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Abstract—Modeling of complex dynamic systems, which are 
very complicated to establish mathematical models, requires new and 
modern methodologies that will exploit the existing expert 
knowledge, human experience and historical data. Fuzzy cognitive 
maps are very suitable, simple, and powerful tools for simulation and 
analysis of these kinds of dynamic systems. However, human experts 
are subjective and can handle only relatively simple fuzzy cognitive 
maps; therefore, there is a need of developing new approaches for an 
automated generation of fuzzy cognitive maps using historical data. 
In this study, a new learning algorithm, which is called Big Bang-Big 
Crunch, is proposed for the first time in literature for an automated 
generation of fuzzy cognitive maps from data. Two real-world 
examples; namely a process control system and radiation therapy 
process, and one synthetic model are used to emphasize the 
effectiveness and usefulness of the proposed methodology.  

Keywords—Big Bang-Big Crunch optimization, Dynamic 
Systems, Fuzzy Cognitive Maps, Learning. 

I. INTRODUCTION

OGNITIVE maps were introduced by Axelrod (1976) [1] 
to represent crisp cause-effect relationships which are 

perceived to exist among the elements of a given environment. 
Fuzzy cognitive maps (FCM) are fuzzy signed directed graphs 
with feedbacks, and they model the world as a collection of 
concepts and causal relations between concepts [2]. Their 
main advantages are flexibility and adaptability to a given 
domain [3]. FCMs were applied to a significant number of 
domains such as analysis of electrical circuits, medicine, 
supervisory systems, organization and strategy planning, 
analysis of business performance indicators, software project 
management, information retrievals, modeling of plant 
control, system dynamics and complex systems and modeling 
virtual world [5]. 

In general, FCMs can be produced by expert manually or 
generated by other sources of information computationally. 
They are named manual FCMs and automated FCMs.  

In most cases, the manual procedures for developing FCM 
have occurred, when at least there is one expert who has 
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expertise in the area under study. In some situations, a FCM 
could not be constructed manually such as [5]: 

a) There is no expert to define a FCM. 
b) The experts’ knowledge differs from each other and they 
even draw different FCM. 
c) There are large amounts of concepts with connections 
between them, which could not be drawn without mistakes. 
The above situation shows that in many cases, to develop a 

FCM manually becomes very difficult and experts’ 
intervention could not resolve the problem. Therefore, a 
systematic way should be found in order to bridge this gap. 
For these reasons, the development of computational methods 
for learning FCM is necessary. Some methods for learning 
FCM model structure have been recently proposed. In general, 
these methods are categorized in two main groups: Hebbian 
learning and global optimization methods. 

A simple differential Hebbian learning law (DHL) for FCM 
is introduced in [6], which has been extended by [7]. Further 
extensions, called nonlinear Hebbian learning (NHL) and 
Active Hebbian algorithm (AHL) are introduced in [8] and 
[9], respectively.  

Another category in learning connection matrix of FCM is 
the application of global search strategies. In [10], the Genetic 
Strategy (GS) to learn FCM’s structure is applied. In [11], a 
real-coded genetic algorithm (RCGA) is applied to develop a 
FCM model from a set of historical data. The aim of these 
studies was to compute the connection matrix. In [12], a goal-
oriented analysis of FCM is performed and the aim of the 
proposed learning method was learning the initial state vector 
of FCM. Also, particle swarm optimization (PSO) [13], 
simulated annealing (SA) [14], chaotic simulated annealing 
[5] methods are proposed for learning of FCMs. Petalas et al. 
[16] propose memetic particle swarm optimization to improve 
the standard PSO.

One of the main disadvantages of the proposed genetic 
algorithm based learning methods is its mediocre scalability as 
the number of parameters to be established grows 
quadratically with the size of the FCM model. This is because 
the genetic optimization applied to this modeling is time 
consuming especially when dealing with large a number of 
variables. Therefore an approach to speed-up the learning 
process based on a “divide and conquer” strategy is proposed 
in [17].  

The most important problem of the genetic algorithm based 
learning methods is the selection of the genetic algorithm 
operator parameters. The convergence and the time of 
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learning depend on this choice. Therefore, there is a need of a 
new simple global optimization based learning method. 

