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Abstract—There are several approaches for handling multiclas An ensemble of binary classifiers combines clasaiifbon

classification. Aside from one-against-one (OAO) ame-against-all
(OAA), hierarchical classification technique is@isommonly used.
A binary classification tree is a hierarchical eléisation structure

that breaks down B-class problem into binary sub-problems, each

results from all classifiers by a voting technicgueh as max-
win voting or confidence-based voting [1].
Instead of running in parallel, an ensemble can be

solved by a binary classifier. In each node, @setasses is divided constructed in a way that classification in ongp stebased on

into two subsets. A good class partition shouldabée to group
similar classes together. Many algorithms measuméasity in term
of distance between class centroids. Classes atped together by
a clustering algorithm when distances between theitroids are
small. In this paper, we present a binary classifin tree with tuned
observation-based clustering (BCT-TOB) that findslass partition
by performing clustering on observations insteadlaés centroids.
A merging step is introduced to merge any insigaifit class split.
The experiment shows that performance of BCT-TOBommparable
to other algorithms.

Keywords—multiclass classification, hierarchical classifioat
binary classification tree, clustering, observati@sed clustering

|. INTRODUCTION

classification in previous steps in a hierarchi¢ashion,
forming a tree structure. Thus, hierarchical cfasstion does
not need a voting mechanism but determines a ldass of an
instance by tracing a tree down to a leaf nodeclvbbntains
one of the class labels. A balanced classificatier usually
takes less processing time than one-against-all ame-
against-one decompositions, and since it does eed m
voting mechanism, it does not experience ambiguity

classification outputs, such as contradicting itsshy two or
more classifiers [1]-[3].

One of the common classification trees is a binary
classification tree. At the root of a top-down bina
classification tree, an origin&-class problem is transformed
into a binary problem by grouping classes into tgvoups

M ANY classification studies consider only a two-slas according to certain criteria such as a class sizeclass
problem while a real world classification problemgimilarity. Many algorithms use distances betwedass

sometimes requires classifying examples into mbes ttwo

centers, or centroids, to measure class simildrityhis paper,

categories. Several approaches to handle such ctasti e propose a new approach in partitioning classgs
problem have been introduced. Among the simplest bionsidering similarity between observations instedctlass
effective ones are one-against-all (OAA) and on@if@-one centroids. Class partition is determined by clasisels of
(OAO) decomposition schemes. Decomposition is briegie  gpservations in each group. This helps the algoritto

that handles a multiclass problem by breaking wvrdnto

investigate any possible subpatterns in a classveder, it

several binary sub-problems, each solved by a inagoy|d increase runtime due to the introductionesfundancy.

classifier. A more general approach is P-againgP@Q),
whereP > 1, Q> 1, andP + Q = m, wherem is a codeword
length. OAA could be represented as PAQ With 1 andQ =
m— P, wherem is equal to the number of clas$es

Decomposition can be implemented in two ways, shuglll
and multi-call. A single-call classification reges modifying
original learning algorithms. Alternatively, a mdall
classification can be chosen in order to avoid ghanthe
existing algorithms. Using a one-against-all apphpaone
needsk binary classifiers to discriminate each of thelasses
from the rest. Similarly, a one-against-one apphoaegjuires
k(k — 1)/2 binary classifiers, one for each pair afssks.
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Thus, we introduce a merging step to merge a nalass split
to a larger one. In the experiments, the algorithmompared
with other existing binary classification trees.

Il. HIERARCHICAL MULTICLASS CLASSIFICATION

An ensemble of classification tree can be constdigt two
ways, bottom-up or top-down. The construction bb&om-up
tree begins with leaf nodes, each of which contaimes of the
k classes. Therefore, the tree will have altogetheaf nodes.
The leaf nodes are paired, and they are merged tivéin
siblings, or one of the nodes in each pair is elated. The
process repeats until one node is left at the lmal [4]. On
contrary, top-down tree construction starts at ttoot.
Decision Directed Acyclic Graph (DDAG) [5] perforname-
against-one classification at each node. At the, rbmary
classification is performed based on two classtectssl from
the initial list of k classes. The label that does not win in the
classification will be removed from the list, arfie tprocess is

428



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:4, 2012

repeated with the remaining classes until one dmdeft as
shown in Figure 1. In general, bottom-up and topauo

(b)

Fig. 1 Examples of (a) DDAG and (b) binary classifion tree. A
class set in a node and its member are shown iy loackets

approaches could yield a tree with comparable ifieatson
performance. Yet, a top-down tree is more likelyhewve a
balance structure and is easier to implement.

