
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

428

Abstract—There are several approaches for handling multiclass

classification. Aside from one-against-one (OAO) and one-against-all
(OAA), hierarchical classification technique is also commonly used.
A binary classification tree is a hierarchical classification structure
that breaks down a k-class problem into binary sub-problems, each
solved by a binary classifier. In each node, a set of classes is divided
into two subsets. A good class partition should be able to group
similar classes together. Many algorithms measure similarity in term
of distance between class centroids. Classes are grouped together by
a clustering algorithm when distances between their centroids are
small. In this paper, we present a binary classification tree with tuned
observation-based clustering (BCT-TOB) that finds a class partition
by performing clustering on observations instead of class centroids.
A merging step is introduced to merge any insignificant class split.
The experiment shows that performance of BCT-TOB is comparable
to other algorithms.

Keywords—multiclass classification, hierarchical classification,
binary classification tree, clustering, observation-based clustering

I. INTRODUCTION

ANY classification studies consider only a two-class
problem while a real world classification problem

sometimes requires classifying examples into more than two
categories. Several approaches to handle such multiclass
problem have been introduced. Among the simplest but
effective ones are one-against-all (OAA) and one-against-one
(OAO) decomposition schemes. Decomposition is a technique
that handles a multiclass problem by breaking it down into
several binary sub-problems, each solved by a binary
classifier. A more general approach is P-against-Q (PAQ),
where P ≥ 1, Q ≥ 1, and P + Q = m, where m is a codeword
length. OAA could be represented as PAQ with P = 1 and Q =
m – P, where m is equal to the number of classes k.

Decomposition can be implemented in two ways, single-call
and multi-call. A single-call classification requires modifying
original learning algorithms. Alternatively, a multi-call
classification can be chosen in order to avoid changing the
existing algorithms. Using a one-against-all approach, one
needs k binary classifiers to discriminate each of the k classes
from the rest. Similarly, a one-against-one approach requires
k(k – 1)/2 binary classifiers, one for each pair of classes.

Maythapolnun Athimethphat is with Assumption University, Bangkok

10240 Thailand (phone: +66 2719-1515 Ext. 3681, 3682; Fax: +66 2719-
1639; e-mail: maytha@scitech.au.edu).

Boontarika Lerteerawong was graduated from Assumption University,
Bangkok, Thailand. (e-mail: l.boontarika@gmail.com).

An ensemble of binary classifiers combines classification

results from all classifiers by a voting technique such as max-
win voting or confidence-based voting [1].

Instead of running in parallel, an ensemble can be
constructed in a way that classification in one step is based on
classification in previous steps in a hierarchical fashion,
forming a tree structure. Thus, hierarchical classification does
not need a voting mechanism but determines a class label of an
instance by tracing a tree down to a leaf node, which contains
one of the class labels. A balanced classification tree usually
takes less processing time than one-against-all and one-
against-one decompositions, and since it does not need a
voting mechanism, it does not experience ambiguity in
classification outputs, such as contradicting results by two or
more classifiers [1]-[3].

One of the common classification trees is a binary
classification tree. At the root of a top-down binary
classification tree, an original k-class problem is transformed
into a binary problem by grouping classes into two groups
according to certain criteria such as a class size or class
similarity. Many algorithms use distances between class
centers, or centroids, to measure class similarity. In this paper,
we propose a new approach in partitioning classes by
considering similarity between observations instead of class
centroids. Class partition is determined by class labels of
observations in each group. This helps the algorithm to
investigate any possible subpatterns in a class. However, it
could increase runtime due to the introduction of redundancy.
Thus, we introduce a merging step to merge a minor class split
to a larger one. In the experiments, the algorithm is compared
with other existing binary classification trees.