In this study, Big Bang - Big Crunch (BB-BC) optimization 
[18] method is recommend for learning of FCMs as an 
alternative to the existing learning methods. This global 
optimization method is preferred since it has a low 
computational cost, a high convergence speed and just a few 
parameters which should be set by the designer for learning of 
FCMs. BB–BC optimization method is a natural evolutionary 
algorithm similar to the genetic algorithms, the ant colony 
optimization, the particle swarm optimizer and the harmony 
search [19]. The algorithm generates random points in the Big 
Bang (BB) phase and shrinks those points to a single 
representative point via a centre of mass or minimal cost 
approach in the Big Crunch (BC) phase. It is reported in [18] 
to be capable of quick convergence even in long, narrow 
parabolic shaped flat valleys or in the existence of several 
local minima. It has been applied to many areas including 
fuzzy model inversion [20], non-linear controller design [21], 
target motion analysis problem [22], genetic programming 
classifier design [23], design of space trusses [24], and size 
reduction of space trusses [25]. 

The remainder of the paper is organized as follows: Section 
2 briefly describes the formulation of FCMs. Section 3 
presents proposed Big Bang-Big Crunch FCM learning 
method based on historical data. Section 4 introduces the 
simulation experiment setup, and then Section 5 presents the 
obtained results. Finally, Section 6 provides the conclusion. 

II.FUZZY COGNITIVE MAPS

A fuzzy cognitive map F is a 4-tuple (N, W, C, f) [12] 
where

1. N={N1, N2, …, Nn} is the set of n concepts forming the 
nodes of a graph. 

2. W: (Ni, Nj) wij is a function of N  N to K associating 
wij to a pair of concepts (Ni, Nj), with wij denoting a weight of 
directed edge from Ni to Nj, if i j and wij equal to zero if i=j. 
Thus W(N  N) = (wij )  Kn×n is a connection matrix. 
3. C: Ni  Ci is a function that at each concept Ni

associates the sequence of its activation degrees such as for 
t N, Ci(t) L given its activation degree at the moment t. 
C(0) Ln indicates the initial vector and specifies initial values 
of all concept nodes and C(t) Ln is a state vector at certain 
iteration t. 

4. f: R  L is a transformation function, which includes 
recurring relationship on t 0 between C(t + 1) and C(t). 

The calculation rule that was initially introduced to 
calculate the value of each concept is based only on the 
influence of the interconnected concepts [2], [26], [27] 

n

ji
1i

ijij w)t(Cf)1t(C                        (1) 

where n is the number of concepts, Cj(t+1) is the value of 

concept Cj at time step t+1, Ci(t) is the value of concept Ci at 
time step t, and wij is the weight of the causal interconnection 
from concept ith toward concept jth.

The transformation function is used to confine (clip) the 
weighted sum to a certain range, which is usually set to [0, 1]. 
The normalization hinders quantitative analysis, but allows for 
comparisons between nodes, which can be defined as active 
(value of 1), inactive (value of 0), or active to a certain degree 
(value between 0 and 1). Four most commonly used 
transformation functions are shown below: 
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3. sigmoid (logistic) 
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4. hyperbolic tangent 

xx

xx

ee
ee)xtanh()x(f                        (5) 

where  is a parameter used to determine proper shape of the 
function. 

III. PROPOSED LEARNING METHOD: BIG BANG – BIG CRUNCH

A. Big Bang-Big Crunch Optimization Algorithm 
The Big Bang-Big Crunch (BB-BC) optimization method 

developed by Erol and Eksin [18] consists of two main steps: 
The first step is the Big Bang phase where candidate solutions 
are randomly distributed over the search space and the next 
step is the Big Crunch phase where a contraction procedure 
calculates a center of mass for the population. 

The initial Big Bang population is randomly generated over 
the entire search space similar to any other evolutionary 
search algorithm. All subsequent Big Bang phases are 
randomly distributed around the center of mass or the best fit 
individual in a similar fashion. In [18], the working principle 
of the Big Bang phase is explained as energy dissipation or 
the transformation from an ordered state (a convergent 
solution) to a disordered or chaotic state (new set of candidate 
solutions).  

