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Abstract—There are several approaches for handling multiclass 

classification. Aside from one-against-one (OAO) and one-against-all 
(OAA), hierarchical classification technique is also commonly used. 
A binary classification tree is a hierarchical classification structure 
that breaks down a k-class problem into binary sub-problems, each 
solved by a binary classifier. In each node, a set of classes is divided 
into two subsets. A good class partition should be able to group 
similar classes together. Many algorithms measure similarity in term 
of distance between class centroids. Classes are grouped together by 
a clustering algorithm when distances between their centroids are 
small. In this paper, we present a binary classification tree with tuned 
observation-based clustering (BCT-TOB) that finds a class partition 
by performing clustering on observations instead of class centroids. 
A merging step is introduced to merge any insignificant class split. 
The experiment shows that performance of BCT-TOB is comparable 
to other algorithms. 
 

Keywords—multiclass classification, hierarchical classification, 
binary classification tree, clustering, observation-based clustering 

I. INTRODUCTION 

ANY classification studies consider only a two-class 
problem while a real world classification problem 

sometimes requires classifying examples into more than two 
categories. Several approaches to handle such multiclass 
problem have been introduced. Among the simplest but 
effective ones are one-against-all (OAA) and one-against-one 
(OAO) decomposition schemes. Decomposition is a technique 
that handles a multiclass problem by breaking it down into 
several binary sub-problems, each solved by a binary 
classifier. A more general approach is P-against-Q (PAQ), 
where P ≥ 1, Q ≥ 1, and P + Q = m, where m is a codeword 
length.  OAA could be represented as PAQ with P = 1 and Q = 
m – P, where m is equal to the number of classes k.  

Decomposition can be implemented in two ways, single-call 
and multi-call. A single-call classification requires modifying 
original learning algorithms. Alternatively, a multi-call 
classification can be chosen in order to avoid changing the 
existing algorithms. Using a one-against-all approach, one 
needs k binary classifiers to discriminate each of the k classes 
from the rest. Similarly, a one-against-one approach requires 
k(k – 1)/2 binary classifiers, one for each pair of classes.  
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An ensemble of binary classifiers combines classification 

results from all classifiers by a voting technique such as max-
win voting or confidence-based voting [1].  

Instead of running in parallel, an ensemble can be 
constructed in a way that classification in one step is based on 
classification in previous steps in a hierarchical fashion, 
forming a tree structure. Thus, hierarchical classification does 
not need a voting mechanism but determines a class label of an 
instance by tracing a tree down to a leaf node, which contains 
one of the class labels. A balanced classification tree usually 
takes less processing time than one-against-all and one-
against-one decompositions, and since it does not need a 
voting mechanism, it does not experience ambiguity  in 
classification outputs, such as contradicting results by two or 
more classifiers [1]-[3].  

One of the common classification trees is a binary 
classification tree. At the root of a top-down binary 
classification tree, an original k-class problem is transformed 
into a binary problem by grouping classes into two groups 
according to certain criteria such as a class size or class 
similarity. Many algorithms use distances between class 
centers, or centroids, to measure class similarity. In this paper, 
we propose a new approach in partitioning classes by 
considering similarity between observations instead of class 
centroids. Class partition is determined by class labels of 
observations in each group. This helps the algorithm to 
investigate any possible subpatterns in a class. However, it 
could increase runtime due to the introduction of redundancy. 
Thus, we introduce a merging step to merge a minor class split 
to a larger one. In the experiments, the algorithm is compared 
with other existing binary classification trees.  

II.   HIERARCHICAL MULTICLASS CLASSIFICATION 

An ensemble of classification tree can be constructed in two 
ways, bottom-up or top-down. The construction of a bottom-up 
tree begins with leaf nodes, each of which contains one of the 
k classes. Therefore, the tree will have altogether k leaf nodes. 
The leaf nodes are paired, and they are merged with their 
siblings, or one of the nodes in each pair is eliminated. The 
process repeats until one node is left at the root level [4]. On 
contrary, top-down tree construction starts at the root. 
Decision Directed Acyclic Graph (DDAG) [5] performs one-
against-one classification at each node. At the root, binary 
classification is performed based on two classes selected from 
the initial list of k classes. The label that does not win in the 
classification will be removed from the list, and the process is 
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repeated with the remaining classes until one class is left as 
shown in Figure 1. In general, bottom-up and top-down 

approaches could yield a tree with comparable classification 
performance. Yet, a top-down tree is more likely to have a 
balance structure and is easier to implement.  