II. HIERARCHICAL MULTICLASS CLASSIFICATION

An ensemble of classification tree can be constructed in two
ways, bottom-up or top-down. The construction of a bottom-up
tree begins with leaf nodes, each of which contains one of the
k classes. Therefore, the tree will have altogether k leaf nodes.
The leaf nodes are paired, and they are merged with their
siblings, or one of the nodes in each pair is eliminated. The
process repeats until one node is left at the root level [4]. On
contrary, top-down tree construction starts at the root.
Decision Directed Acyclic Graph (DDAG) [5] performs one-
against-one classification at each node. At the root, binary
classification is performed based on two classes selected from
the initial list of k classes. The label that does not win in the
classification will be removed from the list, and the process is

Binary Classification Tree with Tuned
Observation-based Clustering

Maythapolnun Athimethphat and Boontarika Lerteerawong

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

429

repeated with the remaining classes until one class is left as
shown in Figure 1. In general, bottom-up and top-down

approaches could yield a tree with comparable classification
performance. Yet, a top-down tree is more likely to have a
balance structure and is easier to implement.

There are many other ways a top-down tree can split. For
instance, Unbalanced Decision Tree (UDT) [6] splits by
discriminating one class from the rest at each level, creating a
very unbalanced binary tree structure. Using a one-against-all
concept, UDT could suffer from class imbalance but perform
faster than DDAG. On contrary, nested dichotomies [7]
algorithm creates a balanced tree structure by dividing classes
into two groups, or meta-classes. Members for each meta-class
are determined randomly. Class-balanced nested dichotomies
(ECBND) algorithm divides classes so that the two meta-
classes contain approximately the same number of classes.
Another alternative, data-balanced nested dichotomies
(EDBND), tries to make the number of observations in the two
groups approximately equal. Algorithms like Half-Against-
Half (HAH) [8] and SVM Binary Decision Tree (SVM-BDT)
[9] focus on obtaining meta-classes in a way that similar
classes are in the same meta-class.

III. TOP-DOWN BINARY CLASSIFICATION TREE

A binary classification tree is an ensemble of classifiers,
with a binary tree structure, that breaks down an original k-
class classification problem into (k – 1) binary sub-problems
when the tree is balanced. As a result, it can effectively deal
with a problem where k is large. Its performance is largely
influenced by how classes or meta-classes are chosen, or how a
tree splits. A tree can be constructed such that partition
separability near the top of the tree is higher than at the
bottom. This makes it easier to solve classification problems

near the root. Classification performance at the root is
especially important because misclassification in one step
cannot be recovered in the later steps due to the structure of
the tree that requires tracing the tree downward. Thus, higher
overall accuracy can be achieved when more discriminative
problems are solved first. With this concept, many algorithms
try to group similar classes in the same subsets so that
confusing classes are kept for the later steps. Unsupervised
techniques like hierarchical clustering and k-means are used in
finding the best partition for splitting [8]-[10].

As illustrated in Table 1, building a top-down tree starts at
the root node with an initial training data set D and a set of k
classes. The class set S is partitioned into two disjoint subsets,
S1 and S2, with a class partition function (refer to Table 2).
Ideally, we want a partition function that is able to balance the
sizes of the two subsets and group similar classes together. A
class subset is named collectively with a meta-class label.
Observations in the training set D are relabeled according to
their meta-classes, for example, C1 for the first class subset S1
and C2 for S2. As a result, the k-class problem is transformed

{A,B,C}

{A,C} {B,C}

{A} {C} {B}

A|B

A|C C|B

Not A Not B
Not C

Not A Not B

Not C

(a)

{A,B,C}

{A,B}

{A}

{C}

AB|C

A|B

B

C AB

A

{B}

(b)

Fig. 1 Examples of (a) DDAG and (b) binary classification tree. A
class set in a node and its member are shown in curly brackets

TABLE II

PARTITION (D, S) (CLASS-BASED CLUSTERING)

Steps Illustration

1. Use clustering to group classes in
S into two class subsets.

S1 = {A, B, C}
S2 = {D, E}

2. Divide the given dataset D into
two subsets.

D1 = observations with class
labels in S1
D2 = observations with class
labels in S2

3. Relabel observations
corresponding to their clusters.

- Relabel observations in D1
as C1 to represent the original
label in S1.
- Relabel observations in D2
as C2.