After the Big Bang phase, a contraction procedure is 
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applied during the Big Crunch. In this phase, the contraction 
operator takes the current positions of each candidate solution 
in the population and its associated cost function value and 
computes a centre of mass according to (6),  

N

1i
i

N

1i
ii

COM

f
1

x
f
1

x                                    (6) 

where xCOM is the position vector of the center of mass, xi is 
the position vector of the ith candidate, fi is the cost function 
value of the ith candidate, and N is the population size. The 
new generation for the next iteration Big Bang phase is 
normally distributed around xCOM. The new candidates around 
the centre of mass are calculated by adding or subtracting a 
normal random number whose value decreases as the 
iterations elapse. This can be formalized as 

k
)xx(rxx minmax

COM
new                       (7) 

where r is a normal random number,  is a parameter limiting 
the size of the search space, xmax and xmin are the upper and 
lower limits, and k is the iteration step. Since normally 
distributed numbers can be exceeding ±1, it is necessary to 
limit the population to the prescribed search space boundaries. 
This narrowing down restricts the candidate solutions into the 
search space boundaries. The procedure of the BB-BC 
optimization is given in the Table 1. 

TABLE I
BIG BANG BIG CRUNCH ALGORITHM

Step 1 (Big Bang Phase) 
An initial generation of N candidates is generated randomly in the search 
space.
Step 2
The cost function values of all the candidate solutions are computed. 
Step 3 (Big Crunch Phase) 
The center of mass is calculated. Either the best fit individual or the center 
of mass is chosen as the point of Big Bang Phase. 
Step 4 
New candidates are calculated around the new point calculated in Step 3 
by adding or subtracting a random number whose value decreases as the 
iterations elapse. 
Step 5
Return to Step 2 until stopping criteria has been met. 

Instead of the centre of mass, other points like the best fit 
individual can also be chosen as the starting point in the Big 
Bang phase. In the experiments reported in this paper we 
apply an elitist strategy introduced by Camp [24]. The 
positions of new candidate solutions at the beginning of each 
Big Bang are normally distributed around a new point located 
between the center of mass and the best solution, 

k
)xx(r

x).1(x.x minmax
BESTCOM

new          (8) 

where  is the parameter controlling the influence of the 
global best solution xBEST on the location of new candidate 
solutions. This modification of generating the new solution 
can be viewed as to be an elitist strategy, where the best 
solution influences the direction of the search.

B. Proposed Learning Methodology 
The proposed BB-BC learning method develops a candidate 

FCM from input data as given in Fig. 1. The input data are 
given as time series and that consist of a sequence of state 
vectors which describe a given system at consecutive iteration. 
The number of these successive iterations of the given 
historical date is called as the data length. Because of the 
nature of FCMs, the data points are normalized to the unit 
interval [0, 1] and they correspond to the degree of presence 
of a given concept at a particular iteration. Given a system 
consisting of N concepts, the FCM model can be described 
fully by its connection matrix. The aim of the learning method 
is to establish the connection matrix that consists of N(N-1) 
variables assuming values in [-1, 1]. The proposed method 
uses the BB-BC algorithm and given input data to determine 
these values. In other words, the learning goal is to generate 
the same state vector sequence using the candidate FCM for 
the same initial vector as it is defined in the input data. 
Thereby, the candidate FCM generalizes the relations between 
the concepts, and it allows performing simulations from 
different initial state vectors in order to represent conclusions 
about the modeled system. 

One of the most important considerations for BB-BC, 
similar to the other global optimization methods, is the design 
of a cost function, which is appropriate for a given problem. 
In literature many different cost functions are proposed. In this 
study the following cost function is found to be appropriate 
[11]: 

K
1t

N
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2
nn1 ))t(Ĉ)t(C(

N).1K(
1J              (9) 

where Cn(t) is the given system response, )t(Ĉn  is the 
candidate FCM response of the nth concept for the initial state 
vector, K is the data length, and N is the number of concepts. 
In order to normalize and visualize the cost function (8) the 
following fitness function which has the value [0 1] is 
proposed: 

1J.
1f
1

                                           (10) 

where parameter  is a positive scaling constant. 
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Fig. 1 Illustration of proposed BB-BC learning methodology 

Another important condition for the BB-BC learning of 
FCM is the stopping criteria. This can be defined by following 
ways: 
i. The algorithm terminates if time exceeds the specific 

time. 
ii. The algorithm terminates if the number of BB-BC 
generations exceeds the specific number.  
iii. The algorithm terminates if the best candidate FCM was 
not improved after a period. 
iv. The algorithm terminates if the predefined fitness 
function value is reached with the best candidate FCM. 