There are many other ways a top-down tree can. $uit
instance, Unbalanced Decision Tree (UDT) [6] splig
discriminating one class from the rest at eachljereating a
very unbalanced binary tree structure. Using a aganst-all
concept, UDT could suffer from class imbalance fertform
faster than DDAG. On contrary, nested dichotomi@$ [
algorithm creates a balanced tree structure bylidigiclasses
into two groups, or meta-classes. Members for eagta-class
are determined randomly. Class-balanced nestedtdicties
(ECBND) algorithm divides classes so that the twetan
classes contain approximately the same number asfses.
Another alternative, data-balanced nested dicha@smi
(EDBND), tries to make the number of observationthe two
groups approximately equal. Algorithms like Halfsfgst-
Half (HAH) [8] and SVM Binary Decision Tree (SVM-BD
[9] focus on obtaining meta-classes in a way thatilar
classes are in the same meta-class.

Ill.  TOP-DOWN BINARY CLASSIFICATION TREE

A binary classification tree is an ensemble of siféeys,
with a binary tree structure, that breaks down Hgirmal k-
class classification problem int& ¢ 1) binary sub-problems
when the tree is balanced. As a result, it cancti¥fely deal
with a problem where is large. Its performance is largely
influenced by how classes or meta-classes are shos@ow a
tree splits. A tree can be constructed such thatitipa
separability near the top of the tree is highemtlz the
bottom. This makes it easier to solve classificajiwoblems

near the root. Classification performance at thet res

especially important because misclassification ime cstep
cannot be recovered in the later steps due totthetsre of
the tree that requires tracing the tree downwahdisT higher
overall accuracy can be achieved when more discaitivie

problems are solved first. With this concept, matgorithms
try to group similar classes in the same subsetsths
confusing classes are kept for the later stepsupbrsised
techniques like hierarchical clustering and k-meanesused in
finding the best partition for splitting [8]-[10].

As illustrated in Table 1, building a top-down tr&tarts at
the root node with an initial training data §etand a set ok
classes. The class sets partitioned into two disjoint subsets,
S and S,, with a class partition function (refer to Tablg 2
Ideally, we want a partition function that is aldebalance the
sizes of the two subsets and group similar classgpether. A
class subset is named collectively with a metasclabel.
Observations in the training sBt are relabeled according to
their meta-classes, for examp®, for the first class subs&
andC, for S,. As a result, the k-class problem is transformed

TABLE |
BuiLD Tor-DOWNBCT (D, S

Steps lllustration

1.  Given the original multiclass DatasetD
problem, start at the root node.  Class:S={A, B, C, D, E}

2. Transform the original problem - D is partitioned into
with PARTITION (D, 9. D; andDy.

- Sis partitioned into
S andS.

3. Given the new binary problem f = a binary classifier
(data relabeled with 2 meta-
classes), train a binary classifier.

4.  Recursively construct the left and - Repeat the process tn
right subtrees with the two sub-  (and the correspondirg) for
problems. the left subtree.

- Repeat the process i
(andS) for the right subtree.

Stop when the given class set
contains only one class.

TABLE II
PARTITION (D, §) (CLASS-BASED CLUSTERING)

Step: lllustratior

1. Use clustering to group classes in S = {A, B, C}

Sinto two class subsets. S ={D, E}
Divide the given datasBExinto D1 = observations with class
two subsets. labels in§,
D, = observations with class
labels inS
Relabel observations - Relabel observations Dy
corresponding to their clusters.  asC; to represent the original
label in S.
- Relabel observations Dy
asCo.
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to the two-class problem. Then a binary classiéarns from move on to the respective child nodes, the proegssats until

the relabeled training set. they reach the leaf level, where observations ssegaed with
After training, the datasd® is divided into two subseB®; class labels [8]-[10].