TABLE I
BUILD TOP-DOWN BCT (D, S)

Steps Illustration

1. Given the original multiclass
problem, start at the root node.

Dataset: D
Class: S = {A, B, C, D, E}

2. Transform the original problem
with PARTITION (D, S).

- D is partitioned into
D1 and D2.
- S is partitioned into
S1 and S2.

3. Given the new binary problem
(data relabeled with 2 meta-
classes), train a binary classifier.

f = a binary classifier

4. Recursively construct the left and
right subtrees with the two sub-
problems.

- Repeat the process on D1
(and the corresponding S1) for
the left subtree.
- Repeat the process on D2
(and S2) for the right subtree.

5. Stop when the given class set
contains only one class.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

430

to the two-class problem. Then a binary classifier learns from
the relabeled training set.

After training, the dataset D is divided into two subsets D1
and D2, according to the two meta-classes. The data set D1,
along with its corresponding class set S1, is passed on to the
left child node, and so D2 and S2 to the right child node. The
process is repeated recursively on each child node until a class
set of the node contains only one class. As a result, it finally
produces a binary tree of k leaf nodes, one for each class, and
at least (k – 1) internal nodes, each of which contains an
independently trained classifier [3], [8], [10].

A popular approach in finding a class partition is to perform
unsupervised clustering to group different classes into two
clusters. A margin tree algorithm [11] finds a partition by
considering margins between classes. Alternatively, other
algorithms such as Half-Against-Half (HAH) and SVM binary
decision tree (SVM-BDT) measure distance between class
centroids. A centroid, or a center, is an average point of a
cluster. In Figure 2, a centroid of each class is calculated, and
a clustering technique such as k-means and hierarchical
clustering is applied on the centroids. Usually Euclidean
distance is used as a metric in measuring a distance between
centroids.

After the classification tree is constructed, a class label of an
unlabeled observation can be obtained by following the path of
the tree, from the root to the leaf, where a class label is
determined. Starting at the root, an input of unlabeled data is
fed to the tree trained during the tree construction. A classifier
in the node assigns each observation into one of the meta-
classes, and so to one of the child nodes. When observations

move on to the respective child nodes, the process repeats until
they reach the leaf level, where observations are assigned with
class labels [8]-[10].

IV. CLASS PARTITION WITH OBSERVATION-BASED

CLUSTERING

In this paper, we propose an alternative for binary
classification tree construction. Our algorithm follows the
same process as how a binary tree is built top-down as in
Table 1. However, it splits the tree differently. Instead of
finding S1 and S2 with a clustering algorithm and then dividing
D into D1 and D2 according to the class subsets, the proposed
algorithm splits the other way around. In Figure 3,
unsupervised clustering is used to partition the dataset D into
D1 and D2 first. Then the subsets of classes S1 and S2 is derived
from the two data subsets. We refer to this class partition
process as observation-based clustering.

From Table 3, given the original dataset D, unsupervised
clustering is used to group observations in D into two clusters
D1 and D2. Assume that the original classification problem
initially has five classes, S = {A, B, C, D, E}. Because D1
contains only observations of class A, B, and C, let S1 = {A, B,
C}. Similarly for D2, which contains observations of class A,
D, and E, let S2 = {A, D, E}. Because clustering is based on
observations, S1 and S2 might not always be disjoint as they do
in the traditional class-based clustering approach. In this case,
they are not disjoint because class A is in both clusters.

