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Bifurcations for a FitzHugh-Nagumo model with
time delays

Changjin Xu, Peiluan Li

Abstract—In this paper, a FitzHugh-Nagumo model with time
delays is investigated. The linear stability of the equilibrium and
the existence of Hopf bifurcation with delay τ is investigated. By
applying Nyquist criterion, the length of delay is estimated for which
stability continues to hold. Numerical simulations for justifying the
theoretical results are illustrated. Finally, main conclusions are given.
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I. INTRODUCTION

RECENTLY substantial efforts have been made in
FitzHugh-Nagumo system which is frequently used(e.g.,

in brain research, and to some extent in modelling cardiac
movements etc), for example, Medvedev and Kopell [1]
studied synchronization and transient dynamics of electrically
coupled FitzHugh-Nagumo oscillators, Kostova et al.[4] in-
vestigated the stability and bifurcation of a revised FitzHugh-
Nagumo model, etc. In 2009, Ringkvist and Zhou[6] intro-
duced the following two-stage predator-prey interaction model
with a generic functional response:{

ẋ(t) = −Cy(t) −Ax(t)[x(t) −B][x(t) − λ] + I,
ẏ(t) = ε[x(t) − δy(t)],

(1)

where A,B,C, δ, ε, λ are non-zero parameters and I is an
external force, commonly referred to as the magnitude of the
stimulating current,which can be a function of t. In details,
one can see [6]. Nothing that most practical implementations
of feedback have inherent delays, we incorporate time delay
into model (1) as follows:{

ẋ(t) = −Cy(t− τ) −Ax(t)(x(t) −B)(x(t) − λ) + I,
ẏ(t) = ε[x(t) − δy(t− τ)].

(2)
It is well known that delay may have very complicated impact
on the dynamics of a system. To obtain a deep and clear
understanding of dynamics of FitzHugh-Nagumo system with
delay, in this paper, we will study the Hopf bifurcation of
model (2). Choosing the delay τ as the bifurcation parameter,
we shall investigated the effect of the delay τ on the dynamics
of system (2).

The remainder of the paper is organized as follows. In
Section 2, we discuss the stability of the equilibrium and the
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existence of Hopf bifurcations occurring at the equilibrium. In
Section 3, the length of delay is estimated for which stability
continues to hold by means of Nyquist criterion. In Section
4, numerical simulations are carried out to validate our main
results. Some main conclusions are drawn in Section 5.

II. STABILITY OF THE EQUILIBRIUM AND LOCAL HOPF

BIFURCATIONS

First, we assume that system (2) has a equilibrium
E0(x

∗, y∗), where x∗ = δy∗ and y∗ satisfies the following
equation:

Aδ3y3 −Aδ2(B + λ)y2 + (C −ABλδ)y + I = 0. (3)

Let x̄(t) = x(t) − x∗, ȳ(t) = y(t) − y∗ and still write x̄(t)
and ȳ(t) as x(t) and y(t) respectively, then the linearization
of Eq. (2) at E0(x

∗, y∗) takes the form⎧⎨
⎩

ẋ(t) = −A[x∗(2x∗ − λ−B) + (x∗ −B)(x∗ − λ)]x(t)
− Cy(t− τ),

ẏ(t) = εx(t) − εδy(t− τ).
(4)

The characteristic equation of system (4) takes the form

λ2 +m1λ+m0 + (n1λ+ n0)e
−λτ = 0, (5)

where

m0 = Cε,m1 = A[x∗(2x∗ − λ−B) + (x∗ −B)(x∗ − λ)],

n0 = Cε+ εδa1, n1 = εδ.

The stability of the positive equilibrium of system (2) depends
on the locations of the roots of the characteristic equation (5),
When all roots of Eq.(5) locate in the left half of complex
plane, the trivial solution is stable, otherwise, it is instable.