In this study, the second stopping criterion (number of 
generation) is used for experiments. 

After the best candidate FCM is obtained using the 
proposed BB-BC learning method, its generalization 
capabilities are tested. For this purpose, the original FCM and 
the candidate FCM are simulated for R randomly chosen 
initial state vectors and the data are collected [11]. Then, the 
generalization capability is calculated using the following new 
criterion:  

R
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where )t(Cr
n is the value of nth node at iteration t for the data 

generated by original FCM model started from the rth initial 
state vector, similarly, )t(Ĉr

n is the value of nth node at 
iteration t for the data generated by candidate FCM model 
started from the rth initial state vector, K is the data length, N 
is the number of nodes, and R is the number of randomly 
picked different initial state vectors. 

IV. EXPERIMENTAL SETUP

In this study, many systems are studied, but here three of 
these systems with different characteristics are discussed. The 
properties of the presented systems are summarized in Table 
2.  The first two systems have similar size and density that is 
defined as the ratio of non-zero weights to the total number of 
weights. The second system has an input node, which will be 
kept unchanged during the simulations. Furthermore all of the 
systems show different values for the transformation functions 
parameters ( ).

TABLE II
PARAMETERS OF THE STUDIED SYSTEMS

System 
No

Number of 
nodes

Input 
node  in (3) Density 

(%)
1 5 No 1 32 
2 6 Yes 2 33 
3 10 no 5 71 

A. First System: A Process Control System 
A process control problem [28] derived from chemical 

industry is used as our first case study. This process is used 
previously by several researchers as a benchmark system for 
different learning algorithms [29], [30], [16]. The system 
consists of a tank and three valves that control the amount of 
liquid in the tank. Two different liquids are poured and mixed 
into the tank through valve V1 and valve V2. During the 
mixing, a chemical reaction takes place and a new liquid is 
produced. Valve V3 empties the tank as soon as the amount of 
the produced liquid reaches a specific level. Meanwhile, the 
specific gravity (defined as the ratio of measured density to 
the density of a reference liquid) of the produced liquid is 
measured by a sensor placed inside the tank. When the 
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specific gravity value lies in a predefined range, the desired 
liquid has been produced. The process is illustrated in Fig.2a.  
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Fig. 2 Illustration of industrial tank-valve system 

The constructed FCM for this problem is depicted in Fig.2b 
with the following five concepts: 

C1: The amount of the liquid in the tank, 
C2: The state of valve V1, 
C3: The state of valve V2, 
C4: The state of valve V3, 
C5: The specific gravity of the produced liquid in the tank. 
The connection matrix of the FCM built by the experts [28] 

is as follows:  

030.0060.00
000090.0
000045.0
000036.0
30.0025.040.00

W1           (12) 

The FCM is calculated according to (1). The transformation 
function is sigmoidal (logistical) with =1. The initial state 
vector C(0) is chosen for this study is as follows:  

C(0)=[0.10 0.45 0.33. 0.04 0.01] 

The values of the FCM concepts for 10 iterations for the 
given initial state vector are presented in Fig. 3. This data is 
used as the training set. 
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Fig. 3 Values of the concepts for the first system 

B. Second System: Radiation Therapy Process 
The second system concerns radiotherapy, which is used for 

cancer treatment. Radiation therapy is a complex process 
involving a large number of treatment variables. The objective 
of radiotherapy is to deliver the highest amount of radiation 
dose to the smallest possible volume that encloses the tumor, 
while minimizing the exposure of healthy tissues and critical 
organs to radiation. Treatment planning, which is also a 
complex process and doctor–computer interaction, is needed 
before the final treatment execution. 

The radiation therapy process can be modeled and analyzed 
through a supervisor-FCM, constructed by experts [31]. The 
FCM consists of the following concepts: 

C1: Tumor localization, 
C2: Dose prescribed from the treatment planning, 
C3: Machine factors, 
C4: Human factors, 
C5: Patient positioning and immobilization, 
C6: Final dose received by the target volume. 
The FCM constructed by experts for this problem is 

depicted in Fig.4.  