The observation-based clustering used in a class partition
step allows observations of one class to be examined in
different subtrees, so a tree can better detect subpatterns that
might exist in a class. However, this approach could increase
runtime due to the introduction of redundancy. It takes away
the advantage of the traditional binary tree that has a tree size
bounded to the number of classes. In addition, it might also
lead to an overfitting problem.To prevent an insignificant split
of any class into two subclasses (to appears in both S1 and S2),
a merging threshold thsm is introduced. If a sample size of any
of the two subclasses is too small (having a proportion smaller
than thsm), the smaller subpattern will be merged to the larger

S1 = {A,B,C}

Class mean

A

B

C

D

E

A

B

C

D E

S2 = {D,E}

(a)

(b)

Fig. 2 Illustration of how classes (A, B, C, D, and E) are partitioned
according to their centroids. (a) First, class means are calculated to
obtain class centroids. (b) Then, class centroids are grouped using

unsupervised clustering

{A,B}

{A,C}

C1

C2

Fig. 3 Illustration of how three classes might be partitioned when
clustering is performed on observations. A straight line shows a

possible classification function that discriminates the two clusters

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

431

subpattern so that the class will appear only in either S1 or S2.
From the previous example, class label A is in both S1 and S2.
Assume 20 percent of observations of class A is in D1 and the
remaining 80 percent in D2. If we set thsm to 0.30, the
proportion of observations of class A in D1, which is 0.20, is
less than thsm. Thus all observations of class A in D1 are
moved to D2. Consequently, S1 now only contains class B and
C. Therefore, if the threshold value is zero, the merging is not
performed. On the other hand, if it is greater than 0.5, then the
merging step is always performed.

V. EXTENSION FOR K-CLUSTER CLUSTERING

Unsupervised clustering algorithms like k-means require a
user to input the number of clusters. Because clustering results
are largely influenced by this parameter, there are many
solutions introduced to determine the appropriate number of
clusters. A user can determine the number of clusters with
prior knowledge, visualization (plot or graph), or some
measures (such as Bayesian Information Criterion). Many
algorithms are developed to determine the number of clusters
automatically. In [12], unsupervised clustering performance
was cross-checked with the true class label. The number of
clusters and the corresponding cluster centers found by the
algorithm were close to the actual classes. This implies that we
can let the number of clusters equal to the number of classes if
class labels are given.

In Table 4, the process starts with clustering observations in
the dataset D, given that the cluster number is equal to the
number of classes k. Alternatively, we can provide a clustering
function with the class centroids as the initial cluster centers.
After obtaining k clusters from the clustering algorithm, each
observation is relabeled according to its cluster. Because a
problem will be solved by a binary classifier, a partition
function should provide a classifier with 2 meta-classes.
Therefore, we have to reduce k clusters to 2 clusters by
performing clustering on the cluster centers on the second
layer. Observations are relabeled corresponding to the
clustering results in the first and the second layers. An
observation will be labeled as C1 if its cluster on the first layer
has a centroid belong to Cluster 1 in the second layer.
Otherwise, it will be labeled as C2.

VI. EXPERIMENT

We have conducted an experiment to study performance of
the binary classification tree with tuned observation-based
clustering (BCT-TOB) on eight UCI datasets [13]. The
unsupervised clustering technique used in this study is k-means
because it is more suitable for applying to a large number of
data points than hierarchical clustering. Support vector
machine (SVM) was used as a base classifier. The best
merging threshold for each dataset was determined
empirically.For each dataset, a training set and a test set were
randomly chosen for classification and measuring
performance. For datasets with sample size below 200, fifty
percent of the data was used as a training set, and the
remaining as a test set. Otherwise, a training set and a test set
were sampled in a ratio of 70:30. Only Pendigits was divided
into 7,494 samples for training and 3,498 for testing, as

TABLE III
PARTITION (D, S) (TUNED OBSERVATION-BASED CLUSTERING)

Steps Illustration

1. Perform clustering to group
observations in D into two
clusters D1 and D2.

2. From the two data subsets, let S1
and S2 be a set of distinct class
labels in D1 and D2 respectively.

S1 = distinct classes of obser-
vations in D1
 = {A, B, C}
S2 = distinct classes of obser-
vations in D2
 = {A, D, E}

3. Let yi be a class in S, where i = 1
to k.

Let p1, yi be the proportion of
observations of class yi in cluster
D1 and p2, yi in cluster D2.