There are many other ways a top-down tree can split. For 
instance, Unbalanced Decision Tree (UDT) [6] splits by 
discriminating one class from the rest at each level, creating a 
very unbalanced binary tree structure. Using a one-against-all 
concept, UDT could suffer from class imbalance but perform 
faster than DDAG. On contrary, nested dichotomies [7] 
algorithm creates a balanced tree structure by dividing classes 
into two groups, or meta-classes. Members for each meta-class 
are determined randomly. Class-balanced nested dichotomies 
(ECBND) algorithm divides classes so that the two meta-
classes contain approximately the same number of classes. 
Another alternative, data-balanced nested dichotomies 
(EDBND), tries to make the number of observations in the two 
groups approximately equal. Algorithms like Half-Against-
Half (HAH) [8] and SVM Binary Decision Tree (SVM-BDT) 
[9] focus on obtaining meta-classes in a way that similar 
classes are in the same meta-class. 

III.  TOP-DOWN BINARY CLASSIFICATION TREE 

A binary classification tree is an ensemble of classifiers, 
with a binary tree structure, that breaks down an original k-
class classification problem into (k – 1) binary sub-problems 
when the tree is balanced. As a result, it can effectively deal 
with a problem where k is large. Its performance is largely 
influenced by how classes or meta-classes are chosen, or how a 
tree splits. A tree can be constructed such that partition 
separability near the top of the tree is higher than at the 
bottom. This makes it easier to solve classification problems 

near the root. Classification performance at the root is 
especially important because misclassification in one step 
cannot be recovered in the later steps due to the structure of 
the tree that requires tracing the tree downward. Thus, higher 
overall accuracy can be achieved when more discriminative 
problems are solved first. With this concept, many algorithms 
try to group similar classes in the same subsets so that 
confusing classes are kept for the later steps. Unsupervised 
techniques like hierarchical clustering and k-means are used in 
finding the best partition for splitting [8]-[10].  

As illustrated in Table 1, building a top-down tree starts at 
the root node with an initial training data set D and a set of k 
classes. The class set S is partitioned into two disjoint subsets, 
S1 and S2, with a class partition function (refer to Table 2). 
Ideally, we want a partition function that is able to balance the 
sizes of the two subsets and group similar classes together. A 
class subset is named collectively with a meta-class label. 
Observations in the training set D are relabeled according to 
their meta-classes, for example, C1 for the first class subset S1 
and C2 for S2.  As a result, the k-class problem is transformed 

{A,B,C}  

{A,C} {B,C} 

{A} {C} {B} 

A|B 

A|C C|B 

Not A Not B 
Not C 

Not A Not B 
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AB|C 
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B 

C AB 

A 

{B} 
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Fig. 1 Examples of (a) DDAG and (b) binary classification tree. A 
class set in a node and its member are shown in curly brackets 

 

 
TABLE II 

PARTITION (D, S) (CLASS-BASED CLUSTERING) 

Steps Illustration 

1. Use clustering to group classes in 
S into two class subsets. 

S1 = {A, B, C} 
S2 = {D, E} 

2. Divide the given dataset D into 
two subsets. 

D1 = observations with class 
labels in S1 
D2 = observations with class 
labels in S2 

3. Relabel observations 
corresponding to their clusters. 

- Relabel observations in D1 
as C1 to represent the original 
label in S1. 
- Relabel observations in D2 
as C2. 

 

TABLE I 
BUILD TOP-DOWN BCT (D, S) 

Steps Illustration 

1. Given the original multiclass 
problem, start at the root node. 

Dataset: D 
Class: S = {A, B, C, D, E} 

2. Transform the original problem 
with PARTITION (D, S). 

- D is partitioned into  
D1 and D2. 
- S is partitioned into  
S1 and S2. 