Fig. 4 Illustration of FCM for radiation therapy process 
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The connection matrix of the Radiation Therapy Process 
FCM built by the experts is as follows:  

054.00067.022.0
68.0037.0000
43.032.00000
39.00003.00

57.0000028.0
43.000000

W2          (13) 

For this example, again, (1) is used as the calculation rule. 
The transformation function, this time, is sigmoidal 
(logistical) with =2 as stated in [31]. The initial state vector 
C(0) is chosen for this study is as follows:  

C(0)= [0.30 0.65 0.50 0.10 0.80 0.10] 
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Fig. 5 Historical data for the second system 

The values of the FCM concepts for 10 iterations for the 
given initial state vector are presented in Fig. 5. This data is 
used as the historical data for learning. Since concept C3 is an 
input node it is not affected by the other concepts and the 
initial state value will be constant for all iterations. This can 
also be seen from the connection matrix in (13), where the 
third column is a zero vector. 

C.Third System: Randomly Generated FCM  
In this study, two FCMs that are from real-world and 

constructed by experts are used. It becomes quite apparent that 
these FCMs are usually relatively small, and typically consist 
of 5–10 nodes [12]. Small size is a result of the manual 
development of such maps where we usually rely on expert 
knowledge. We note that mutual relationships among large 
number of concepts are hard to comprehend, analyze, and 
describe, which results in substantial difficulties in the 
construction of the corresponding maps. 

Therefore, as a third system a synthetic FCM model is 
constructed randomly. This time, the randomly generated 
FCM has 10 concepts; consequently the connection matrix has 
100 parameters. The aim of this example is to show the 
effectiveness of BB-BC learning method even the size of the 
FCM high. 

The connection matrix of the randomly generated FCM is 
presented as (14). 

For the randomly generated FCM example, (1) is used as 
the calculation rule. The transformation function, this time, is 
sigmoidal (logistical) with =5. The initial state vector C(0) is 
chosen for this study is as follows: 

C(0)= [0.64, 0.28,0.89, 0.04, 0.33, 0.65, 0.58,0.81, 0.35, 0.06] 
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Fig. 6 Historical data for the third system. 

043.0074.078.057.009.081.039.0
0023.02.05.0138.056.068.098.0
28.084.0012.042.0027.048.048.085.0
036.043.0081.031.032.0021.049.0
26.0065.047.00004.021.06.02.0
06.078.063.003.049.00071.0012.0
0014.012.054.077.0082.084.058.0

61.0056.058.00063.00095.0
88.025.0046.0015.006.053.0086.0
67.064.092.015.037.073.082.03.07.00

W3                     (14) 
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The values of the FCM concepts for 25 successive 
iterations for the given initial state vector are presented in Fig. 
6.

V.RESULTS AND DISCUSSIONS

In order to show the effectiveness of the Big Bang-Big 
Crunch (BB-BC) learning method three FCMs with different 
sizes are studied. The study is divided into two phases: 
Learning phase, and generalization capability testing phase. 
All the parameters used in these two phases are summarized in 
Table 3.  

TABLE III
PARAMETERS USED IN LEARNING AND 

GENERALIZATION CAPABILITY TEST PHASES

System 
No

in 
(8)

 in 
(8)

Population 
number 

(N)

Number 
of

iterations 
 in 

(10)
R in 
(11)

1 10 0.25 20 5000 104 100 
2 10 0.25 20 5000 104 100 
3 10 0.25 20 5000 102 100 

Since the proposed BB-BC learning algorithm is a stochastic 
method, many simulations for each system are performed. 
Firstly, the BB-BC algorithm is run ten times for each of the 
three systems during the learning phase and the cost function 
for each trial is calculated using (9). Then, out of ten 
candidates, the best candidate FCM that has the lowest cost 
function J1 is chosen. The results obtained for the learning 
phase are presented in Table 4. Secondly, to calculate the 
generalization capability of the best candidate FCM, hundred 
random initial state vectors are generated for each example. 
Then, FCMs are simulated for these initial state vectors, and 
the generalization capability is calculated using (11). The 
results obtained for this phase are presented in Table 5. As a 
result, for this study, 330 FCM simulations are done.   