If p1, yi or p2, yi is smaller than
thsm, move observations of class yi
in the smaller cluster to the larger
cluster.

p1, A = the proportion of ob-
servations of class A in
cluster D1 = 0.20

p2, A = the proportion of ob-
servations of class A in
cluster D2 = 0.80

Given thsm = 0.30, p1, A <
thsm. Move data of class A in
D1 to D2.

4. Update S1 and S2. S1 = {B, C}

S2 = {A, D, E}

5. Relabel observations
corresponding to their clusters.

- Relabel observations in D1
as C1.
- Relabel observations in D2
as C2.

TABLE IV
PARTITION (D, S) (K-CLUSTER EXTENSION)

Steps Illustration

1. Perform clustering to group
observations in D into k clusters
D1, …, Dk.

D contains observations of 5
classes, A, B, C, D, and E.

2. Let S1, …, Sk be a set of distinct
class labels in D1, …, Dk
respectively.

S1 = {A, B} S2 = {B, C}
S3 = {C} S4 = {D}
S5 = {D, E}

3. Let P1, …, Pk be cluster centers of
cluster D1, …, Dk obtained from a
clustering algorithm in Step 1.

Perform clustering to group
centroids P1, …, Pk into 2 clusters.

Cluster 1 = {P1, P2, P3}

Cluster 2 = {P4, P5}

4. If P1 is in the first cluster,
observations in D1 are assigned to
Cluster 1 (relabel as C1).
Otherwise, assign them to Cluster
2 (relabel as C2).

Repeat for all k cluster centers.

Examples in Step 2-3 imply
that…

Cluster 1 contains
observations from {A, B, C}.

Cluster 2 contains
observations from {D, E}

5. Continue Step 3-5 in the two-
cluster version (Table III)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

432

provided by the source. The process was repeated 10 times to
obtain an average accuracy and a standard deviation for each
dataset. Table 1 summarizes description of each dataset and its
corresponding best merging threshold and performance.

From Table 5, we can see that a threshold value is roughly
between 0 and 0.20 for the eight datasets. Only Balance-scale
requires a merging threshold as high as 0.40 because data
points are highly scattering and setting the threshold too low
could cause overfitting. On the other hand, Iris and Glass
require no merging. In Iris, changing the threshold value made
no significant affect on the performance since the patterns are
clearly discriminative.

Comparing performance by 2-cluster and k-cluster versions
of BCT-TOB, in most datasets, the two versions yielded
comparable classification results, implying that clustering
observations into 2 clusters is sufficient for obtaining good
performance. However, BCT-TOB performed significantly
better (at 95% confidence) in Pendigits and Vowel when
clustering into k clusters. In Balance-scale, performance
significantly dropped when using a k-cluster extension.

Next, in Table 6, BCT-TOB’s best performance was
compared with other four classification tree techniques,
namely SVM-BDT, HAH, both of which use class-based
clustering, and the two nested dichotomies techniques, class-
balanced (ECBND) and data-balanced (EDBND), which
randomly partition classes in a way that balances sizes of class
and data, respectively. All techniques were implemented in R
statistical package, and SVM was used as a base classifier for
every classification tree algorithm. Table 6 shows how each
algorithm performs in each dataset. A significantly (95%

confidence) highest average accuracy (in percent) of each
dataset is emphasized in bold and marked with an asterisk.