3. Given the new binary problem 
(data relabeled with 2 meta-
classes), train a binary classifier. 

f = a binary classifier 

4. Recursively construct the left and 
right subtrees with the two sub-
problems. 

- Repeat the process on D1 
(and the corresponding S1) for 
the left subtree. 
- Repeat the process on D2 
(and S2) for the right subtree. 

5. Stop when the given class set 
contains only one class. 
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to the two-class problem. Then a binary classifier learns from 
the relabeled training set. 

After training, the dataset D is divided into two subsets D1 
and D2, according to the two meta-classes. The data set D1, 
along with its corresponding class set S1, is passed on to the 
left child node, and so D2 and S2 to the right child node. The 
process is repeated recursively on each child node until a class 
set of the node contains only one class. As a result, it finally 
produces a binary tree of k leaf nodes, one for each class, and 
at least (k – 1) internal nodes, each of which contains an 
independently trained classifier [3], [8], [10].  

A popular approach in finding a class partition is to perform 
unsupervised clustering to group different classes into two 
clusters. A margin tree algorithm [11] finds a partition by 
considering margins between classes. Alternatively, other 
algorithms such as Half-Against-Half (HAH) and SVM binary 
decision tree (SVM-BDT) measure distance between class 
centroids. A centroid, or a center, is an average point of a 
cluster. In Figure 2, a centroid of each class is calculated, and 
a clustering technique such as k-means and hierarchical 
clustering is applied on the centroids. Usually Euclidean 
distance is used as a metric in measuring a distance between 
centroids. 

After the classification tree is constructed, a class label of an 
unlabeled observation can be obtained by following the path of 
the tree, from the root to the leaf, where a class label is 
determined. Starting at the root, an input of unlabeled data is 
fed to the tree trained during the tree construction. A classifier 
in the node assigns each observation into one of the meta-
classes, and so to one of the child nodes. When observations 

move on to the respective child nodes, the process repeats until 
they reach the leaf level, where observations are assigned with 
class labels [8]-[10]. 

IV. CLASS PARTITION WITH OBSERVATION-BASED 

CLUSTERING 

In this paper, we propose an alternative for binary 
classification tree construction. Our algorithm follows the 
same process as how a binary tree is built top-down as in 
Table 1. However, it splits the tree differently. Instead of 
finding S1 and S2 with a clustering algorithm and then dividing 
D into D1 and D2 according to the class subsets, the proposed 
algorithm splits the other way around. In Figure 3, 
unsupervised clustering is used to partition the dataset D into 
D1 and D2 first. Then the subsets of classes S1 and S2 is derived 
from the two data subsets. We refer to this class partition 
process as observation-based clustering. 

From Table 3, given the original dataset D, unsupervised 
clustering is used to group observations in D into two clusters 
D1 and D2. Assume that the original classification problem 
initially has five classes, S = {A, B, C, D, E}. Because D1 
contains only observations of class A, B, and C, let S1 = {A, B, 
C}. Similarly for D2, which contains observations of class A, 
D, and E, let S2 = {A, D, E}. Because clustering is based on 
observations, S1 and S2 might not always be disjoint as they do 
in the traditional class-based clustering approach. In this case, 
they are not disjoint because class A is in both clusters. 

The observation-based clustering used in a class partition 
step allows observations of one class to be examined in 
different subtrees, so a tree can better detect subpatterns that 
might exist in a class. However, this approach could increase 
runtime due to the introduction of redundancy. It takes away 
the advantage of the traditional binary tree that has a tree size 
bounded to the number of classes. In addition, it might also 
lead to an overfitting problem.To prevent an insignificant split 
of any class into two subclasses (to appears in both S1 and S2), 
a merging threshold thsm is introduced. If a sample size of any 
of the two subclasses is too small (having a proportion smaller 
than thsm), the smaller subpattern will be merged to the larger 