and D,, according to the two meta-classes. The datdDget

along with its corresponding class €t is passed on to the IV. CLASSPARTITION WITH OBSERVATION-BASED
left child node, and s®, andS; to the right child node. The CLUSTERING
process is repeated recursively on each child natlea class In this paper, we propose an alternative for binary

set of the node contains only one class. As atieisdinally  classification tree construction. Our algorithm Idals the
produces a binary tree kfleaf nodes, one for each class, andame process as how a binary tree is built top-dasrin
at least kK — 1) internal nodes, each of which contains afaple 1. However, it splits the tree differentiystead of
independently trained classifier [3], [8], [10]. finding S, andS, with a clustering algorithm and then dividing
A popular approach in finding a class partitiotdserform  p into D, andD, according to the class subsets, the proposed
unsupervised clustering to group different classgs two ajgorithm splits the other way around. In Figure 3,
clusters. A margin tree algorithm [11] finds a i@ by ynsupervised clustering is used to partition thiasktD into
considering margins between classes. Alternativelther p, andD, first. Then the subsets of clas&®ndS; is derived
algorithms such as Half-Against-Half (HAH) and S\Mléhary  from the two data subsets. We refer to this claaditipn
decision tree (SVM'BDT) measure distance betweersscl process as observation-based C|ustering_
centroids. A centroid, or a center, is an averagmtpof a
cluster. In Figure 2, a centroid of each classalsutated, and
a clustering technique such as k-means and hiécafch
clustering is applied on the centroids. Usually IEiean
distance is used as a metric in measuring a distaetween
centroids.

Fig. 3 lllustration of how three classes might letitioned when
clustering is performed on observations. A straigte shows a
possible classification function that discriminaties two clusters

From Table 3, given the original datadet unsupervised
clustering is used to group observation®iimto two clusters
D; and D,. Assume that the original classification problem
initially has five classesS = {A, B, C, D, E}. BecauseD;
contains only observations of class A, B, and €CSle {A, B,
C}. Similarly for D,, which contains observations of class A,
D, and E, letS, = {A, D, E}. Because clustering is based on
S, ={A,B,C} S, ={D,E} observationsS;, andS, might not always be disjoint as they do
®) in the traditional class-based clustering approé&tlthis case,
they are not disjoint because class A is in batisteks.

Fig. 2 lllustration of how classes (A, B, C, D, d@agare partitioned The observation-based clustering used in a clasitipa

according to their centroids. (a) First, class rseme calculated o StEP allows observations of one class to be examine
obtain class centroids. (b) Then, class centraidgeouped using ~ different subtrees, so a tree can better deteqtastdins that

unsupervised clustering might exist in a class. However, this approach d¢aotrease

runtime due to the introduction of redundancy.akes away

After the classification tree is constructed, @slbel of an the advantage of the traditional binary tree ttest & tree size
unlabeled observation can be obtained by followihegpath of bounded to the number of classes. In addition,ighinalso
the tree, from the root to the leaf, where a clld®l is lead to an overfitting problem.To prevent an ingigant split
determined. Starting at the root, an input of uelat data is of any class into two subclasses (to appears in 8candS,),

fed to the tree trained during the tree constructi classifier a merging thresholths, is introduced. If a sample size of any

in the node assigns each observation into one efnthta- of the two subclasses is too small (having a priposmaller

classes, and so to one of the child nodes. Wheeraditions thanths,), the smaller subpattern will be merged to thgdar
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TABLE Ill

PARTITION (D, S) (TUNED OBSERVATION-BASED CLUSTERING)

Step:

lllustratior

Perform clustering to group
observations ifD into two
clustersD; andDo.

From the two data subsets, $et
and$; be a set of distinct class
labels inD; andD; respectively.

Lety; be a class i%, wherei = 1
tok.

Let p1,yi be the proportion of
observations of clasgin cluster
D1 andpg,yi in clusterDs.

S, = distinct classes of obser-
vations inD;

={A B, C}
S = distinct classes of obser-
vations inDz

={A, D, E}

p1, A = the proportion of ob-
servations of class A in
clusterD; = 0.20

p2, o = the proportion of ob-
servations of class A in

TABLE IV
PARTITION (D, S) (K-CLUSTEREXTENSION)

Steps lllustration

. clusterD; = 0.80
If p1,yi Or p2,yi is smaller than )
thsy, move observations of clags Givenths, =0.30,p1a<
in the smaller cluster to the larger thsn. Move data of class A in

cluster. D; to Da.
4. UpdateS, andS. S ={B, C}
$={A D, E}
5. Relabel observations - Relabel observations D,
corresponding to their clusters.  asCi.
- Relabel observations D,
asCo.

subpattern so that the class will appear only theeiS; or S,.
From the previous example, class label A is in &tAndS,.
Assume 20 percent of observations of class A Bjiand the
remaining 80 percent iD,. If we setths, to 0.30, the

proportion of observations of class Alh, which is 0.20, is

less thanths,. Thus all observations of class A iy are

moved toD,. Consequentlys, now only contains class B and

C. Therefore, if the threshold value is zero, trergimng is not

performed. On the other hand, if it is greater tBd) then the

merging step is always performed.