From the table, we can see that BCT-TOB performed well
in Iris, Balance-scale, Glass, and Pendigits. Its performance
was as good as SVM-BDT and HAH in Iris dataset and as
good as ECBND and EDBND in Glass dataset. In Balance-
scale and Pendigits, BCT-TOB outperformed other techniques.
Nevertheless, BCT-TOB was inferior to other algorithms in
Wine, Yeast, and Vowel. In Wine, its accuracy was
significantly smaller than those of SVM-BDT and HAH but
approximately as large as ECBND and EDBND. Finally, in
Ecoli, there is no significant difference in performance across
the five methods. In sum, BCT-TOB’s performance is
satisfying in 5 out of 8 datasets.

VII. CONCLUSION

A binary classification tree is an ensemble of classifiers that
breaks down a k-class problem into multiple binary sub-
problems, each solved by a binary classifier. In each non-leaf
node, a given class set is divided into two disjoint subsets. A
common approach is to perform unsupervised clustering to
group similar classes together. Algorithms like Half-Against-
Half (HAH) and SVM binary decision tree (SVM-BDT)
measure similarity in term of distance between class centroids.
Classes with small distance are grouped together in the same
cluster.

In this paper, we propose a different way of splitting a tree.
Instead of performing clustering on class centroids, the
proposed binary classification tree, BCT-TOB, performs
clustering on observations to allow one class to appear in more

TABLE V
PERFORMANCE OF BCT-TOB ON UCI DATASETS

Dataset
Sample

size
No. of
classes

No. of
features

thsm
Avg. accuracy (%)

2 clusters k clusters
Iris 150 3 4 0.00 97.20 ± 1.93 97.20 ± 1.83
Wine 178 3 13 0.20 91.01 ± 1.68 83.52 ± 12.56
Balance-scale 625 3 4 0.40 *92.66 ± 2.20 81.81 ± 2.65
Glass 214 6 9 0.00 66.92 ± 2.21 63.45 ± 6.68
Ecoli 336 8 7 0.20 84.95 ± 3.84 85.25 ± 3.11
Yeast 1,484 10 8 0.06 52.38 ± 2.26 49.82 ± 5.79
Pendigits 10,992 10 16 0.10 97.71 ± 0.79 *98.87 ± 0.62
Vowel 990 11 10 0.10 88.62 ± 2.23 *91.75 ± 2.45

TABLE VI
BCT-TOB PERFORMANCE COMPARED WITH OTHER TECHNIQUES

BCT-TOB SVM-BDT HAH ECBND EDBND

Iris *97.20 ± 1.83 *97.87 ± 1.80 *96.00 ± 3.08 86.93 ± 12.82 86.93 ± 12.82

Wine 91.01 ± 1.68 *93.37 ± 3.02 *93.71 ± 2.07 *91.91 ± 3.38 *91.91 ± 3.38

Balance-scale *92.66 ± 2.20 88.62 ± 0.67 *91.70 ± 2.50 *91.06 ± 3.05 *91.06 ± 3.05

Glass *66.92 ± 2.21 62.62 ± 2.81 63.38 ± 5.93 *67.54 ± 6.09 *66.62 ± 7.14

Ecoli 85.25 ± 3.11 83.96 ± 2.91 84.75 ± 4.15 86.34 ± 3.26 84.46 ± 6.23

Yeast 52.38 ± 2.26 *59.78 ± 1.96 *60.33 ± 2.02 58.49 ± 1.24 58.31 ± 2.03

Pendigits *98.87 ± 0.62 97.02 ± 0.32 96.63 ± 0.18 97.00 ± 0.23 96.62 ± 0.31

Vowel 91.75 ± 2.45 97.61 ± 1.30 *97.71 ± 0.71 *97.64 ± 1.27 *97.34 ± 1.34

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

433

than one cluster in aim to increase redundancy. A merging step
is introduced to merge any insignificant class split to avoid
overfitting and reduce runtime. Data subsets of a class in two
clusters are merged when one of the subsets has a proportion
less than a given threshold. The experiment shows that a good
threshold is usually between 0 and 0.20. In general, k-means of
2 clusters is able to provide a good split. In most datasets,
BCT-TOB performs better than or at least as good as a class
centroid method or a random method. Further study could
investigate more into different clustering technique because it
greatly affects classification performance. Any technique that
can make use of class labels when perform class partitioning
could also be considered.

