred, 
since the integral effect of this controller as explained in [11]. 
However, efficiency of this controller is affected by the load 
disturbances and parameter alteration. Yet, this concern about 
PI controller can be solved by using fuzzy structure.  

Tuning the parameters of PID controller has been a widely 
researched topic since it first evolved either in classical type or 
fuzzy type. In literature there exist tuning strategies for the 
adaptation of scaling factors of fuzzy controllers as 
demonstrated in [13]-[16]. As given in [17], a parameter 
adaptive PID-type FLC using a peak observer has been 
evolved to tune the input and output scaling factors regarding 
to the integral and derivative parameters of the controller. 
Correlatively, a function tuner has been presented to tune the 
parameters of the PID-type FLC through functions in [18]. In 
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this study experimental results are given for classical PID 
controller, fuzzy PID controller and the function tuner method. 
All parameters have been computed by genetic algorithm 
including additional parameters of function tuner method. 

The rest of the paper is organized as follows, first the fuzzy 
modeling of an unknown system is obtained through input and 
output data, and evolutionary control methods are applied as 
evolutionary classical PID controller, evolutionary fuzzy PID 
controller and evolutionary function tuner method, 
respectively. 

II. PID CONTROLLER 

A. Classical PID Controller 

PID controller is the most commonly used controller due to 
its simple structure and it is easy to use. Its success based on 
the fact that, its attempting to minimize the error by modifying 
the control signal. It can be said that using the PID controller 
is the best way to handle with an unknown system. Yet, to be 
able to maintain good performance, parameters of the PID 
controller must be tuned, based on the desired criteria of the 
system. The algorithm and the transfer function of PID 

controller is given in (1) and (2), where 
dT and 

iT are 

derivative and integral time constants, respectively. More 
specifically, when the proportional parameter of PID 

controller pK  increases, the steady state error decreases; 

however, P control by itself can never achieve eliminating the 
steady state error as good as PI control do. Using PI controller 
is the best way to get rid of the steady state error, yet, it causes 
system to have a slow response. In applications where speed is 
essential, then PI controller may not be the best choice.  
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For all those reasons, PID controller is the best controller to 

maintain a good performance in terms of both speed and error 
elimination. It also has to be mentioned that if the parameters 
of PID controller are tuned compatible with the nature of the 
system, the performance will be satisfactory.  
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B. Fuzzy PID Controller 

In many literature studies and industrial applications, based 
on fuzzy sets, fuzzy PID controller is one of the most 
commonly used controller type since its simple structure and 
error elimination success. As a result of having fuzzy nature, 
in fuzzy PID controller, the input signals are defined as error 
and the derivative of the error and they are assigned to 
language expressions as small, medium and so on. Those 
language expression is multiplied by scaling factors and fuzzy 
values are obtained. In this study, these scaling factors are 
found by using genetic algorithms. After applying the fuzzy 

inference process (fuzzification) and defuzzification methods, 
a crisp value, as control signal, can be achieved.  

 
TABLE I 

RULE BASE OF FUZZY CONTROLLERS 

de/e S SM M LM L 

S 1 -0.7 -0.5 -0.3 0 

SM 0.7 -0.4 -0.2 0 0.3 

M -0.5 -0.2 0 0.2 0.5 

LM -0.3 0 0.2 0.4 0.7 

L 0 0.3 0.5 0.7 1 

III. FUNCTION TUNING METHOD 

In order to improve the performance of the fuzzy PID 
controller, some self-tuning mechanisms have been proposed 
in literature. In this study, the function tuner method (FTM) is 
provided which is simply based on the idea that, without 
changing the fuzzy rules and scaling factors, just changing the 
membership functions (MF), the steady-state response can be 
improved [19]. In other words, FTM changed the parameters 
used in the adaptive method given in [18]. In parameter 
adaptive method the parameters are given as: 

 

k sβ δ β=  (3) 

 

ds
d

k

K
K

δ
=  (4) 

 
The FTM provides a more feasible rule base than the 

conventional fuzzy PID controller. Since the conventional 
fuzzy PID controller needs three inputs and three dimensions, 
designing the rule base is more difficult than FTM [18]. The 

dK  and β  values have been changed as given in (3) and (4), 

where 
dsK and 

sβ are the initial values of 
dK and β .  

 

 

Fig. 1 Closed-loop control structure for parameter adaptive PID-type 
FLC via function tuner [19] 

 
In order to improve the transient state performance, FTM 

provides a structure which has the same idea in the parameter 
adaptive method and define functions as given in (5) and (6), 
where 1 2 1, ,a a b and 2b are all constant parameters. 