Using our previous experience, the parameters of BB-BC 
algorithm,  and   in (8), are picked as 10 and 0.25, 
respectively. Also, in order to show the convergence of BB-

BC learning method in a normalized way, the fitness function 
given in (10) with appropriate  parameters are presented in 
Fig. 7. These plots show the change of best and average 
fitness functions for each system. 

TABLE IV
COST  FUNCTION VALUES FOR LEARNING PHASE 

System 
No Min J1 Max J1

Mean and 
Standard deviation 

1 1.47 10-7 1.57 10-6 4.97 10-7  4.19 10-7

2 3.91 10-6 2.20 10-5 1.12 10-5  6.39 10-6

3 2.22 10-4 3.88 10-3 2.03 10-3  1.37 10-3

As it is easily seen from Table 4 and Table 5, the two cost 
functions of both the first and second system are very low. 
The third system has nearly twice as much concepts as well as 
a high density value. Therefore the number of parameters for 
learning is much higher. As a result, the cost function values 
of the third system are one order of magnitude higher than the 
values of the first two systems. In order to show the capacity 
and effectiveness of the proposed BB-BC learning method for 
large FCMs, only the results of the third system are presented. 
In Fig. 8, the results obtained at the end of the learning phase 
are plotted for the comparison of the candidate FCM and 
original FCM. Then, for randomly generated hundred initial 
state vectors simulations are performed and the best and the 
worst results are illustrated in Fig. 9 and Fig. 10, respectively. 
The obtained results show that even for a large FCM, BB-BC 
learning algorithm effectively finds satisfactory results for the 
weight matrix with an appropriate precision. 

In study [11], where real-coded genetic algorithm (RCGA) 
is proposed as learning method, systems that have 4, 6, 8, and 
10 concepts and different densities are studied. These systems 
are similar to the ones presented in this paper. Even though, 
150,000 iterations with 100 populations are needed for RCGA 
based learning, in this paper successful results are obtained 
just with 5,000 iterations and only 20 populations when the 
proposed BB-BC learning method is used.  
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Fig. 7 Fitness functions (solid: best fitness, dashed: average fitness): (a) First system; (b) Second system; (b) Third system.
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Fig. 8 Comparison of the input data and the data obtained from candidate FCM (solid: original FCM, dashed: best candidate FCM).
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Fig. 9 Comparison of candidate and original FCM with a random initial state vector for the best simulation (solid: original FCM, dashed: candidate FCM) 
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Fig. 10 Comparison of candidate and original FCM with a random initial state vector for the worst simulation (solid: original FCM, dashed: candidate FCM) 

TABLE V
COST  FUNCTION VALUES FOR GENERALIZATION CAPABILITY TESTING PHASE 

System 
No Min J2 Max J2

Mean and 
Standard deviation 

1 3.58 10-6 1.04 10-3 2.40 10-4  2.25 10-4

2 2.96 10-5 2.86 10-3 7.91 10-4  7.61 10-4

3 6.67 10-3 4.91 10-2 1.95 10-2  6.81 10-3

VI. CONCLUSION

In this study, a comprehensive learning method for the 
development of fuzzy cognitive maps is developed. For the 
first time in literature, a new but effective global optimization 
algorithm called Big Bang-Big Crunch is used for 
constructing FCMs on a basis of experimental historical data 
as an alternative to the existing method. This global 
optimization method is preferred since it is reported in 
previous studies that BB-BC has a low computational cost and 
a high convergence speed. 

The proposed methodology is able to generate a FCM 
model from input data consisting of a single sequence of 
concept state vector values. Three systems, which have 5, 6 
and 10 concepts, are studied to test the proposed 
methodology. The results show that the proposed learning 
method is very effective, and generates FCM models that can 
almost present the input data. Then, in order to test the 

generalization capability of the obtained FCM, several 
simulations are performed for randomly generated initial state 
vectors. It is obtained that the BB-BC based learning method 
deteriorates with the increasing size of the maps. For the first 
two systems with 5 and 6 concepts, the proposed method 
achieves excellent quality, while for the maps about 10 
concepts the quality is still satisfactory. 
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