V. EXTENSION FORK-CLUSTER CLUSTERING

Unsupervised clustering algorithms like k-meansuireqa
user to input the number of clusters. Because edlingf results
are largely influenced by this parameter, there arany
solutions introduced to determine the appropriatever of
clusters. A user can determine the number of aisistéth
prior knowledge, visualization (plot or graph), @ome
measures (such as Bayesian Information Criteridtqny
algorithms are developed to determine the numbelusters
automatically. In [12], unsupervised clustering fpemance
was cross-checked with the true class label. Thabeu of
clusters and the corresponding cluster centersdfdun the
algorithm were close to the actual classes. Thidias that we
can let the number of clusters equal to the nurobelasses if
class labels are given.

D contains observations of 5
classes, A, B, C, D, and E.

1.  Perform clustering to group
observations iD intok clusters
D, ..., D«

2. LetS, ..., & be a set of distinct S ={A, B} $={B, C}
class labels iDy, ..., D $={C} S ={D}
respectively. S=1{D, E}

3. LetPs, ..., R be cluster centers of Cluster 1 = Py, P2, P3}

clusterDy, ..., Dx obtained from a Cluster 2 = Py, Ps}
clustering algorithm in Step 1. '

Perform clustering to group
centroidsPy, ..., R into 2 clusters.

4.  If Pyisin the first cluster, Examples in Step 2-3 imply
observations ifD; are assigned to that...
Cluster 1 (relabel a8;). Cluster 1 contains
Otherwise, assign them to Cluster observations from {A, B, C}.
2 (relabel a<y).

Repeat for alk cluster centers.

Cluster 2 contains
observations from {D, E}

5.  Continue Step 3-5 in the two-
cluster versionTablelll)

In Table 4, the process starts with clustering nlz®ns in
the dataseD, given that the cluster number is equal to the
number of classds Alternatively, we can provide a clustering
function with the class centroids as the initialstér centers.
After obtainingk clusters from the clustering algorithm, each
observation is relabeled according to its clusB®cause a
problem will be solved by a binary classifier, artjtin
function should provide a classifier with 2 metasdes.
Therefore, we have to redude clusters to 2 clusters by
performing clustering on the cluster centers on skeond
layer. Observations are relabeled corresponding the
clustering results in the first and the second rayeAn
observation will be labeled & if its cluster on the first layer
has a centroid belong to Cluster 1 in the secongrla
Otherwise, it will be labeled &5,.

VI. EXPERIMENT

We have conducted an experiment to study performafc
the binary classification tree with tuned obsemfbased
clustering (BCT-TOB) on eight UCI datasets [13]. €Th
unsupervised clustering technique used in thisystill-means
because it is more suitable for applying to a langmber of
data points than hierarchical clustering. Suppegttor
machine (SVM) was used as a base classifier. Tts be
merging threshold for each dataset was determined
empirically.For each dataset, a training set anesaset were
randomly chosen for classification and measuring
performance. For datasets with sample size belody ffly
percent of the data was used as a training set, thed
remaining as a test set. Otherwise, a trainingasdta test set
were sampled in a ratio of 70:30. Only Pendigits wavided
into 7,494 samples for training and 3,498 for tegtias
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TABLE V
PERFORMANCE OFBCT-TOB ON UCI DATASETS

0,
Dataset Sa_mple No. of No. of the, Avg. accuracy (%)
size classes features 2 clusters k clusters