 

1 2( ( )) ( ( ))f e t a abs e t a= × +  (5) 

 

1 2( ( )) (1 ( ( )))g e t b abs e t b= × − +  (6) 
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Finally, self-tuning scalar factors can be defined as given in 

following equations, where
sβ and 

dsK are the initial values of 

the scaling factors. 
 

( ( )) ( ( ))se t f e tβ β=  (7) 

 

( ( )) ( ( ))d dsK e t K g e t=  (8) 

 
In order to explain more specifically the principle of this 

method, with the change of error, the ( ( ))e tβ decreases, since 

the error relation of the objective function ( ( ))f e t . If the error 

is zero, ( ( ))f e t will be equal to the parameter 2a . On the other 

hand, in steady state, the objective function ( ( ))g e t will be 

equal to 1 2b b+ . As a consequence, in this method, adjusting 

the ( ( ))e tβ and ( ( ))dK e t based on error is aimed. 

In this structure, five symmetrical uniformly distributed 
triangular MF are chosen for the inputs of the fuzzy controller, 
which are error and change of error. The outputs of the fuzzy 
controller have been chosen as Singleton. The rule base for the 
fuzzy controller is as given in Table I where S, SM, M, LM, L 
refer “small”, “small-medium”, “medium”, “large-medium” 
and “large” respectively. The statement “de” refers the change 
of the error. 

IV. SIMULATION RESULTS 

As mentioned before, for all three different controller types, 
genetic algorithm is used to tune the controller parameters. 
Detailed computations are given in [20], [21]. 

A. Modeling 

For simulations, QUANSER Coupled-Tank experimental 
setup is used. The system's basic operating principle is as 
follows: 
1) The water in the reservoir at the bottom of the system is 

transferred to tank 1 with the help of pumps and hoses 
located above the engine. The water transferred to tank 1 
is transferred indirectly to tank 2 due to the hole at the 
bottom of the tank 1. 

2) Depending on the configuration used herein, the water 
level in tank 1 or tank 2 is used to maintain the reference 
value. For this purpose, in both water tanks pressure 
sensors that determine the water level and used as 
feedback signal are used. 

3) At the same time, to make the reference tracking problem 
little more difficult there is one disruptive tap connected 
to the tank 1. In necessity this tap is opened and 
disturbance from the outside state simulation is 
performed. In this study data is provided by input-output 
relation of tank 1. Components of the system are given in 
Fig. 2 and nomenclature is given in Table II.  

 

1
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K
G
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=

+
 (9) 
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z
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In experimental setup of the coupled-tank system, tank 1 

was used to gather the data and modeled as first order system. 
The continuous time and discrete time models with sampling 
time 0.1 of the system are given in (9) and (10), respectively, 
where K is 1 and τ is 5.2. Such a system is stable since its 
unique pole (system of order one) is located on the left hand-
side of the s-plane. By not having any pole at the origin of the 
s-plane, G (s) is of type zero. It also should be noted that the 
model is linearized along equilibrium points, the experimental 
data, however, is gathered from real tank system. 

 
TABLE II 

COUPLED-TANK COMPONENT NOMENCLATURE 

ID # Description ID # Description 

1 Coupled-Tank overall frame 2 
4 
6 
8 
 
10 
 
 
12 
14 
16 
18 
 
20 

Tank 1 
Main Water Basin 
Flexible Tubing 
Quick-Connect Inlet Orifice 
(Out2) 
Quick-Connect Coupling and 
Hose (Out2) 
 
Medium Outlet Insert 
Plain Outlet Insert 
Flow Splitter 
Calibration and Signal 
Conditioning Circuit Board 
Pressure Sensors Cable 6-Pin-
Mini-DIN Connector 

3 Tank 2 

5 Pump 

7 Quick-Connect Inlet Orifice 
(Out1) 

9 Quick-Connect Coupling and 
Hose (Out1) 

11 Small Outlet Insert 

13 Large Outlet Insert 

15 Disturbance Tap 

17 Pressure Sensor 

19 Pump Motor 4-Pin DIN 
Connector 

21 Tank Level Scale (cm) 

 

 

                           (a)                                                  (b) 

Fig. 2 (a) Coupled-tank experimental setup front view (b) Coupled-
tank experimental setup back view  

 
It was assumed that the system is totally unknown. The 

input-output data of the unknown system is used and a fuzzy 
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model is obtained by using adaptive neuro fuzzy inference 
system (ANFIS). Since it is assuming that we have no 
information about the system, we have to examine different 
inputs to get the most accurate model which can anticipates 
the future output with the least error. So that, the input-output 
set given in (11) is defined to ANFIS to decide on the best 
inputs, in terms of having minimum root mean square error 
(RMSE), to the fuzzy model and as a result, the selection of 
best four input-output set among those eleven values, is 
expected. In Fig. 4, it can be seen the results of selected values 
as input set.  