For τ = 0, (5) becomes

λ2 + (m1 + n1)λ+m0 + n0 = 0. (6)

It is easy to see that a set of necessary and sufficient conditions
that all roots of (6) have a negative real part is given in the
following form:

(H1) m1 + n1 > 0, m0 + n0 > 0.

For ω > 0, iω is a root of (5), then

−ω2 + im1ω +m0 + (in1ω + n0)(cosωτ − i sinωτ) = 0.

Separating the real and imaginary parts, we get{
n0 cosωτ + n1ω sinωτ = ω2 −m0,
n1ω cosωτ − n0 sinωτ = −m1ω

(7)
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which leads to

ω4 + (m2
1 − n2

1 − 2m0)ω
2 +m2

0 − n2
0 = 0. (8)

In the sequel, we consider three cases.
(a) If the condition

(H2) m2
1 − n2

1 − 2m0 > 0,m2
0 − n2

0 > 0 or

Δ = (m2
1 − n2

1 − 2m0)
2 − 4(m2

0 − n2
0) < 0

holds, then Eq.(8) has no positive root.
(b) If the condition

(H3) m2
1 − n2

1 − 2m0 < 0,m2
0 − n2

0 > 0,

Δ = (m2
1 − n2

1 − 2m0)
2 − 4(m2

0 − n2
0) > 0

holds, then Eq.(8) has two positive roots

ω± =

√
2

2

[
−m2

1 + n2
1 + 2m0 (9)

±
√

(m2
1 − n2

1 − 2m0)2 − 4(m2
0 − n2

0)

] 1
2

. (10)

(c) If

(H4) m2
0 − n2

0 < 0 or m2
1 − n2

1 − 2m0 < 0 and

Δ = (m2
1 − n2

1 − 2m0)
2 − 4(m2

0 − n2
0) = 0

holds, then Eq.(8) has only one positive root ω+.
Without loss of generality, we assume that (8) has two

positive roots denoted by ω±. It follows from (7) that

τ±j =
1

ω±

[
arccos

n0(ω
2
± −m0) −m1n1ω

2
±

n2
0 + n2

1ω
2
±

+ 2jπ

]
, (11)

(j = 0, 1, 2, · · ·) at which Eq.(5) has a pair of purely imaginary
roots ±iω±. Let λ(τ) = α(τ) + iω(τ) be the root of Eq.(5)
such that α(τ±j ) = 0, ω(τ±j ) = ω±. Due to functional
differential equation theory, for every τ±j , j = 0, 1, 2, · · · ,
there exists ε > 0 such that λ(τ) is continuously differentiable
in τ for |τ−τ±j | < ε. Substituting λ(τ) into the left hand side
of (5) and taking derivative with respect to τ , we have[

dλ

dτ

]−1

=
(2λ+m1)e

λτ

λ(n1λ+ n0)
+

n1

λ(n1λ+ n0)
−
τ

λ
,

which, together with (7), leads to

Re

[
dλ

dτ

]−1

τ=τ±

j

= Re

{
(2λ+ a1)e

λτ

λ(n1λ+ n0)

}
τ=τ±

j

+Re

{
n1

λ(n1λ+ n0)

}
τ=τ±

j

= Re

{
m1 cosω±τ

±
j − 2ω± sinω±τ

±
j

−n1ω2
± + in0ω±

+
i(2ω± cosω±τ

±
j +m1 sinω±τ

±
j )

−n1ω2
± + in0ω±

}

+Re

{
n1

−n1ω2
± + in0ω±

}

=
1

Λ
{m1ω±(n0 sinω±τ

±
j − n1ω± cosω±τ

±
j )

+2ω2
±(m1 cosω±τ

±
j + n1ω± sinω±τ

±
j ) − n2

1ω
2
±}

=
1

Λ
{m2

1ω
2
± + 2ω4

± − 2m0ω
2
± − n2

1ω
2
±}

=
ω2
±

Λ
{2ω2

± +m2
1 − n2

1 − 2m0}

=
ω2
±

Λ
{−m2

1 + n2
1 + 2m0 ±

√
Δ +m2

1 − n2
1 − 2m0}

=
ω2
±

Λ
{±

√
Δ},

where

Λ = n2
1ω

4
±+n2

0ω
2
± > 0,

√
Δ = (n2

1−m
2
1+2m0)

2−4(m2
0−n

2
0).