Iris 150 3 4 0.00 97.20+1.93 97.20+1.83

Wine 178 3 13 0.2C 91.01+1.6 83.52+125

Balancescale 625 3 4 0.4C *92.66+2.20 81.81+2.6

Glas: 214 6 9 0.0C 66.92 £2.2 63.45 + 6.6

Ecoli 33€ 8 7 0.2C 84.95+3.8 85.25+3.1

Yeast 1,484 10 8 0.06 52.38 +2.26 49.82+5.79

Pendigits 10,992 10 16 0.10 97.71 £ 0.79 *98.87 £ 0.62

Vowel 990 11 10 0.10 88.62 + 2.23 *91.75 + 2.45

TABLE VI
BCT-TOB PERFORMANCECOMPARED WITH OTHER TECHNIQUES
BCT-TOB SVM-BDT HAH ECBND EDBND

Iris *97.20 £1.83 *97.87 £1.80 *96.00 +3.08 86.93+12.82 86.93 +12.82
Wine 91.01+1.6 *93.37+3.02 *93.71+2.07 *91.91+3.38 *91.91+3.38
Balanct-scal *92.66 £+2.20 88.62+0.6 *91.70+2.50 *91.06 +3.05 *91.06 + 3.05
Glass *66.92 £2.21 62.62+2.81 63.38+5.93 *67.54+6.09 *66.62+7.14
Ecoli 85.25+3.11 83.96+2.91 84.75+4.15 86.34+3.26 84.46+6.23
Yeast 52.38+2.26 *59.78 +1.96 *60.33+2.02 58.49+1.24 58.31+2.03
Pendigit: *98.87 £0.62 97.02 +0.32 96.63 +0.1 97.00 £ 0.2 96.62 + 0.3
Vowel 91.75+2.4 97.61+1.3 *97.71+0.71 *97.64+1.27 *97.34+1.34

provided by the source. The process was repeatéiing8 to
obtain an average accuracy and a standard devifatiozach
dataset. Table 1 summarizes description of eacsdaand its
corresponding best merging threshold and performanc

From Table 5, we can see that a threshold valueughly
between 0 and 0.20 for the eight datasets. OnlgrRal-scale
requires a merging threshold as high as 0.40 becdata
points are highly scattering and setting the tto&sihoo low
could cause overfitting. On the other hand, Irig aBlass
require no merging. In Iris, changing the threshatlie made
no significant affect on the performance sinceph#erns are
clearly discriminative.

Comparing performance by 2-cluster aadluster versions
of BCT-TOB, in most datasets, the two versions dgell
comparable classification results, implying thaustéring
observations into 2 clusters is sufficient for ahitegy good
performance. However, BCT-TOB performed signifitant
better (at 95% confidence) in Pendigits and Vowéiemw

confidence) highest average accuracy (in percehteach
dataset is emphasized in bold and marked with &mnisis.

From the table, we can see that BCT-TOB performetl w
in Iris, Balance-scale, Glass, and Pendigits. #gfggmance
was as good as SVM-BDT and HAH in Iris dataset and
good as ECBND and EDBND in Glass dataset. In Ba&anc
scale and Pendigits, BCT-TOB outperformed othdrggies.
Nevertheless, BCT-TOB was inferior to other alduoris in
Wine, Yeast, and Vowel. In Wine, its accuracy was
significantly smaller than those of SVM-BDT and HAbiit
approximately as large as ECBND and EDBND. Finailty,
Ecoli, there is no significant difference in perfance across
the five methods. In sum, BCT-TOB’s performance is
satisfying in 5 out of 8 datasets.

VII. CONCLUSION

A binary classification tree is an ensemble of sifeeys that
breaks down ak-class problem into multiple binary sub-

clustering into k clusters. In Balance-scale, performancgyoplems, each solved by a binary classifier. lchemon-leaf

significantly dropped when usingkecluster extension.

node, a given class set is divided into two digjsubsets. A

Next, in Table 6, BCT-TOB's best performance wagommon approach is to perform unsupervised clusetd

compared with other four classification tree teques,
namely SVM-BDT, HAH, both of which use class-base
clustering, and the two nested dichotomies teclasgelass-
balanced (ECBND) and data-balanced (EDBND), whic
randomly partition classes in a way that balaneasf class
and data, respectively. All techniques were impletee in R
statistical package, and SVM was used as a bassifita for
every classification tree algorithm. Table 6 shdwsv each
algorithm performs in each dataset. A significan{B5%

oup similar classes together. Algorithms like fkfsdainst-

r
q?lalf (HAH) and SVM binary decision tree (SVM-BDT)

measure similarity in term of distance betweensctamntroids.
Blasses with small distance are grouped togethénarsame
cluster.