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 , 2 , 3 , 4 , 5 ,

, 1 , 2 , 3 , 4 , 5

y k y k y k y k y k

u k u k u k u k u k u k

− − − − −

−

 
 
 − − − − 

 (11) 

 

 

Fig. 3 Base of the coupled-tank plant 
 

 

Fig. 4 Best input set obtained by ANFIS 
 

The best values are selected as y(k-1), y(k-2), u(k-1), u(k-2). 

These four inputs and the output ( )y k is applied to ANFIS 

again. The data is split as 70% training data and 30% testing 
data and applied Takagi-Sugeno type fuzzy modeling 
structure. Three MF are defined and they are selected as 
Gaussians. After 500 epochs, the simulation resulted in error 
with 0.004 which is enough to continue on other steps.  

 

 

Fig. 5 Training data map 
 

In order to validate the obtained model and the real system, 
step responses of the real system and the obtained fuzzy model 
are compared. From Figs. 5 and 6, it can be seen the results of 
modeling steps. The model is also compared with the real data 
with same step inputs which is given in Fig. 7. 

 

 

Fig. 6 Testing data map 
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Fig. 7 Validation of the real system and fuzzy model 

B. Control 

In this section, three different control techniques such as 
evolutionary classical PID (ECPID), evolutionary fuzzy PID 
(EFPID) and evolutionary function tuner method (EFTM) 
have been performed on the fuzzy model of the system, by 
applying references with different amplitudes as 7, 9 and 12 
respectively. Control signals of the regarding cases are also 
provided to make accurate observations on performances.  

1) Step Input 7 

 

Fig. 8 Step responses for input with amplitude 7 
 

 

Fig. 9 Control signals for input with amplitude 7 

2) Step Input 9 

 

Fig. 10 Step responses for input with amplitude 9 
 

 

Fig. 11 Control signals for input with amplitude 9 
 
From the graphical results, it is fair to say that EFTM has 

substantial success in terms of overshoot. It has comparatively 
slow response than ECPID controller and EFPID controller, 
however, this is result is expected since it has a trade-off 
between its parameters. FTM provides a robust, yet slow 
performance, which is not an issue in chemical or process 
applications such as coupled-tank system.  

3) Step Input 12 

 

Fig. 12 Step responses for input with amplitude 12 
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Fig. 13 Step response for input with amplitude 7 (ECPID) 
 

Even though it has evolutionary computed parameters in its 
structure, classical PID controller does not include any 
adaptive methods and from these results it is clear that it 
resulted ineffectively. Both the control signal and system 
output demonstrate oscillatory character. However, EFPID 
controller and EFTM exhibit satisfactory results, especially 
the performance of EFTM is substantial despite its slow output 
response character. 

 

 

Fig. 14 Control signals for input with amplitude 12 
 

 

Fig. 15 Control signal for input with amplitude 12 (ECPID) 

V. CONCLUSION 

Having no information on the dynamic model of the system, 
the accurate fuzzy model of the system is obtained by only 
using input and output data of the system. In order to maintain 
this task, ANFIS software is used to train a fuzzy model. After 
testing the model, satisfyıng results are obtained. As second 

part of the study, three different control methods, classical PID 
controller, fuzzy PID controller and fuzzy PID type controller 
with self-tuning scaling factors, are utilized as evolutionary 
structures, genetic search algorithm, with the cost function of 
integral time squared error (ITSE) and compared in three 
different reference input cases, 7, 9, and 12, respectively. In 
the fuzzy PID-type controller with self-tuning scaling factors, 
two sorts of triangular MF are applied uniformly distributed 
and modified triangular MF. Evolutionary algorithm (EA) is 
used to tune the parameters of the classical PID controller, 
fuzzy PID controller and FTM. From the test results it is seen 
that, EA based FTM has demonstrated successful results for 
the closed loop operation of the coupled-tank experiment 
system.  
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