ACKNOWLEDGMENT

This work was fully supported by Faculty of Science and
Technology, Assumption University, Thailand.

REFERENCES

[1] G. Ou, Y. L. Murphey and L. Feldkamp, "Multiclass Pattern
Classification Using Neural Networks," in 17th International
Conference on Pattern Recognition (ICPR'04), vol. 4, J. Kittler, M.
Petrou, and M. Nixon, Eds. Cambridge: IEEE Computer Society Press,
2004, pp. 1051-4651.

[2] D. Tax and R. Duin, "Using Two-class Classifiers for Multiclass
Classification," in Proceedings of the 16th International Conference on
Pattern Recognition, vol. 2, 2002, pp. 124-127.

[3] S. Kumar, J. Ghosh and M. M. Crawford, "Hierarchical Fusion of
Multiple Classifiers for Hyperspectral Data Analysis," in Pattern
Analysis & Applications, vol. 5, no. 2. London: Springer London, 2002,
pp. 210-220.

[4] A. Beygelzimer, J. Langford and P. Ravikumar, "Multiclass
Classification with Filter Trees," June 2007. [Online]. Available:
http://hunch.net/~jl/projects/reductions/mc_to_b/invertedTree.pdf.

[5] J. C. Platt, N. Cristianini and J. Shawe-Taylor, "Large Margin DAGs for
Multiclass Classification," in Advances in Neural Information
Processing Systems, vol. 12, S.A. Solla, T.K. Leen, K.R. Muller, Eds.
Cambridge: MIT Press, 2000, pp. 547-553.

[6] A. Ramanan, S. Suppharangsan and M. Niranjan, "Unbalanced
Decision Trees for Multi-class Classification," in Second International
Conference on Industrial and Information Systems (ICIIS 2007),
Penadeniya, Sri Lanka, 2007.

[7] L. Dong, E. Frank, and S. Kramer, “Ensembles of Balanced Nested
Dichotomies for Multi-Class Problems,” in Knowledge Discovery in
Databases: PKDD 2005, vol. 3721, A. M. Jorge, et la., Eds. New York:
Springer-Verlag, pp.84-95.

[8] H. Lei and V. Govindaraju, "Half-Against-Half Multi-class Support
Vector Machines," in Multiple Classifier Systems, vol. 3541, N. C. Oza,
et la., Eds. New York: Springer-Verlag, 2005, pp. 156-164.

[9] G. Madzarov, D. Gjorgjevikj and I. Chorbev, "A Multi-class SVM
Classifier Utilizing Binary Decision Tree," in Informatica, vol. 33, no.
2, S. Lian, D. Kanellopoulos, and G.J. Ruffo, Eds. Ljubljana, Slovenia:
Slovenian Society Informatika, 2008, pp. 233-241.

[10] J. Lee and I. Oh, "Binary Classification Trees for Multi-class
Classification Problems," in The Seventh International Conference on
Document Analysis and Recognition. A. Antonacopoulos, Ed.
Edinburgh, Scotland: IEEE Computer Society Press, 2003, pp. 770-774.

[11] R. Tibshirani, T. Hastie, “Margin Trees for High-dimensional
Classification,” in Journal of Machine Learning Research, vol. 8, S.
Džeroski, P. Geurts, and J. Rousu, Eds. Brookline, MA: Microtome
Publishing, 2007, pp. 637-652.

[12] R. Kothari and D. Pitts, "On finding the number of clusters," in Pattern
Recognition Letters, vol. 20, no. 4. New York: Elsevier Science, 1999,
pp. 405-416.

[13] A. Frank and A. Asuncion, UCI Machine Learning Repository, 2010.
[Online] http://archive.ics.uci.edu/ml.