In this paper, we propose a different way of dplitta tree.
Instead of performing clustering on class centroitise
proposed binary classification tree, BCT-TOB, pserfe
clustering on observations to allow one class fweapin more
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than one cluster in aim to increase redundancyefgimng step
is introduced to merge any insignificant class tsfdi avoid
overfitting and reduce runtime. Data subsets ofagascin two
clusters are merged when one of the subsets hagparfion
less than a given threshold. The experiment shbaisa good
threshold is usually between 0 and 0.20. In genkradeans of
2 clusters is able to provide a good split. In mdatasets,
BCT-TOB performs better than or at least as good akss
centroid method or a random method. Further stuniyldc
investigate more into different clustering techmdpecause it
greatly affects classification performance. Anyhtgque that
can make use of class labels when perform claggigaing
could also be considered.

ACKNOWLEDGMENT

This work was fully supported by Faculty of Scieraad
Technology, Assumption University, Thailand.

REFERENCES

[1] G. Ou, Y. L. Murphey and L. Feldkamp, "Multiclassatfern
Classification Using Neural Networks," inl7th International
Conference on Pattern Recognition (ICPR;0¥9l. 4, J. Kittler, M.
Petrou, and M. Nixon, Eds. Cambridge: IEEE Comp&eeiety Press,
2004, pp. 1051-4651.

[2] D. Tax and R. Duin, "Using Two-class Classifiers fdulticlass
Classification," inProceedings of the 16th International Conference on
Pattern Recognitionvol. 2, 2002, pp. 124-127.

[3] S. Kumar, J. Ghosh and M. M. Crawford, "Hierarchi€asion of
Multiple Classifiers for Hyperspectral Data Analsi in Pattern
Analysis & Applicationsvol. 5, no. 2. London: Springer London, 2002,
pp. 210-220.

[4] A. Beygelzimer, J. Langford and P. Ravikumar, "Nuldtss
Classification with Filter Trees," June 2007. [@e]. Available:
http://hunch.net/~jl/projects/reductions/mc_to_feértedTree.pdf.

[5] J.C. Platt, N. Cristianini and J. Shawe-Taylorrte Margin DAGs for
Multiclass Classification," in Advances in Neural Information
Processing Systemsol. 12, S.A. Solla, T.K. Leen, K.R. Muller, Eds.
Cambridge: MIT Press, 2000, pp. 547-553.

[6] A. Ramanan, S. Suppharangsan and M. Niranjan, "ldnbad
Decision Trees for Multi-class Classification," $®econd International
Conference on Industrial and Information System&Il§ 2007)
Penadeniya, Sri Lanka, 2007.

[7] L. Dong, E. Frank, and S. Kramer, “Ensembles ofaBeéd Nested
Dichotomies for Multi-Class Problems,” iKnowledge Discovery in
Databases: PKDD 20Q5v0l. 3721, A. M. Jorge, et la., Eds. New York:
Springer-Verlag, pp.84-95.

[8] H. Lei and V. Govindaraju, "Half-Against-Half Multlass Support
Vector Machines," iMultiple Classifier Systemsol. 3541, N. C. Oza,
et la., Eds. New York: Springer-Verlag, 2005, pp61164.

[9] G. Madzarov, D. Gjorgjevikj and I. Chorbev, "A Mitlass SVM
Classifier Utilizing Binary Decision Tree," imformaticg vol. 33, no.
2, S. Lian, D. Kanellopoulos, and G.J. Ruffo, Bdsbljana, Slovenia:
Slovenian Society Informatika, 2008, pp. 233-241.

[10] J. Lee and I. Oh, "Binary Classification Trees fbftulti-class
Classification Problems," ifthe Seventh International Conference on
Document Analysis and RecognitiomlA. Antonacopoulos, Ed.
Edinburgh, Scotland: IEEE Computer Society Pre8832pp. 770-774.

[11] R. Tibshirani, T. Hastie, “Margin Trees for Highauénsional
Classification,” inJournal of Machine Learning Researchol. 8, S.
DzZeroski, P. Geurts, and J. Rousu, Eds. BrooklM4; Microtome
Publishing, 2007, pp. 637-652.

[12] R. Kothari and D. Pitts, "On finding the numbercbisters," inPattern
Recognition Lettersvol. 20, no. 4. New York: Elsevier Science, 1999,
pp. 405-416.

[13] A. Frank and A. AsuncionJCI Machine Learning Repository2010.
[Online] http://archive.ics.uci.edu/ml.

433