Thus, if Δ �= 0, we obtain

sign

{
Re

[
dλ

dτ

]
τ=τ+

j

}
= sign

{
Re

[
dλ

dτ

]−1

τ=τ+
j

}

= sign

{
ω2
±

Λ
{
√

Δ}

}
= 1 > 0

and

sign

{
Re

[
dλ

dτ

]
τ=τ−

j

}
= sign

{
Re

[
dλ

dτ

]−1

τ=τ−

j

}

= sign

{
ω2
±

Λ
{−

√
Δ}

}
= −1 < 0.

According to above analysis and the results of Ruan and
Wei[7], Yang[5] and Hale[3], we have the following result.

Theorem 2.1. Let τ±j (j = 0, 1, 2, · · ·) be defined by (10)
and τ0 = min{τ+

0 , τ
−
0 }. If (H1), (H2), (H3) hold, then the

equilibrium E0(x
∗, y∗) of system (2) is asymptotically stable

for τ ∈ [0, τ0). If (H1), (H2), (H4) hold, system (2) under-
goes a Hopf bifurcation at the equilibrium E0(x

∗, y∗) when
τ = τ±j , j = 0, 1, 2, · · ·.

III. ESTIMATION OF THE LENGTH OF DELAY TO PRESERVE

STABILITY

In the present section, we will obtain an estimation τ+ for
the length of the delay τ which preserves the stability of
the equilibrium E0(x

∗, y∗), i.e., E0(x
∗, y∗) is asymptotically

stable if τ < τ+.
We consider system (4) in C([−τ,∞), R2) with the initial

values

x(ξ) = ϕ1(ξ), y(ξ) = ϕ2(ξ), ϕi(0) ≥ 0, i = 1, 2, ξ ∈ [−τ, 0].

Taking Laplace transform of system (4), we obtain{
[s+m1]x̃ = −Ce−sτM(s) − Cỹ + ϕ1(0),
sỹ = εx̃− εδ(M(s) + ỹ)e−sτ + ϕ2(0),

(12)

where x̃, ỹ are the Laplace transform of x(t), y(t), respec-
tively, and M(s) =

∫ 0

−τ e
−sτy(t)dt.
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Solving (11) for x̃ leads to x̃ = K(s,τ)
J(s) , where

K(s, τ) = C[εδe−sτM(s) − ϕ2(0)]

− [Ce−sτM(s) + ϕ1(0)][εδe−sτ + s],

J(s) = [s+m1)(s+ εδe−sτ ) + Cs.

Following along the lines of Freedman and Rao[2] and using
the Nyquist criterion, we obtain that the conditions for local
asymptotic stability of E0(x

∗, y∗2) are given by

Im{J(iω0)} > 0, (13)

Re{J(iω0)} = 0, (14)

where Im{J(iω0)} and Re{J(iω0)} are the imaginary part and
real part of J(iω0), respectively and ω0 is the small positive
root of (13).

By (12) and (13), we have

m1ω0 > n0 sinω0τ − n1ω0 cosω0τ, (15)

ω2
0 −m0 = n0 cosω0τ + n1ω0 sinω0τ. (16)

It follows from (15) that

ω2
0 − |n1|ω0 − (m0 + |n0|) ≤ 0 (17)

which leads to ω0 ≤ ω+, where ω+ =
|n1|+

√
n2

1+4(m0+|n0|)

2 .
By (15), we have

ω0 =
n0 cosω0τ + n1ω0 sinω0τ +m0

ω0
. (18)

Substituting (17) into (14) and rearranging, we get

(m1n0 + n1ω
2
0)(1 − cosω0τ) + (n0 − n1m1)ω0 sinω0τ

< m1m0 +m1n0 + n1ω
2
0 . (19)