S1 = {A,B,C}  

Class mean 

A 

B 

C 

D 

E 

A 

B 

C 

D E 

S2 = {D,E}  

(a) 

(b) 

Fig. 2 Illustration of how classes (A, B, C, D, and E) are partitioned 
according to their centroids. (a) First, class means are calculated to 
obtain class centroids. (b) Then, class centroids are grouped using 

unsupervised clustering 

{A,B} 

{A,C} 

C1 

C2 

Fig. 3 Illustration of how three classes might be partitioned when 
clustering is performed on observations. A straight line shows a 

possible classification function that discriminates the two clusters 
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subpattern so that the class will appear only in either S1 or S2. 
From the previous example, class label A is in both S1 and S2. 
Assume 20 percent of observations of class A is in D1 and the 
remaining 80 percent in D2. If we set thsm to 0.30, the 
proportion of observations of class A in D1, which is 0.20, is 
less than thsm. Thus all observations of class A in D1 are 
moved to D2. Consequently, S1 now only contains class B and 
C. Therefore, if the threshold value is zero, the merging is not 
performed. On the other hand, if it is greater than 0.5, then the 
merging step is always performed. 

V.  EXTENSION FOR K-CLUSTER CLUSTERING 

Unsupervised clustering algorithms like k-means require a 
user to input the number of clusters. Because clustering results 
are largely influenced by this parameter, there are many 
solutions introduced to determine the appropriate number of 
clusters. A user can determine the number of clusters with 
prior knowledge, visualization (plot or graph), or some 
measures (such as Bayesian Information Criterion). Many 
algorithms are developed to determine the number of clusters 
automatically. In [12], unsupervised clustering performance 
was cross-checked with the true class label. The number of 
clusters and the corresponding cluster centers found by the 
algorithm were close to the actual classes. This implies that we 
can let the number of clusters equal to the number of classes if 
class labels are given. 

 
 

In Table 4, the process starts with clustering observations in 
the dataset D, given that the cluster number is equal to the 
number of classes k. Alternatively, we can provide a clustering 
function with the class centroids as the initial cluster centers. 
After obtaining k clusters from the clustering algorithm, each 
observation is relabeled according to its cluster. Because a 
problem will be solved by a binary classifier, a partition 
function should provide a classifier with 2 meta-classes. 
Therefore, we have to reduce k clusters to 2 clusters by 
performing clustering on the cluster centers on the second 
layer. Observations are relabeled corresponding to the 
clustering results in the first and the second layers. An 
observation will be labeled as C1 if its cluster on the first layer 
has a centroid belong to Cluster 1 in the second layer. 
Otherwise, it will be labeled as C2. 

VI.  EXPERIMENT 

We have conducted an experiment to study performance of 
the binary classification tree with tuned observation-based 
clustering (BCT-TOB) on eight UCI datasets [13]. The 
unsupervised clustering technique used in this study is k-means 
because it is more suitable for applying to a large number of 
data points than hierarchical clustering.  Support vector 
machine (SVM) was used as a base classifier. The best 
merging threshold for each dataset was determined 
empirically.For each dataset, a training set and a test set were 
randomly chosen for classification and measuring 
performance. For datasets with sample size below 200, fifty 
percent of the data was used as a training set, and the 
remaining as a test set. Otherwise, a training set and a test set 
were sampled in a ratio of 70:30. Only Pendigits was divided 
into 7,494 samples for training and 3,498 for testing, as 

TABLE III 
PARTITION (D, S) (TUNED OBSERVATION-BASED CLUSTERING) 

Steps Illustration 

1. Perform clustering to group 
observations in D into two 
clusters D1 and D2. 

 

2. From the two data subsets, let S1 
and S2 be a set of distinct class 
labels in D1 and D2 respectively. 

S1 = distinct classes of obser-
vations in D1 
     = {A, B, C} 
S2 = distinct classes of obser-
vations in D2 
    = {A, D, E} 

3. Let yi be a class in S, where i = 1 
to k. 

Let p1, yi be the proportion of 
observations of class yi in cluster 
D1 and p2, yi in cluster D2. 

If p1, yi or p2, yi is smaller than 
thsm, move observations of class yi 
in the smaller cluster to the larger 
cluster. 

p1, A = the proportion of ob-
servations of class A in 
cluster D1 = 0.20 

p2, A = the proportion of ob-
servations of class A in 
cluster D2 = 0.80 

Given thsm = 0.30, p1, A < 
thsm. Move data of class A in 
D1 to D2. 

4. Update S1 and S2. S1 = {B, C} 

S2 = {A, D, E} 

5. Relabel observations 
corresponding to their clusters. 

- Relabel observations in D1 
as C1. 
- Relabel observations in D2 
as C2. 

 

TABLE IV 
PARTITION (D, S) (K-CLUSTER EXTENSION) 

Steps Illustration 

1. Perform clustering to group 
observations in D into k clusters 
D1, …, Dk. 

D contains observations of 5 
classes, A, B, C, D, and E. 

2. Let S1, …, Sk be a set of distinct 
class labels in D1, …, Dk 
respectively. 

S1 = {A, B}  S2 = {B, C} 
S3 = {C}  S4 = {D} 
S5 = {D, E} 

3. Let P1, …, Pk be cluster centers of 
cluster D1, …, Dk obtained from a 
clustering algorithm in Step 1. 

Perform clustering to group 
centroids P1, …, Pk into 2 clusters. 

Cluster 1 = {P1, P2, P3} 

Cluster 2 = {P4, P5} 

4. If P1 is in the first cluster, 
observations in D1 are assigned to 
Cluster 1 (relabel as C1). 
Otherwise, assign them to Cluster 
2 (relabel as C2). 

Repeat for all k cluster centers. 

Examples in Step 2-3 imply 
that… 

Cluster 1 contains 
observations from {A, B, C}. 

Cluster 2 contains 
observations from {D, E} 

5. Continue Step 3-5 in the two-
cluster version (Table III)  
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provided by the source. The process was repeated 10 times to 
obtain an average accuracy and a standard deviation for each 
dataset. Table 1 summarizes description of each dataset and its 
corresponding best merging threshold and performance. 

From Table 5, we can see that a threshold value is roughly 
between 0 and 0.20 for the eight datasets. Only Balance-scale 
requires a merging threshold as high as 0.40 because data 
points are highly scattering and setting the threshold too low 
could cause overfitting. On the other hand, Iris and Glass 
require no merging. In Iris, changing the threshold value made 
no significant affect on the performance since the patterns are 
clearly discriminative. 

Comparing performance by 2-cluster and k-cluster versions 
of BCT-TOB, in most datasets, the two versions yielded 
comparable classification results, implying that clustering 
observations into 2 clusters is sufficient for obtaining good 
performance. However, BCT-TOB performed significantly 
better (at 95% confidence) in Pendigits and Vowel when 
clustering into k clusters. In Balance-scale, performance 
significantly dropped when using a k-cluster extension. 

Next, in Table 6, BCT-TOB’s best performance was 
compared with other four classification tree techniques, 
namely SVM-BDT, HAH, both of which use class-based 
clustering, and the two nested dichotomies techniques, class-
balanced (ECBND) and data-balanced (EDBND), which 
randomly partition classes in a way that balances sizes of class 
and data, respectively. All techniques were implemented in R 
statistical package, and SVM was used as a base classifier for 
every classification tree algorithm. Table 6 shows how each 
algorithm performs in each dataset. A significantly (95% 

confidence) highest average accuracy (in percent) of each 
dataset is emphasized in bold and marked with an asterisk. 

From the table, we can see that BCT-TOB performed well 
in Iris, Balance-scale, Glass, and Pendigits. Its performance 
was as good as SVM-BDT and HAH in Iris dataset and as 
good as ECBND and EDBND in Glass dataset. In Balance-
scale and Pendigits, BCT-TOB outperformed other techniques. 
Nevertheless, BCT-TOB was inferior to other algorithms in 
Wine, Yeast, and Vowel. In Wine, its accuracy was 
significantly smaller than those of SVM-BDT and HAH but 
approximately as large as ECBND and EDBND. Finally, in 
Ecoli, there is no significant difference in performance across 
the five methods. In sum, BCT-TOB’s performance is 
satisfying in 5 out of 8 datasets. 