Using the bounds

(m1n0 +n1ω
2
0)(1− cosω0τ) = 2(m1n0 +n1ω

2
0) sin2

(ω0τ

2

)

≤
1

2
(|m1n0| + |n1|ω

2
+)ω2

+τ
2

and

(n0 − n1m1)ω0 sinω0τ ≤ |(n0 − n1m1)|ω
2
+τ,

we obtain from (3.8)

K1τ
2 +K2τ ≤ K3,

where

K1 =
1

2
(|m1n0| + |n1|ω

2
+)ω2

+,

K2 = |(n0 − n1m1)|ω
2
+,

K3 = m1m0 +m1n0 + |n1|ω
2
+.

It is obvious to see that if τ < τ+ =
−K2+

√
K2

2+4K1K3

2K1
, the

stability of E0(x
∗, y∗) of system (2) is preserved.

IV. NUMERICAL EXAMPLES

In this section, we will prove some numerical results of system
(2) to illustrate our results obtained in Section 2. We consider
the system (2) with A = B = C = 1, λ = −0.04, I =
0.05, ε = 0.2, δ = 3. That is,

{
ẋ(t) = −y(t− τ) − x(t)(x(t) − 1)(x(t) + 0.04) + 0.05,
ẏ(t) = 0.2(x(t) − 3y(t− τ)),

(1)
which has a positive equilibrium E0(0.75, 0.25) and satisfies
the conditions indicated in Theorem 2.1. When τ = 0,
the positive equilibrium E0(0.75, 0.25) is asymptotically
stable. The positive equilibrium E0(0.75, 0.25) is stable
when τ < τ0 ≈ 1.66 which is illustrated by the computer
simulations(see Figs.1-4). When τ passes through the critical
value τ0, the positive equilibrium E0(0.75, 0.25) loses its
stability and a Hopf bifurcation occurs, i.e., a family of
periodic solutions bifurcate from the positive equilibrium
E0(0.75, 0.25) (see Figs.5-8).
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Figs.1-4 When τ = 1.65 < τ0 ≈ 1.66. The positive
equilibrium E0(0.75, 0.25) of system (19) is asymptotically
stable. The initial value is (0.6,0.18).
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Figs.5-8 When τ = 1.676 > τ0 ≈ 1.66. Hopf bifurca-
tion of system (19) occurs from the positive equilibrium
E0(0.75, 0.25). The initial value is (0.6,0.18).

V. CONCLUSIONS

In this paper, the local stability of the equilibrium E0(x
∗, y∗)

and local Hopf bifurcation in a FitzHugh-Nagumo model with
time delay are investigated. It is showed that if the conditions
(H1) − (H3) hold, the equilibrium E0(x

∗, y∗) of system (2)
is asymptotically stable for all τ ∈ [0, τ0). If the conditions
(H1), (H2) and (H4) hold, as the delay τ increases, the
positive equilibrium loses its stability and a sequence of Hopf
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bifurcations occur at the equilibrium E0(x
∗, y∗), i.e., a family

of periodic orbits bifurcates from the the positive equilibrium
E0(x

∗, y∗). Moreover, the length of delay preserving the
stability of the equilibrium E0(x

∗, y∗) is estimated. Some
numerical simulations are performed to verify our theoretical
results found.

VI. CONCLUSIONS

In this paper, we have investigated the dynamical behaviors of
a nonlinear delay population model. It is shown that under a
certain condition, there exists a critical value τ0 of the delay
τ for the stability of the population system. If τ ∈ [0, τ0), the
positive equilibrium of the population system is asymptotically
stable which means that the size of the population will keep in
a steady state. When the delay τ passes through some critical
values τ = τk, k = 0, 1, 2, · · ·, the positive equilibrium of the
population system loses its stability and a Hopf bifurcation
will occur. Moreover, the existence of global Hopf bifurcation
are established.
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