VII.  CONCLUSION 

A binary classification tree is an ensemble of classifiers that 
breaks down a k-class problem into multiple binary sub-
problems, each solved by a binary classifier. In each non-leaf 
node, a given class set is divided into two disjoint subsets. A 
common approach is to perform unsupervised clustering to 
group similar classes together. Algorithms like Half-Against-
Half (HAH) and SVM binary decision tree (SVM-BDT) 
measure similarity in term of distance between class centroids. 
Classes with small distance are grouped together in the same 
cluster. 

In this paper, we propose a different way of splitting a tree. 
Instead of performing clustering on class centroids, the 
proposed binary classification tree, BCT-TOB, performs 
clustering on observations to allow one class to appear in more 

TABLE V 
PERFORMANCE OF BCT-TOB ON UCI DATASETS 

Dataset 
Sample 

size 
No. of 
classes 

No. of 
features 

thsm 
Avg. accuracy (%) 

2 clusters k clusters 
Iris 150 3 4 0.00 97.20 ± 1.93 97.20 ± 1.83 
Wine 178 3 13 0.20 91.01 ± 1.68 83.52 ± 12.56 
Balance-scale 625 3 4 0.40 *92.66 ± 2.20 81.81 ± 2.65 
Glass 214 6 9 0.00 66.92 ± 2.21 63.45 ± 6.68 
Ecoli 336 8 7 0.20 84.95 ± 3.84 85.25 ± 3.11 
Yeast 1,484 10 8 0.06 52.38 ± 2.26 49.82 ± 5.79 
Pendigits 10,992 10 16 0.10 97.71 ± 0.79 *98.87 ± 0.62 
Vowel 990 11 10 0.10 88.62 ± 2.23 *91.75 ± 2.45 

 

 

TABLE VI 
BCT-TOB PERFORMANCE COMPARED WITH OTHER TECHNIQUES 

BCT-TOB SVM-BDT HAH ECBND EDBND 

Iris *97.20 ± 1.83 *97.87 ± 1.80 *96.00 ± 3.08 86.93 ± 12.82 86.93 ± 12.82 

Wine 91.01 ± 1.68 *93.37 ± 3.02 *93.71 ± 2.07 *91.91 ± 3.38 *91.91 ± 3.38 

Balance-scale *92.66 ± 2.20 88.62 ± 0.67 *91.70 ± 2.50 *91.06 ± 3.05 *91.06 ± 3.05 

Glass *66.92 ± 2.21 62.62 ± 2.81 63.38 ± 5.93 *67.54 ± 6.09 *66.62 ± 7.14 

Ecoli 85.25 ± 3.11 83.96 ± 2.91 84.75 ± 4.15 86.34 ± 3.26 84.46 ± 6.23 

Yeast 52.38 ± 2.26 *59.78 ± 1.96 *60.33 ± 2.02 58.49 ± 1.24 58.31 ± 2.03 

Pendigits *98.87 ± 0.62 97.02 ± 0.32 96.63 ± 0.18 97.00 ± 0.23 96.62 ± 0.31 

Vowel 91.75 ± 2.45 97.61 ± 1.30 *97.71 ± 0.71 *97.64 ± 1.27 *97.34 ± 1.34 
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than one cluster in aim to increase redundancy. A merging step 
is introduced to merge any insignificant class split to avoid 
overfitting and reduce runtime. Data subsets of a class in two 
clusters are merged when one of the subsets has a proportion 
less than a given threshold. The experiment shows that a good 
threshold is usually between 0 and 0.20. In general, k-means of 
2 clusters is able to provide a good split. In most datasets, 
BCT-TOB performs better than or at least as good as a class 
centroid method or a random method. Further study could 
investigate more into different clustering technique because it 
greatly affects classification performance. Any technique that 
can make use of class labels when perform class partitioning 
could also be considered. 
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